
Requirements analysisRequirements analysis
What do stakeholders want from the system?
– What should it to do?
– What should it look like? Sound like? Be like?

Analysis starts with a project description
– Usually written (or otherwise expressed) by major stakeholder

a.k.a. “Client” – might be a customer, another department in the 
company, management, professor, …
Or project team writes it for an anticipated market

Results in a series of RA artifacts: 2 purposes
– Shows the client what they will be getting
– Used to kick-off and guide later development activities



RA starts in UP Phase I: RA starts in UP Phase I: 
InceptionInception

Purpose is to explore project feasibility
Target length: only about a week
Identify most use cases and actors
– And write 10-20% of use cases in detail
– Used to make rough estimate of costs

Most important requirements artifacts: 
vision, use cases



Project descriptionsProject descriptions

Client’s view: system is basically a “black box”
Probably vague, repetitive, confused, …
– But remember: client thinks it “says it all”

Often has too many details, or misguided focus
– e.g., implementation details – too limiting at this stage
– e.g., too many “ilities” – distract from the purpose

May contain contradictions or impossible parts
– Often just “wish lists” without clear goals

So, always expect to re-express as requirements



Doing requirements analysisDoing requirements analysis
Basically: detailing the requirements
– But still in language that the user understands

i.e., all artifacts continue to treat the system as a black box –
focus on what goes in and what comes out

– For CS 50: write a vision (beefed up) and use cases
Study much more than the project description
– Interview users, managers, sponsors, experts, …
– Learn about current practices, existing systems, 

business rules (general and specific), memo trails, …
– But no need to become a domain expert

Could take years! A “knowledgeable layperson” is sufficient.



Vision 1: problem statementVision 1: problem statement
Should answer two fundamental questions:
– What problem(s) will the system solve?
– How is the system expected to solve the problem(s)?

Stakeholders must approve it before proceeding
– Becomes basis for contract (if real client)

Bounds the client’s expectations
Establishes scope of work

– Note: might also state what the system will not do
Narrows the focus of the project team
– Limits the range of system goals



Vision 2: system goalsVision 2: system goals
Essentially, the system’s major responsibilities
– Should solve problems for stakeholders, inc. users

High-level goals apply to overall system
– What will the system do, and/or be like?
– Typically span use cases of a complex system
– Each stakeholder expects some value from the system 

– What value?
User-level goals apply to particular actors
– i.e., typically apply to particular use cases
– Each user expects some result from using the system –

What result? 



Vision 3: system featuresVision 3: system features
What the system must be able to do
– i.e., particular actions, events, processes, …
– X is a feature only if it makes sense to say:

“The system shall do X.”
– Usually expressed in a list like:

Display chess board/pieces to players
Allow player to move a chess piece

– List both clarifies the system’s requirements, and 
helps assign responsibilities to classes during design

CS 50 note: start for assignment 2; supplement 
and refine later



Vision 4: other requirementsVision 4: other requirements
and constraintsand constraints

Not functional requirements (like “features” are)
– e.g., fast, cheap, scalable, extensible, …
– One such characteristic may relate to several features

Not responsibilities to assign to any class
– Instead: things to consider throughout development

Quantify if feasible
– e.g., “will retrieve data record in 2 seconds or less”

CS 50 note: this part of vision replaces most of the 
“supplementary specification” (section 7.4)
– All except the functionality part of FURPS+

Usability, reliability, performance, supportability, plus …



The FURPS+ ModelThe FURPS+ Model
Functional
– features, capabilities, security

Usability
– human factors, help, documentation

Reliability
– failure frequency, recoverability, predictability

Performance
– response time, throughput, accuracy,...

Supportability
– adaptability, maintainability, configurability,...

+ - implementation, operations, packaging, legal, …



What are use cases?What are use cases?
Answer: domain processes in which the system is 
a participant – best described in story format
– Note: a scenario is a particular instance of a use case

Other participants are termed actors
– Include users, other systems, and/or more abstract 

external things (like a specific date and time)
The system interacts with these actors
– An actor will initiate each use case
– The system will respond in some way
– An actor may respond to the system’s response

And so on … until the use case terminates



Why describe use cases?Why describe use cases?
Beneficial to the client
– Shows exactly how the system works for users

Via step-by-step descriptions of user-system interactions
In non-technical language the client understands

– Not as distracting as prototypes
Can be used to drive the process
– Analysis: “harvest” classes from use case descriptions
– Design: begin/terminate system sequences, satisfy 

user interface needs, and more
– Implementation/testing: insure each case is realized

Can expose “abuse cases” and “useless cases”



Use case diagramsUse case diagrams

Actor
Use case

Package

UML to show the functionality of the 
system from the user’s point of view

Cashier Customer

Buy items

Log in

Refund items

POST



Use case descriptionsUse case descriptions
No strict format, but probably best to include at 
least the following:
– Name of use case – first word should be a verb
– Primary Actor (or actors; never including the system)
– Main Success Scenario

a.k.a. “Basic Flow” or “Typical Course”
step-by-step interactions – steps are numbered for easy 
referencing – can be 1 or 2 columns (2 are easier to read)

– Extensions
a.k.a. “Alternative Flows” or “Alternative Courses”
Listed at the end, and referenced by step number
All conditional branches should be here, not in the basic flow



About types of use casesAbout types of use cases
Often useful to classify in terms of importance:
– Primary – for major common processes, such as “Buy 

Items” in the POST system
– Secondary – for minor or rare processes, such as 

“Request for Stocking New Product”
– Optional – may or may not end up in the system

And a continuum of types in terms of detail:
– Essential (no design details) – “user identifies self”

Most appropriate for early stages of development
– Real (more explicit) – “user enters ID on keypad”

Defer to design stage – otherwise limits design possibilities



Defining use cases in practiceDefining use cases in practice
Iteratively/incrementally – like everything else!
– First, “façade” iterations – brief or casual, and essential
– Next iterations add details – fully dressed, still essential
– Later iterations get real – some implementation details

Best if domain language only (no computer-speak)
– Watch for clues of design details creeping in:

Too many consecutive system steps
References to database or other non-domain concepts
“if/else” structures in typical course of events

Extend or include use cases if it simplifies things



UML UML <<extend>> <<extend>> stereotypestereotype

Passenger
PurchaseTicket

TimeOut

<<extend>>

NoCharge

<<extend>>OutOfOrder

<<extend>>

Cancel

<<extend>>

Note: has 
nothing to do 
with inheritance



Passenger

PurchaseSingleTicket

PurchaseTicketPackage

NoCharge

<<extend>>

Cancel

<<extend>>

<<include>>

CollectMoney

<<include>>

UML UML <<include>> <<include>> stereotypestereotype



Use cases and developmentUse cases and development
Assign a use case to an early iteration if it
– significantly influences core architecture

i.e., has many domain classes/concepts, is a primary system 
purpose, involves risky technology, …

– requires lots of research, or has complex calculations
So might have to start it early to get it all done in time

– is a “time-critical” case (needed early by the client)
Secondary, and or optional use cases can be 
developed later (incrementally)
So can complicated use cases (iteratively)



Planning development iterationsPlanning development iterations
One iteration includes: analyze, design, code, test
– “Analyze and design a little, code and test a little, …”
– Best if about 2-10 weeks (in CS 50, 3-4 weeks each, or less)

Main reason for an iterative/incremental process: 
manage complexity
– Can easily lose focus if iteration is too long, and/or tries 

to tackle too many details
Note: also plan to synchronize artifacts to code 
after each iteration
– Analysis and design occur during coding and testing too



3 implementation issues to plan3 implementation issues to plan
Overall system architecture – typically “layers”

Top layer: Presentation
Middle layer: Application logic (domain, services)
Bottom layer: Storage

Java packages necessary for CS 50 projects
– Each class/interface belongs to a package – break 

system into subsystems (whole layer, or part of layer)
Test risky ideas early
– Especially connections to other systems
– Also any tricky or complicated algorithms


