Reqguirements analysis

e What do stakeholders want from the system?
— What should it to do?
— What should it look like? Sound like? Be like?

e Analysis starts with a project description

— Usually written (or otherwise expressed) by major stakeholder

e a.k.a. “Client” — might be a customer, another department in the
company, management, professor, ...

e Or project team writes it for an anticipated market
e Results in a series of . 2 purposes
— Shows the client what they will be getting
— Used to kick-off and guide later development activities

RA starts in UP Phase I:
Inception

e Purpose Is to explore project feasibility
e Target length: only about a week
e Identify most use cases and actors

— And write 10-20% of use cases In detail

— Used to make rough estimate of costs

e Most important requirements artifacts:
vision, use cases

Project descriptions

e Client’s view: system Is basically a “black box”

e Probably vague, repetitive, confused, ...
— But remember: client thinks it “says it all”
e Often has too many details, or misguided focus
— e.g., Implementation details — too limiting at this stage
— e.g., too many “ilities” — distract from the purpose
e May contain contradictions or impossible parts
— Often just “wish lists” without clear goals
e S0, always expect to re-express as requirements

Doing requirements analysis

e Basically: detailing the requirements

— But still in language that the user understands

e l.e., all artifacts continue to treat the system as a black box —
focus on what goes in and what comes out

— For CS 50: write a vision (beefed up) and use cases

e Study much more than the project description
— Interview users, managers, sponsors, experts, ...

— Learn about current practices, existing systems,
business rules (general and specific), memo trails, ...

— But no need to become a domain expert
e Could take years! A “knowledgeable layperson” is sufficient.

Vision 1: problem statement

e Should answer two fundamental questions:
— What problem(s) will the system solve?
— How Is the system expected to solve the problem(s)?

e Stakeholders must approve it before proceeding

— Becomes basis for contract (if real client)
e Bounds the client’s expectations
o Establishes scope of work

— Note: might also state what the system will not do

e Narrows the focus of the project team
— Limits the range of system goals

Vision 2: system goals

e Essentially, the system’s major responsibilities
— Should solve problems for stakeholders, inc. users

e High-level goals apply to overall system
— What will the system do, and/or be like?

— Typically span use cases of a complex system

— Each stakeholder expects some value from the system
— What value?

e User-level goals apply to particular actors
— 1.e., typically apply to particular use cases

— Each user expects some result from using the system —
What result?

Vision 3: system features

e \What the system must be able to do
— 1.e., particular actions, events, processes, ...
— X is a feature only If it makes sense to say:
“The system shall do X.”

— Usually expressed in a list like:
e Display chess board/pieces to players
o Allow player to move a chess piece

— List both clarifies the system’s requirements, and
helps assign responsibilities to classes during design

e CS 50 note: start for assignment 2; supplement
and refine later

Vision 4: other requirements
and constraints

Not functional requirements (like “features” are)
— e.g., fast, cheap, scalable, extensible, ...
— One such characteristic may relate to several features

Not responsibilities to assign to any class

— Instead: things to consider throughout development

Quantify if feasible

— e.g., “will retrieve data record in 2 seconds or less”
CS 50 note: this part of vision replaces most of the
“supplementary specification” (section 7.4)

— All except the functionality part of FURPS+
o Usability, reliability, performance, supportability, plus ...

The FURPS+ Model

unctional
— features, capabilities, security

sability

— human factors, help, documentation

eliability
— failure frequency, recoverability, predictability

erformance
— response time, throughput, accuracy,...
upportability
— adaptability, maintainability, configurability,...
- Implementation, operations, packaging, legal, ...

What are use cases?

e Answer: domain processes in which the system is
a participant — best described in story format

— Note: a scenario Is a particular instance of a use case
e Other participants are termed actors

— Include users, other systems, and/or more abstract
external things (like a specific date and time)

e The system interacts with these actors
— An actor will initiate each use case
— The system will respond in some way

— An actor may respond to the system’s response
e And so on ... until the use case terminates

Why describe use cases?

e Beneficial to the client

— Shows exactly how the system works for users
e Via step-by-step descriptions of user-system interactions
e In non-technical language the client understands

— Not as distracting as prototypes
e Can be used to drive the process
— Analysis: “harvest” classes from use case descriptions

— Design: begin/terminate system sequences, satisfy
user interface needs, and more

— Implementation/testing: insure each case Is realized
e Can expose “abuse cases” and “useless cases”

Use case diagrams

e UML to show the functionality of the
system from the user’s point of view

Cashier

POST \

O

Buy items ™~

JUse case|

-
/Customel’

Refund 1tems

‘i::{;ackagéw

Use case descriptions

e No strict format, but probably best to include at
least the following:

— Name of use case — first word should be a verb

— Primary Actor (or actors; never including the system)

— Main Success Scenario
e a.k.a. “Basic Flow” or “Typical Course”

e step-by-step interactions — steps are numbered for easy
referencing — can be 1 or 2 columns (2 are easier to read)

— Extensions
e a.k.a. “Alternative Flows” or “Alternative Courses”
o Listed at the end, and referenced by step number
o All conditional branches should be here, not in the basic flow

About types of use cases

e Often useful to classify in terms of importance:

— Primary — for major common processes, such as “Buy
Iltems” in the POST system

— Secondary — for minor or rare processes, such as

“Request for Stocking New Product”
— Optional — may or may not end up In the system

e And a continuum of types in terms of detail:

— Essential (no design details) — “user identifies self”
e Most appropriate for early stages of development

— Real (more explicit) — “user enters ID on keypad”
o Defer to design stage — otherwise limits design possibilities

Defining use cases In practice

e lteratively/incrementally — like everything else!
— First, “facade” iterations — brief or casual, and essential
— Next iterations add details — fully dressed, still essential
— Later iterations get real — some implementation details

e Best iIf domain language only (no computer-speak)

— Watch for clues of design details creeping in:
e Too many consecutive system steps
o References to database or other non-domain concepts
o “If/else” structures in typical course of events

e Extend or include use cases If it simplifies things

UML <<extend>> stereotype

Note: has / %

nothing to do
with Inheritance PurchaseT.Cket

Passenger

<<extend>>
<<extend>>

<<extend>>

OutOfOrder <<extend>> TlmeOut

NoCharge

UML <<include>> stereotype

Passen;::\\\\ <:::::::>
<:::::::> PurchaseTicketPackage
/

PurchaseSingleTicket I'
~ -
S !/ <<include>>
N /

- ~
<<include>> ~a A

k4 N\

7 \
<<extend>>_~ Col lectMone N
e Y N <<extend>>

C_ >

NoCharge

Use cases and development

e Assign a use case to an early iteration If it

— significantly influences core architecture

e 1.e., has many domain classes/concepts, is a primary system
purpose, involves risky technology, ...

— requires lots of research, or has complex calculations
e So might have to start it early to get it all done in time

— 1Is a “time-critical” case (needed early by the client)

e Secondary, and or optional use cases can be
developed later (incrementally)

e S0 can complicated use cases (iteratively)

Planning development iterations

e One Iteration includes: analyze, design, code, test
— “Analyze and design a little, code and test a little, ...”
— Best if about 2-10 weeks (in CS 50, 3-4 weeks each, or less)

e Main reason for an iterative/incremental process:
manage complexity

— Can easily lose focus if iteration is too long, and/or tries
to tackle too many details

e Note: also plan to synchronize artifacts to code
after each Iteration

— Analysis and design occur during coding and testing too

3 Implementation issues to plan

e Overall system architecture — typically “layers”
Top layer: Presentation
Middle layer: Application logic (domain, services)
Bottom layer: Storage

e Java packages necessary for CS 50 projects

— Each class/interface belongs to a package — break
system into subsystems (whole layer, or part of layer)

e Testrisky ideas early
— Especially connections to other systems
— Also any tricky or complicated algorithms

