
Domain analysisDomain analysis
Goal: build an object-oriented model of the real-
world system (or imaginary world)
Slicing the soup: OOA vs. OOD
– OOA concerned with “what”, not “how”
– OOA activities focus on the domain layer

Common OOA activities: identify classes, assign
(some) responsibilities to classes
– Larman’s OOA: domain model (classes, associations,

attributes), and system operations
Includes static and dynamic views of the domain

– DA artifacts for CS 50 project: see assignment 3

Domain analysis activitiesDomain analysis activities
Static view – model the domain
– Identify domain concepts
– Identify associations between the concepts

Now ready to start drawing domain model – a visual
representation of these concepts and associations

– Identify attributes of the concepts
Usually add to drawing (CS 50: add to class specifications)

Dynamic view – model the system behavior
– Make system sequence diagrams
– Write system operation contracts

Identifying conceptsIdentifying concepts
Class = major abstraction (i.e.,not just an attribute)
How to find candidate classes?
– Think/brainstorm about the domain

Ask Who? What? When? Where?
But save the How? questions for OOD

– Use a concept category list – e.g., pp. 140-141 in text
– Identify the nouns & noun phrases in problem

statement, use case descriptions, other …
Consider all as candidates to start; refine later
– i.e., a candidate class turns out to be just an attribute

But common error to decide too early

Suggest: start CRC cards nowSuggest: start CRC cards now

1 card for each candidate class, showing:
– Class name – do now
– Responsibilities – knowledge now, operations in OOD
– Collaborators – some now, more in OOD

CRC cards are useful for both OOA and OOD:
– OOA – help sort out classes; use to lay out diagrams
– OOD – role-playing to find operations; more diagrams

Collaborators
…

Responsibilities
…

Class (name)

Split cards into 3 pilesSplit cards into 3 piles
1. Critical classes – must include
2. Totally irrelevant classes – must reject

– Set aside, but record as irrelevant in glossary
3. Classes you are still undecided about – ask

yourself questions like the following:
– Is it same as another class? Is it an instance?
– Is it actually outside the system? (like a person)
– Does it have unique knowledge/responsibilities?
– Is it needed by other classes?

Keep updating the piles as more is learned!

Choosing concept namesChoosing concept names
Note: if you can’t think of a simple, clear name,
maybe you have a bad abstraction!
A good test: Can a person with domain knowledge
(not CS knowledge) describe the abstraction based on its
name alone?
Best to use existing names “in the territory”
– See Larman’s cartographer analogy (p. 145)

Also: “exclude irrelevant features” and “do not add things that
are not there.”

But no sense to labor over good candidate names
– e.g., “register” vs. “POST” – Larman choice is arbitrary

Specification typesSpecification types
Larman tip: types that specify attributes for other
types are often handy (“Description Classes”)
– e.g., a ProductDescription – includes UPC, price,

and any other specs common to an Item

Two main purposes:
– Eliminate redundant storage – no need to store

common specs with each Item

– Prevents loss of info when objects depleted – i.e.,
when the last Item is sold

In general, look for unifying concepts

Partial POS domain modelPartial POS domain model
a.k.a. static
class diagram
Concepts are
boxes
Associations
are lines
connecting
boxes

Other UML
details to
follow

Register

ItemStore

Sale

CashPayment

Sales
LineItem

CashierCustomer

Product
Catalog

Product
Description

Stocks

*

Houses

1..*

Used-by

*

Contains
1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

3 Works-on

1
1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

AssociationsAssociations
Def: relationships between concepts
Common associations:
– Dependency – a class “uses” another
– Generalization – a class is derived from another
– Aggregation – one class is a collection of others
– But can be any kind of relationship

Good association names are important too
– And helpful to identify the direction of association

Also helpful to use proper UML

UML: dependency relationshipUML: dependency relationship
When a class “uses” or otherwise depends on
another class to fulfill a responsibility
– Dashed line with arrow in UML

UML: showing generalizationUML: showing generalization
a.k.a.,
inheritance –
one class is
derived from
another
– In UML,

triangle at
end of line
“points” at
parent class

UML: aggregation & multiplicityUML: aggregation & multiplicity

“Whole” is identified by the diamond shape
at that end of the line

many

Naming associationsNaming associations
Recommended for any relation between concepts
– Absolutely necessary if UML lacks notation (like

dependency, aggregation, or generalization)
Use verb or verb phrase: e.g., “records”, “paid by”

Identifying associationsIdentifying associations
Handy tool: common associations list – pp. 155-6
Don’t overdo it
– Useful associations only – otherwise clutter
– Must be domain-meaningful at this stage

Highest priority categories are “need-to-know”
associations – knowledge of the relationship
must be preserved for awhile
– A is physically or logically part of B
– A is physically or logically contained in B
– A is recorded in B

GeneralizationGeneralization
A domain model term, concerning general-
specific relationships
– e.g., Bird – general – a.k.a. supertype

Penguin – specific – a.k.a. subtype
A Penguin is a Bird.

Aids abstract thinking
Facilitates handling
– Express more economically in conceptual model
– Lends itself to implementation using inheritance

Note: inheritance is a software term; not domain-related

When to use generalizationWhen to use generalization
Define a subtype of a concept when instances of
the subtype differ from other instances, as in:
– They have additional attributes, and/or associations
– They are handled differently, in important ways
– They represent things with varying behaviors

Define a supertype to generalize concepts when:
– All subtypes are true variations of a single concept,
– Subtypes share the same attributes and associations,
– And subtypes all conform to both:

100% rule – all supertype attributes and associations apply
“is a” rule

Abstract ClassesAbstract Classes

Def.: If every instance of a class C must
also be an instance of a subclass, then C is
called an abstract conceptual class.

Payment

CashPayment CreditPayment CheckPayment

vsvs Concrete ClassesConcrete Classes

If a Payment instance exists which is not a
member of a subclass, then Payment is not
abstract – it is concrete.

Payment

CashPayment CreditPayment CheckPayment

UML: Abstract ClassesUML: Abstract Classes

UML notation: italicized class name

Payment

Cash
Payment

Check
Payment

Credit
Payment

Class attributesClass attributes
a.k.a., “properties” of classes
– Describe an object’s state at a point in time
– Attributes are “pure data values” – not complex things

(which are concepts, not attributes)
Purpose of attribution:
– Insure that all information needed by the system’s

objects is remembered somewhere
Encapsulation principles help guide attribution
– Info is most useful if stored where it’s needed most
– Identity info of an object is best stored with that object

More attribution principlesMore attribution principles
What to store depends on the application
– e.g. Employee – Name? Address? Wage? Title?

Key question: What does this application need?
– i.e., need pertinent abstractions of concepts

Representation depends on application too
– i.e., how to represent in the conceptual model

e.g., Title just a String? – okay – else if complex meaning,
maybe it is a concept of its own, or an association

Should be simple – “data types”
– e.g., 5, “white” – has no unique identity
– Note: an attribute may become implemented as a class

Attribute or Class?Attribute or Class?

Classes: objects with unique identity
– e.g., 2 instances of Person

Attributes: primitive types
– e.g., number, string, time…

What to do with non-primitive data types?
– composed of separate sections (address)
– quantities with units (payment amount)
– has more attributes (promotional price: start/end)
– has operations associated (SSN: validate)

UML: Attribute or Class?UML: Attribute or Class?

Non-primitive data types may be shown as
attributes or classes!

ProductSpecification ItemID
1 1

ProductSpecification

id: ItemID

or

Attribution in practiceAttribution in practice

Two complementary approaches:
1. Choose a class – list its properties
2. Choose a property – ask what it describes
– Do it both ways for a complete set of attributes

Probably will discover new concepts
– Okay – augment the conceptual model
– Note: sometimes an association should store attributes

Means the association is a concept of its own
e.g., Gymnast, Team – and Membership to associate them

Attribution PitfallAttribution Pitfall

Relate conceptual classes with an
association, not an attribute!

Cashier

name
currentRegister

Cashier Register1 1

name number

uses

Glossary notesGlossary notes
Record all attributes in the glossary
– Sometimes called the “data dictionary”

Also record all concepts, associations,
operations, use cases, …
– And any terms that require clarification

Purpose: reduce risk of miscommunication
– With clients, and other team members
– And for yourself a few weeks down the road
– And in CS 50 – so we can understand your artifacts

But don’t overdo it – always minimize busywork

System behaviorSystem behavior
Focus is on dynamic view: states and sequences
State of the system is like a snapshot – a point-in-
time record of memory contents
– What objects currently exist?
– What associations are currently formed?
– What are the current values of object attributes?

System sequences involve changes in state
– Objects are created and destroyed
– Associations are formed and broken
– Values of attributes are modified

System sequence diagramsSystem sequence diagrams

Partial SSD for Larman’s BuyItems use case

Actor triggers
each event

Each event has
a signature

Note :System is
an instance – and
a “black box”

Naming eventsNaming events
Use “level of intent” (still OOA, not OOD)
– i.e., not committed to a particular design

e.g., makePayment instead of submitCash – leaves flexibility
for other payment types (in later cycle)

Start with a verb – signifies something to happen
Be sure to cover each event in each use case
– i.e., playGame() is not an event! – it is at least a whole

use case; probably many events
– Best place to look: use cases’ typical courses of events

Tip: if a simple name doesn’t work – maybe
trying to name a complex process, not an event

System operationsSystem operations
Focus in analysis stage is on effect of operations
– i.e., what happens to system’s state? – not how

System operation contracts – describe the
system’s response to events
– Operation – same as event name; include parameters
– Cross References – at least the use case(s) involved
– Pre-conditions – assumptions about system state

before the operation begins
– Post-conditions – end changes the operation makes to

system state: instances, attributes, associations

Contract ExampleContract Example

Operation: makePayment(amount: Money)
Cross References: UseCases: ProcessSale
Preconditions: A sale is underway.
Postconditions:

– a payment instance p was created
– p.amountTendered became amount
– p was associated with current Sale
– current Sale was associated with Store

Contract GuidelinesContract Guidelines

Identify system operations from SSDs
For complex operations (may have subtle
results, unclear in use case): write contract
For postconditions, use categories:
– instance creation/deletion
– attribute modification
– associations formed & broken

As usual: Don’t overdo it!

