Domain analysis

e Goal: build an object-oriented model of the real-
world system (or imaginary world)

e Slicing the soup: OOA vs. OOD
— OOA concerned with “what”, not “how”
— OOA activities focus on the domain layer

e Common OOA activities: identify classes, assign
(some) responsibilities to classes

— Larman’s OOA: domain model (classes, associations,
attributes), and system operations
o Includes static and dynamic views of the domain

— DA artifacts for CS 50 project: see assignment 3

Domain analysis activities

e Static view — model the domain
— ldentify domain concepts

— Identify associations between the concepts

o Now ready to start drawing domain model — a visual
representation of these concepts and associations

— Identify attributes of the concepts
e Usually add to drawing (CS 50: add to class specifications)
e Dynamic view — model the system behavior
— Make system sequence diagrams
— Write system operation contracts

Identifying concepts

e Class = major abstraction (i.e.,not just an attribute)
e How to find candidate classes?
— Think/brainstorm about the domain
e Ask Who? What? When? Where?
e But save the How? questions for OOD
— Use a concept category list — e.g., pp. 140-141 in text
— Identify the nouns & noun phrases in problem
statement, use case descriptions, other ...
e Consider all as candidates to start; refine later

- i.e., a candidate class turns out to be just an attribute
e But common error to decide too early

Suggest: start CRC cards now

Class (name)
Responsibilities Collaborators

e 1 card for each candidate class, showing:
— Class name — do now
— Responsibilities — knowledge now, operations in OOD
— Collaborators — some now, more in OOD
e CRC cards are useful for both OOA and OOD:
— OOA - help sort out classes; use to lay out diagrams
— OOD - role-playing to find operations; more diagrams

Split cards into 3 piles

=

. Critical classes — must include
. Totally irrelevant classes — must reject
— Set aside, but record as irrelevant in glossary

3. Classes you are still undecided about — ask
yourself questions like the following:

— Is it same as another class? Is it an instance?
— Is it actually outside the system? (like a person)
— Does it have unique knowledge/responsibilities?
— Is it needed by other classes?

e Keep updating the piles as more is learned!

N

Choosing concept names

e Note: if you can’t think of a simple, clear name,
maybe you have a bad abstraction!

e A good test: Can a person with domain knowledge
(not CS knowledge) describe the abstraction based on its
name alone?

e Best to use existing names “in the territory”

— See Larman’s cartographer analogy (p. 145)

o Also: “exclude irrelevant features” and “do not add things that
are not there.”

e But no sense to labor over good candidate names
- e.g., “register” vs. “POST” — Larman choice is arbitrary

Specification types

e Larman tip: types that specify attributes for other
types are often handy (“Description Classes™)

- e.g., a ProductDescription — includes UPC, price,
and any other specs common to an Item

e Two main purposes:

— Eliminate redundant storage — no need to store
common specs with each 1tem

— Prevents loss of info when objects depleted - i.e.,
when the last 1tem is sold

e In general, look for unifying concepts

Partial POS domain model

e ak.a. static
class diagram

e Concepts are
boxes

— @ Associations

are lines
connecting
boxes
o [P L e Lo e Other UML
details to
I 1 follow

Associations

e Def: relationships between concepts
e Common associations:
— Dependency - a class “uses” another
— Generalization — a class is derived from another
— Aggregation — one class is a collection of others
— But can be any kind of relationship
e Good association names are important too
— And helpful to identify the direction of association
e Also helpful to use proper UML

UML.: dependency relationship

e When a class “uses” or otherwise depends on
another class to fulfill a responsibility
— Dashed line with arrow in UML

E—— dependency

name

playCnic : Ghannel)

e L
stop()

reset()

UML.: showing generalization

base class

e aka,
inheritance —
one class is
derived from
another

- In UML,

triangle at | Ractongle

end of line o jeemerfen

“points” at N

parent class

[saere 3 S

UML: aggregation & multiplicity

whele 1 F
__\

aggregation

many

Department

e “Whole” is identified by the diamond shape
at that end of the line

Naming associations

o Recommended for any relation between concepts
— Absolutely necessary if UML lacks notation (like
dependency, aggregation, or generalization)
e Use verb or verb phrase: e.g., “records”, “paid by”

name direction
name

\.Wor ke for h-/

association

Identifying associations

e Handy tool: common associations list — pp. 155-6
e Don’t overdo it

— Useful associations only — otherwise clutter

— Must be domain-meaningful at this stage
e Highest priority categories are “need-to-know”

associations — knowledge of the relationship
must be preserved for awhile

— A'is physically or logically part of B
— Ais physically or logically contained in B
— Alisrecorded in B

Generalization

e A domain model term, concerning general-
specific relationships
-eg, Bird — general — a.k.a. supertype
Penguin — specific — a.k.a. subtype
A Penguin is a Bird.
e Aids abstract thinking
e Facilitates handling

— Express more economically in conceptual model
— Lends itself to implementation using inheritance
o Note: inheritance is a software term; not domain-related

When to use generalization

o Define a subtype of a concept when instances of
the subtype differ from other instances, as in:

— They have additional attributes, and/or associations
— They are handled differently, in important ways
— They represent things with varying behaviors

e Define a supertype to generalize concepts when:
— All subtypes are true variations of a single concept,
— Subtypes share the same attributes and associations,
— And subtypes all conform to both:

e 100% rule — all supertype attributes and associations apply
e “isa” rule

Abstract Classes

e Def.: If every instance of a class C must
also be an instance of a subclass, then C is
called an abstract conceptual class.

Payment

CashPayment CreditPayment CheckPayment

vs Concrete Classes

e If a Payment instance exists which is not a
member of a subclass, then Payment is not
abstract — it is concrete.

Payment

CashPayment CreditPayment CheckPaymen

UML: Abstract Classes

e UML notation: italicized class name

Payment

7y

Cash Credit Check
Payment Payment Payment

Class attributes

e ak.a., “properties” of classes
— Describe an object’s state at a point in time

— Attributes are “pure data values” — not complex things
(which are concepts, not attributes)

e Purpose of attribution:

— Insure that all information needed by the system’s
objects is remembered somewhere

e Encapsulation principles help guide attribution
— Info is most useful if stored where it’s needed most
— Identity info of an object is best stored with that object

More attribution principles

e What to store depends on the application
— €.g. Employee — Name? Address? Wage? Title?
o Key question: What does this application need?
— i.e., need pertinent abstractions of concepts
e Representation depends on application too
— i.e., how to represent in the conceptual model

e e.g., Title just a String? — okay — else if complex meaning,
maybe it is a concept of its own, or an association

e Should be simple — “data types”
- e.g., 5, “white” — has no unique identity
— Note: an attribute may become implemented as a class

Attribute or Class?

e Classes: objects with unique identity
- e.g., 2 instances of Person
e Attributes: primitive types
— e.g., number, string, time...
e What to do with non-primitive data types?
— composed of separate sections (address)
— quantities with units (payment amount)
— has more attributes (promotional price: start/end)
— has operations associated (SSN: validate)

UML: Attribute or Class?

e Non-primitive data types may be shown as
attributes or classes!

1 1
ProductSpecification }—{ ItemID

or

ProductSpecification

id: ItemID

Attribution in practice

e Two complementary approaches:

1. Choose a class - list its properties

2. Choose a property — ask what it describes

— Do it both ways for a complete set of attributes
e Probably will discover new concepts

— Okay — augment the conceptual model

— Note: sometimes an association should store attributes
o Means the association is a concept of its own
e e.g., Gymnast, Team — and Membership to associate them

Attribution Pitfall

e Relate conceptual classes with an
association, not an attribute!

Cashier

nam
currentRegister

Cashier 1 ouses 1 Register

name number

Glossary notes

e Record all attributes in the glossary
— Sometimes called the “data dictionary”

o Also record all concepts, associations,
operations, use cases, ...

— And any terms that require clarification
e Purpose: reduce risk of miscommunication
— With clients, and other team members
— And for yourself a few weeks down the road
— And in CS 50 - so we can understand your artifacts
e But don’t overdo it — always minimize busywork

System behavior

e Focus is on dynamic view: states and sequences

e State of the system is like a snapshot — a point-in-
time record of memory contents

— What objects currently exist?

— What associations are currently formed?

— What are the current values of object attributes?
e System sequences involve changes in state

— Objects are created and destroyed

— Associations are formed and broken

— Values of attributes are modified

System sequence diagrams

Actor triggers NoFe System is
an instance — and
each event
Cashinr

a “black box™

Fee all ifems, the Cashier records
e UPC and quantity .

quankity)

Oa complalion of item satry, the
Casaiar indicates to tha FOST andSaal) >
that v ul is complet,

Tha Castiar lalls the Customar Each event has
tha tatal, and the Customar Gived a signature
payme 1o e Casbiar,

Tha Caskiar records the cash *
i Aot

Partial SSD for Larman’s Buy I tems use case

Naming events

o Use “level of intent” (still OOA, not OOD)
- i.e., not committed to a particular design

e e.g., makePayment instead of submitCash — leaves flexibility
for other payment types (in later cycle)

e Start with a verb — signifies something to happen
e Be sure to cover each event in each use case

— i.e., playGame() is not an event! — it is at least a whole
use case; probably many events

— Best place to look: use cases’ typical courses of events

o Tip: if a simple name doesn’t work — maybe
trying to name a complex process, not an event

System operations

e Focus in analysis stage is on effect of operations
— i.e., what happens to system’s state? — not how

e System operation contracts — describe the
system’s response to events

— Operation — same as event name; include parameters
— Cross References — at least the use case(s) involved

— Pre-conditions — assumptions about system state
before the operation begins

— Post-conditions — end changes the operation makes to
system state: instances, attributes, associations

Contract Example

Operation: makePayment(amount: Money)
Cross References: UseCases: ProcessSale
Preconditions: A sale is underway.
Postconditions:

— a payment instance p was created

— p.amountTendered became amount

— p was associated with current Sale

— current Sale was associated with Store

Contract Guidelines

e Identify system operations from SSDs
e For complex operations (may have subtle
results, unclear in use case): write contract
e For postconditions, use categories:
— instance creation/deletion
— attribute modification
— associations formed & broken
e As usual: Don’t overdo it!

