
1

System design
Goal, in general: solve the problem
– Goal of OOD: convert OOA results into something

that can be implemented
e.g, as software (and/or hardware, services, …)

Key considerations (a.k.a. tradeoffs):
– Cost-effectiveness of solution vs. design/coding effort

Can reduce effort by applying patterns, idioms, 3rd party, …

– Reusability – maybe worth investing effort in
Could save lots of effort later
But can overly complicate a simple problem if overdone

Design in practice
No “cookbook” method – no “right” way
– But have some basic principles for guidance
– And have a growing knowledge base on patterns

Is an exercise in problem solving, so attack using
the usual strategies
– Divide/conquer – solve sub-problems to solve whole
– Top-down approach, with stepwise refinements

Unlike analysis – leave room for creativity
– Concentration incubation inspiration

“Deep dive”

Design activities
Consider “real” use cases
– Sharpen focus to actual technology, specific

user interfaces, particular other systems, …
Package coherent subsystems together
– And organize the packages into overall system

architecture
Model the interactions between objects
– Including interactions between packages

See assignment 3, part 4

System architecture
High-level descriptions of the system
– Broad focus on significant structural elements

Subsystems, packages, interfaces to other systems
At a level of detail all developers and stakeholders can follow

Often need separate descriptions for various views:
– Use case views, deployment views, design views, …

Design views required for CS 50 project
Many basic architecture types – vary by purpose
– Pipes & Filters – for flexibility without user interaction
– Repository – favor big data storage-retrieval systems
– Layers (“object-oriented architecture”) – most used now

Diagramming packages
Groups of classes – good for architectural modeling
– Abstraction benefit: lots of concepts modeled as one

A handy way to “divide and conquer” the problem

UML package symbolism

– Idea is to separate functional
subsystems

Many associations among classes in
same package
Few associations between packages

– Side benefit: team members can
split work by packages

Works best with “clean” interfaces

Basic 3-tier architecture
Can have many layers,
but 3 are basic:
1. Presentation layer –

windows, reports, GUIs
2. Application logic layer

– domain, object
services

3. Storage layer –
persistent data, basic
services

2

About layered architectures

Concept – each layer is a base for implementing
layers above it
– Ideally, knowledge and contact is one-way: down ↓
– Lower layers should not even know layers above

Lots of good reasons to use layers
– Reduce complexity – separate the domain from the

implementation as much as possible
– Increase modifiability, and reuse potential
– Easy to plug in off-the-shelf and 3rd party stuff

Data services sub-layers
Goal: insulate
domain classes
from storage
details
How? – interface
classes
Note: often start
design by
choosing services
(inc. software
and hardware
choices)

Storage and network layer(s)
The lowest and least coupled layers
3 main types of storage layer
– 1. Object database

Most abstract, so easiest to adapt (high level access)
– 2. Relational database

Mid-level access (records objects) – need an interface
– 3. Do-it-yourself file schemes – lowest level access

Similar breakdown for network layer types
Best to decide early
– And whether to buy or build new, adapt old, …

Separating models and views
Basic principle: domain (model) never directly
contacts the presentation (view)
– But is ready to answer requests from the view
– Or can contact indirectly by “broadcasting”

See publish-subscribe pattern, text p. 463 (a.k.a., Observer)

Related idea: view should not control the domain
– Okay for GUI to signal an event

As long as model takes over after that
– Often best to contact through a mediator, an

“application coordinator”

Model-view separation benefits
Reuse model with different views
Maybe reuse view with different models
Have multiple views of the same model
– Even simultaneously!
– e.g., view model from many angles

Side benefit – complexity management
– Reflects a recurring OOP theme – encapsulation

(a.k.a. information hiding)
– Benefit here – don’t have to worry about display

while working on the model

Application logic layer partitions

Partition by logical units (organize as packages)
– Refer to collaborations on CRC cards – look for:

Minimal coupling between packages (few collaborations)
Highly cohesive within packages (many collaborations)

Teamwork benefit too
– Agree on package interfaces – then split up the work

CS 50: at least split domain from service classes
– e.g., report generators, database interfaces, offscreen

graphics builders, …

