
About domain About domain ““controllerscontrollers””
Not usually a domain concept
– Added to the model during design

They tie the system to external events
– e.g., classes a GUI will know about

Common types:
– Façade controller – represents whole system, overall

business, “world” – e.g., an application coordinator
– Role controller – mimics a real-world role
– Use case controller – handles sequences of events,

monitors use case progress
e.g., setEnabled(false) in Swing – means not ready yet

Interaction diagramsInteraction diagrams
Dynamic views of interacting objects
– Starts by system event (external message)
– Receiving object either handles alone, or passes

message along (internal messages)
Links in diagrams indicate visibility between classes

Why bother diagramming?
– Easier to change drawing than code
– Get big picture – better design, code, system

Do together with class diagrams/specifications
2 basic types: sequence and communication

Sequence diagramsSequence diagrams

Use for simpler interactions – sequence easily
shown as top-to-bottom interactions

Communication diagramsCommunication diagrams

Handy for more complicated interactions – show
sequences by numbering the interactions

Notation for interactionsNotation for interactions
Class vs. instance –
– Sale – class name for static methods only
– mySale:Sale – object name:type for other

Messages – shown along link line
– Must number in communication diagram
– Show parameters too (with optional types)

e.g., 2: cost:=price(amount:double)
– And return values if not void

e.g., 1.1: items:=count():int

Iteration – use * and optional [iteration clause]
– e.g., 3*: [i:=1…10]li:=item(i):LineItem

More notation for interactionsMore notation for interactions
Conditions – [condition:boolean]
– e.g., 1:[new sale]create()

:POST------------------------:Sale

– See fig. 15.30 (p. 244) for mutually exclusive
conditions

Use “stack” icon for multi-objects (collections)
– Note: message may be to the collection object itself

(e.g., a list), or to the individual elements if *
Show algorithms as notes (dog-ear symbol)
– But only need if tricky or otherwise relevant

Design principlesDesign principles

Not exactly “rules” – things to consider
– Should lead to high quality designs

Easier to maintain, understand, reuse, and extend

– e.g., expert, low coupling, high cohesion, do-it-myself
Note: Larman labels some as “patterns”
– General Responsibility Assignment Software Patterns

Larman: assigning responsibilities = “desert island skill”
Also notes: “one person’s pattern is another’s primitive
building block”

– “Design patterns” usually are more specific

The The expertexpert principleprinciple
Assign responsibility to class that has the
necessary information
– i.e., the “information expert”

Avoids passing info between objects
Still have collaboration as objects help others
– e.g., Sale knows about all LineItems, and
LineItems know quantity (and get price from Specs)

So let LineItem calculate subtotal()
Sale accumulates total from subtotals

Main benefit: encapsulation maintained
– Easier to program, maintain, extend independently

Low couplingLow coupling
Minimize dependencies between classes
– Note how expert principle does this too
– e.g., Sale does not contact ProductSpecification

directly – LineItem does that instead; otherwise, Sale
needs parallel collection of ProductSpecifications

So fundamental it influences all design decisions
– Is an “evaluative” pattern – used to rate design quality

Supports independent classes
– More reusable, less subject to changes elsewhere,

easier to program, …

High cohesionHigh cohesion
Refers to functional cohesion
– Means no class does too much work – especially not a

bunch of unrelated things
– Basically should avoid “bloated” classes

Hard to understand, maintain, reuse, …
Usually means other classes should take some
responsibilities

– Like an overworked manager – should delegate more

Rule of thumb: insure all parts of a class are
somehow related – all attributes and operations
– Working together to provide “well-bounded behavior”

Benefits – the usual list, plus greater simplicity

Events, states, and transitionsEvents, states, and transitions
Event – a significant occurrence
– e.g., telephone receiver taken “off hook”

State – condition of an object at a moment in
time (the time between events)
– e.g., telephone “idle” between being placed on hook

and taken off hook
Transition – relationship between two states as
an event occurs
– e.g., when “off hook” event occurs, transition from

“idle” to “active” state

StatechartStatechart diagramsdiagrams
Purpose: to model the changing states of
complex objects

off hook
Idle Active

on hook

Telephone

state

transition event

initial state

Utility of Utility of statechartstatechart diagramsdiagrams
Normally not useful for internal events
– Internal event – caused by an object inside the system

boundary
– Because interaction diagrams already cover it

Useful for system as a whole
– Especially to model changing system states during the

course of a use case
Larman calls it a use case statechart diagram

Note: many prior CS 50 students discovered this
usefulness on their own
– This quarter, we ask all of you to consider them

A use case A use case statechartstatechart diagramdiagram

Helps designer insure things are done in the correct order
Other notation: transition actions, guards, nested states –
see text figures 29.2 and 29.3 (pp. 489-90)

WatingForSale EnteringItems

enterItem

WaitingForPayment

makeNewSale

makeCashPayment

endSale

AuthorizingPayment makeCheckPayment

makeCreditPayment

authorized

Process Sale

More GRASP principlesMore GRASP principles

Polymorphism – if behavior varies by type
– Assign responsibility for the variation to the types

Do not test for type or use other conditional logic!

Indirection – to reduce coupling
– Assign responsibility to intermediate class or interface

Pure fabrication – artificial, non-domain class
– Assign cohesive set of responsibilities to a fabrication

Protected variations – for variable/unstable parts
– Assign responsibilities to stable interfaces

Software realitiesSoftware realities

Do-it-myself principle (a.k.a., animation pattern)
– Objects must do for themselves what normally is done

to the real world objects they represent
e.g., in real world, somebody draws the figure – in software,
figure draws itself: figure.draw()
e.g., trajectory.map() – normally mapped by outside
observer if at all

Assume basic services are always available
– i.e., get/set for attributes, add/remove/… for lists, …
– So no need to include in class diagrams or specs

Inheritance Inheritance –– a a softwaresoftware ideaidea
An object-oriented software construct for
implementing generalization relations
– Can reuse code by inheriting it with new code

Allows consistent handling of different subtypes
– As long as they have a common supertype

But can be overdone!
– Common error: forcing an “is a” relationship

e.g., class Easel extends Canvas – okay, but limited,
because Easel cannot inherit from any other class now

– Alternative is composition
More flexible to let Easel have a Canvas to draw on

Diagramming generalizationDiagramming generalization
See figure 31.9 (p. 512)
Note: can overdo diagramming hierarchies
– Show lower levels only if it helps communication
– Adding hierarchical levels increases complexity

Harder to understand/explain
Opens door to team misinterpretation

– e.g., see figure 31.10 (p. 513)
– Another note: application of Bridge pattern (to be

discussed) could simplify the design of fig. 32.9
Question: what to do if new payment type like Debit card?
Solution involves abstract types

Abstract typesAbstract types
Always supertypes, by definition
– Have no concrete existence in model
– Definition – class A is an abstract type if every instance

of A must be a subtype of A
– e.g., Thing – an abstract type

How to draw a Thing? Describe a Thing? …
Must have a concrete Thing to draw, describe, …

– Certain operations must be implemented by subtypes
Abstract types are central to many design patterns
– pure abstractions are more flexible than concrete types

– actually just define interfaces for “families” of types

Inheritance with JavaInheritance with Java
class B extends A
– B is an A – so can always refer to a B as an A

But cannot refer to an A as a B (without an explicit cast)
– B cannot also be a C, unless C is an A too
abstract class A
– Has some abstract methods

Concrete subclasses must implement them
Cannot say “new A” – even if A has a constructor

interface A
– Completely abstract – just defines services
– So okay to inherit multiple interfaces

A note about subtypes & statesA note about subtypes & states
Avoid using subtypes of a concept to represent
changing states of that concept
– Usually better to consider a State concept

State is an abstract type – with concrete subtypes
The original concept “is in” one State or another

– See Figure 31.13 (p. 515)
Exception is when it really makes sense to do
– e.g., a Caterpillar becomes a Butterfly
– i.e., a complete metamorphosis – change in state

results in different attributes and associations

Design patterns introductionDesign patterns introduction
“Tricks of the trade” for OO designers
– Tried and true solutions to recurrent problems

Generally apply to various situations – e.g., Façade Pattern
– Usually reflect basic design principles

“Gang of Four” (GoF) patterns – seminal catalog
– Four essential elements:

1. A meaningful name – elevates thought to higher abstraction
2. A problem description – where the pattern can apply
3. The solution – like a template to apply the pattern
4. Consequences – results and trade-offs

Recurring theme: “encapsulate what varies most”

Types of Types of GoFGoF design patternsdesign patterns
7 are structural patterns – composition of classes/objects
– e.g., Adapter

Problem: tool has interface X, client prefers interface Y
Solution: Adapter satisfies X, but looks like Y
Consequences: don’t reprogram X, and don’t distort Y to satisfy X

– Bridge, Composite, Decorator, Façade, Flyweight and Proxy
5 are creational patterns – for creating objects
– Abstract Factory, Builder, Factory Method, Prototype, Singleton

11 are behavioral patterns – ways classes/objects interact
– e.g., Chain of Responsibility, Command, and … 9 more

See cs.ucsb.edu/~mikec/cs50/misc/Design_Class_Diagrams.htm

User interface designUser interface design

Major goal: match the skills, experience
and expectations of its anticipated users
Consider “human factors”
– People have limited short-term memory, they

make mistakes, and they are not all the same
Are some basic principles of UI design
– User-oriented, not computer-oriented
– Consistency – and especially minimal surprise
– Recoverability, and guidance

User Interface issuesUser Interface issues
Two fundamental problems to solve
– How should information from the user be provided to

the computer system?
– How should information from the computer system be

presented to the user?
Many interaction styles – each has a place
– Direct manipulation
– Menu selection
– Form fill-in
– Commands – and (ideally) natural language

Sometimes multiple interfacesSometimes multiple interfaces

Figure from Ian Sommerville, Software Engineering 8th edition, Chapter 16

UI design processUI design process

Figure from Ian Sommerville, Software Engineering 8th edition, Chapter 16

