
1

About domain “controllers”
Not usually a domain concept
– Added to the model during design

They tie the system to external events
– e.g., classes a GUI will know about

Common types:
– Façade controller – represents whole system, overall

business, “world” – e.g., an application coordinator
– Role controller – mimics a real-world role
– Use case controller – handles sequences of events,

monitors use case progress
e.g., setEnabled(false) in Swing – means not ready yet

Interaction diagrams
Dynamic views of interacting objects
– Starts by system event (external message)
– Receiving object either handles alone, or passes

message along (internal messages)
Links in diagrams indicate visibility between classes

Why bother diagramming?
– Easier to change drawing than code
– Get big picture – better design, code, system

Do together with class diagrams/specifications
2 basic types: sequence and communication

Sequence diagrams

Use for simpler interactions – sequence easily
shown as top-to-bottom interactions

Communication diagrams

Handy for more complicated interactions – show
sequences by numbering the interactions

Notation for interactions
Class vs. instance –
– Sale – class name for static methods only
– mySale:Sale – object name:type for other

Messages – shown along link line
– Must number in communication diagram
– Show parameters too (with optional types)

e.g., 2: cost:=price(amount:double)
– And return values if not void

e.g., 1.1: items:=count():int

Iteration – use * and optional [iteration clause]
– e.g., 3*: [i:=1…10]li:=item(i):LineItem

More notation for interactions
Conditions – [condition:boolean]
– e.g., 1:[new sale]create()

:POST------------------------:Sale

– See fig. 15.30 (p. 244) for mutually exclusive
conditions

Use “stack” icon for multi-objects (collections)
– Note: message may be to the collection object itself

(e.g., a list), or to the individual elements if *
Show algorithms as notes (dog-ear symbol)
– But only need if tricky or otherwise relevant

2

Design principles

Not exactly “rules” – things to consider
– Should lead to high quality designs

Easier to maintain, understand, reuse, and extend

– e.g., expert, low coupling, high cohesion, do-it-myself
Note: Larman labels some as “patterns”
– General Responsibility Assignment Software Patterns

Larman: assigning responsibilities = “desert island skill”
Also notes: “one person’s pattern is another’s primitive
building block”

– “Design patterns” usually are more specific

The expert principle
Assign responsibility to class that has the
necessary information
– i.e., the “information expert”

Avoids passing info between objects
Still have collaboration as objects help others
– e.g., Sale knows about all LineItems, and
LineItems know quantity (and get price from Specs)

So let LineItem calculate subtotal()
Sale accumulates total from subtotals

Main benefit: encapsulation maintained
– Easier to program, maintain, extend independently

Low coupling
Minimize dependencies between classes
– Note how expert principle does this too
– e.g., Sale does not contact ProductSpecification

directly – LineItem does that instead; otherwise, Sale
needs parallel collection of ProductSpecifications

So fundamental it influences all design decisions
– Is an “evaluative” pattern – used to rate design quality

Supports independent classes
– More reusable, less subject to changes elsewhere,

easier to program, …

High cohesion
Refers to functional cohesion
– Means no class does too much work – especially not a

bunch of unrelated things
– Basically should avoid “bloated” classes

Hard to understand, maintain, reuse, …
Usually means other classes should take some
responsibilities

– Like an overworked manager – should delegate more

Rule of thumb: insure all parts of a class are
somehow related – all attributes and operations
– Working together to provide “well-bounded behavior”

Benefits – the usual list, plus greater simplicity

Events, states, and transitions
Event – a significant occurrence
– e.g., telephone receiver taken “off hook”

State – condition of an object at a moment in
time (the time between events)
– e.g., telephone “idle” between being placed on hook

and taken off hook
Transition – relationship between two states as
an event occurs
– e.g., when “off hook” event occurs, transition from

“idle” to “active” state

Statechart diagrams
Purpose: to model the changing states of
complex objects

off hook
Idle Active

on hook

Telephone

state

transition event

initial state

3

Utility of statechart diagrams
Normally not useful for internal events
– Internal event – caused by an object inside the system

boundary
– Because interaction diagrams already cover it

Useful for system as a whole
– Especially to model changing system states during the

course of a use case
Larman calls it a use case statechart diagram

Note: many prior CS 50 students discovered this
usefulness on their own
– This quarter, we ask all of you to consider them

A use case statechart diagram

Helps designer insure things are done in the correct order
Other notation: transition actions, guards, nested states –
see text figures 29.2 and 29.3 (pp. 489-90)

WatingForSale EnteringItems

enterItem

WaitingForPayment

makeNewSale

makeCashPayment

endSale

AuthorizingPayment makeCheckPayment

makeCreditPayment

authorized

Process Sale

More GRASP principles

Polymorphism – if behavior varies by type
– Assign responsibility for the variation to the types

Do not test for type or use other conditional logic!

Indirection – to reduce coupling
– Assign responsibility to intermediate class or interface

Pure fabrication – artificial, non-domain class
– Assign cohesive set of responsibilities to a fabrication

Protected variations – for variable/unstable parts
– Assign responsibilities to stable interfaces

Software realities

Do-it-myself principle (a.k.a., animation pattern)
– Objects must do for themselves what normally is done

to the real world objects they represent
e.g., in real world, somebody draws the figure – in software,
figure draws itself: figure.draw()
e.g., trajectory.map() – normally mapped by outside
observer if at all

Assume basic services are always available
– i.e., get/set for attributes, add/remove/… for lists, …
– So no need to include in class diagrams or specs

Inheritance – a software idea
An object-oriented software construct for
implementing generalization relations
– Can reuse code by inheriting it with new code

Allows consistent handling of different subtypes
– As long as they have a common supertype

But can be overdone!
– Common error: forcing an “is a” relationship

e.g., class Easel extends Canvas – okay, but limited,
because Easel cannot inherit from any other class now

– Alternative is composition
More flexible to let Easel have a Canvas to draw on

Diagramming generalization
See figure 31.9 (p. 512)
Note: can overdo diagramming hierarchies
– Show lower levels only if it helps communication
– Adding hierarchical levels increases complexity

Harder to understand/explain
Opens door to team misinterpretation

– e.g., see figure 31.10 (p. 513)
– Another note: application of Bridge pattern (to be

discussed) could simplify the design of fig. 32.9
Question: what to do if new payment type like Debit card?
Solution involves abstract types

4

Abstract types
Always supertypes, by definition
– Have no concrete existence in model
– Definition – class A is an abstract type if every instance

of A must be a subtype of A
– e.g., Thing – an abstract type

How to draw a Thing? Describe a Thing? …
Must have a concrete Thing to draw, describe, …

– Certain operations must be implemented by subtypes
Abstract types are central to many design patterns
– pure abstractions are more flexible than concrete types

– actually just define interfaces for “families” of types

Inheritance with Java
class B extends A
– B is an A – so can always refer to a B as an A

But cannot refer to an A as a B (without an explicit cast)
– B cannot also be a C, unless C is an A too
abstract class A
– Has some abstract methods

Concrete subclasses must implement them
Cannot say “new A” – even if A has a constructor

interface A
– Completely abstract – just defines services
– So okay to inherit multiple interfaces

A note about subtypes & states
Avoid using subtypes of a concept to represent
changing states of that concept
– Usually better to consider a State concept

State is an abstract type – with concrete subtypes
The original concept “is in” one State or another

– See Figure 31.13 (p. 515)
Exception is when it really makes sense to do
– e.g., a Caterpillar becomes a Butterfly
– i.e., a complete metamorphosis – change in state

results in different attributes and associations

Design patterns introduction
“Tricks of the trade” for OO designers
– Tried and true solutions to recurrent problems

Generally apply to various situations – e.g., Façade Pattern
– Usually reflect basic design principles

“Gang of Four” (GoF) patterns – seminal catalog
– Four essential elements:

1. A meaningful name – elevates thought to higher abstraction
2. A problem description – where the pattern can apply
3. The solution – like a template to apply the pattern
4. Consequences – results and trade-offs

Recurring theme: “encapsulate what varies most”

Types of GoF design patterns
7 are structural patterns – composition of classes/objects
– e.g., Adapter

Problem: tool has interface X, client prefers interface Y
Solution: Adapter satisfies X, but looks like Y
Consequences: don’t reprogram X, and don’t distort Y to satisfy X

– Bridge, Composite, Decorator, Façade, Flyweight and Proxy
5 are creational patterns – for creating objects
– Abstract Factory, Builder, Factory Method, Prototype, Singleton

11 are behavioral patterns – ways classes/objects interact
– e.g., Chain of Responsibility, Command, and … 9 more

See cs.ucsb.edu/~mikec/cs50/misc/Design_Class_Diagrams.htm

User interface design

Major goal: match the skills, experience
and expectations of its anticipated users
Consider “human factors”
– People have limited short-term memory, they

make mistakes, and they are not all the same
Are some basic principles of UI design
– User-oriented, not computer-oriented
– Consistency – and especially minimal surprise
– Recoverability, and guidance

5

User Interface issues
Two fundamental problems to solve
– How should information from the user be provided to

the computer system?
– How should information from the computer system be

presented to the user?
Many interaction styles – each has a place
– Direct manipulation
– Menu selection
– Form fill-in
– Commands – and (ideally) natural language

Sometimes multiple interfaces

Figure from Ian Sommerville, Software Engineering 8th edition, Chapter 16

UI design process

Figure from Ian Sommerville, Software Engineering 8th edition, Chapter 16

