
From designing to codingFrom designing to coding
1st step: sensibly split work among team
members
– Choose splits along “thin” interfaces

Probably not equal parts; split biggest parts again later

– Formalize the interfaces – think of them as contracts
– Write least-coupled parts first … most-coupled last

i.e., classes that don’t depend on any other classes

Oh yeah, one more thing to think about:
Reserve ample time for testing!

interfaceinterface –– a Java a Java contractcontract

So write the interfaces
Formalizes much of the contract
– Precisely defines available services (methods)
– But pre- and post-conditions are not insured

These are communicated by documentation only
Implement class and client class independently
– Can even compile clients (but cannot fully test)

Note: maybe change an interface to a class later
– e.g., client developed using interface A – okay to

replace with class A later

PrePre-- and postand post--conditionsconditions
The most important points to document
Pre-conditions – what the client is responsible for
– The “requires” clauses of the contract

Especially include any restrictions on calling arguments
Also any associations that should already exist

Post-conditions – what will be accomplished by
the operation if the pre-conditions are met
– The “effects” and/or “modifies” contract clauses

Including all side effects (objects created/destroyed,
associations formed/broken, attribute values modified)
Also should state any exceptions that might be thrown

javadocjavadoc commentscomments

“Cheap” external documentation
– Handy way to share just a class’s interface with team

Should always use to document all public declarations –
classes, instance variables, methods

– Easy way to communicate pre- & post-conditions
Even ready to post on the web (or intranet)

– Easily kept up-to-date – just recompile with javadoc
after completing each class

Learn to use javadocs – then make them a habit
– See any Java text (often in an appendix though)
– And/or see Sun’s javadoc how-to pages

Converting designs into codeConverting designs into code

Largely a direct translation of key artifacts
– Class specs – variables and method definitions
– Class and package diagrams – associations

Translate to instance variables and/or method arguments

– Interaction and state-chart diagrams – method calls
and sequences

Still involves creativity, and probably change
– Good ideas often arise during coding – okay, go for it

But also plan to revise design artifacts to match later

Defining attributes and methodsDefining attributes and methods
public class SalesLineItem
{
private int quantity;

public SalesLineItem(ProductSpecification spec, int qty) { ... }

public Money getSubtotal() { ... }

}

SalesLineItem

quantity : Integer

getSubtotal() : Money

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Described-by

1*

Translating associationsTranslating associations

SalesLineItem

quantity : Integer

getSubtotal() : Money

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Described-by

public class SalesLineItem
{
private int quantity;

private ProductSpecification productSpec;

public SalesLineItem(ProductSpecification spec, int qty) {... }

public Money getSubtotal() { ... }
}

* 1

Simple attribute

Reference attribute

Implementing interactions Implementing interactions –– e.g., e.g.,
enterItem(identerItem(id, qty), qty)

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id)

:Register :Sale

:Product
Catalog

{
ProductSpecification spec = catalog.getSpecification(id);
sale.makeLineItem(spec, qty);

}

LeastLeast-- to mostto most--coupled ordercoupled order

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getSpecification(...)

ProductSpecification

description : Text
price : Money
itemID : ItemID

...

Store

address : Address
name : Text

addSale(...)

Payment

amount : Money

...

Contains

1..*

Contains
1..*

Register

...

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

Logs-completed4 *

1

1

2
3

4

5
6

7

Use your resourcesUse your resources

i.e., “don’t reinvent the wheel” if possible
– JDC Tech Tips, Java user groups, &c – see web
– See books like Effective Java (by Joshua Bloch)

for lots of useful advice
On a real project: consider 3rd party
solutions, existing code, other quick fixes
– Of course, we hope you do yourself in CS 50

And don’t wrestle with revision control
problems – use a revision control system

Revision control problemRevision control problem

LockLock--ModifyModify--Unlock SolutionUnlock Solution

CopyCopy--ModifyModify--Merge Solution: 1Merge Solution: 1

Continued
next slide

CopyCopy--ModifyModify--Merge Solution: 2Merge Solution: 2

e.g., Subversion
– an open source
and widely used
revision control

Testing Testing –– goal is to goal is to find faultsfind faults
Faults (a.k.a. bugs) cause systems to fail
– e.g., a system crashes – the most obvious type of fault
– e.g., a security system that allows unauthorized entry
– e.g., a shot-down plane that continues on its flight path

Can verify the presence of bugs, not their absence
Testing and debugging are separate processes
– Testing identifies faults
– Debugging corrects/removes faults

But it can also introduce new ones, so retesting is required

When are faults introduced?When are faults introduced?
During requirements analysis
– Incorrect, missing, or unclear requirements

During domain analysis and system design
– Incorrect or unclear translation of problem
– Incorrect or unclear design specification

During system implementation
– Misinterpretation of system design
– Incorrect syntax or semantics

Even during testing
– New faults introduced when old ones corrected

Note how naïve to
consider this the
only source of bugs

Testing stepsTesting steps

Unit testing – insure each part is correct
– Each method of each class of each package should be

tested independently
Integration testing – insure parts work together
System testing
– Functional tests – a.k.a. use case testing
– Performance tests – test system attribute requirements
– Acceptance tests – client hands-on testing
– Installation tests – final platform testing (on-site)

Unit and integration testingUnit and integration testing

Test parts of the system before the whole
– Units – test basic parts (methods, classes, packages)
– Integration – test basic connections between parts

Requires special purpose test programs
– i.e., “driver” programs and “stubs”
– Or can use a framework

e.g., JUnit – by Erich Gamma and Kent Beck

Java note – any class can have a main method
– Can use just for testing all parts of that class

System testing phasesSystem testing phases

Use case testing
– Test pre- and post-conditions of system

functions
– Best if independent of the user interface

i.e., also requires special purpose testing code
Performance, acceptance, installation tests
– All involve the complete working system,

GUI and all
If any changes to code – rerun all tests

Tragic truth: Tragic truth: testing takes timetesting takes time

But it can save time and money in the long run
– Get in the habit: “code a little, test a little, …”

Inadequate testing costs lots of real world $$$
and maybe lives
Fact: costs of testing/debugging increase as
development progresses
– Cheapest during requirements analysis (especially if

an impossible requirement is uncovered)
– Cheaper during unit than integration testing, …

Remaining Remaining ““lecturelecture”” plan plan and and
student responsibility student responsibility summarysummary

3/12 – No lecture;
final project due

3/10 – Evals;
Demonstrations

3/5 –
3 Presentations

3/3 –
3 Presentations

3/8 – No lecture;
work on project

10

2/24 –
3 Presentations

2/17 –
Exam

2/26 –
3 Presentations

3/1 –
3 Presentations

2/19 – No lecture; 1st
implementation due

Wednesday

9

2/22 –
3 Presentations

8

2/15 –
Holiday

7

FridayMondayWeek

