From designing to coding

e 1ststep: sensibly split work among team
members
— Choose splits along “thin” interfaces
e Probably not equal parts; split biggest parts again later
— Formalize the interfaces — think of them as contracts
— Write least-coupled parts first ... most-coupled last
e i.e, classes that don’t depend on any other classes
e Oh yeah, one more thing to think about:
Reserve ample time for testing!

interface — a Java contract

e So write the interfaces
e Formalizes much of the contract
— Precisely defines available services (methods)

— But pre- and post-conditions are not insured
e These are communicated by documentation only

e Implement class and client class independently
— Can even compile clients (but cannot fully test)
e Note: maybe change an interface to a class later

- e.g., client developed using interface A—okay to
replace with class A later

Pre- and post-conditions

e The most important points to document
e Pre-conditions — what the client is responsible for
— The “requires” clauses of the contract

e Especially include any restrictions on calling arguments
e Also any associations that should already exist

e Post-conditions — what will be accomplished by

the operation if the pre-conditions are met
— The “effects” and/or “modifies” contract clauses

o Including all side effects (objects created/destroyed,
associations formed/broken, attribute values modified)

o Also should state any exceptions that might be thrown

jJavadoc comments

e “Cheap” external documentation

— Handy way to share just a class’s interface with team

e Should always use to document all public declarations —
classes, instance variables, methods

— Easy way to communicate pre- & post-conditions
e Even ready to post on the web (or intranet)

— Easily kept up-to-date — just recompile with javadoc
after completing each class

e Learn to use javadocs — then make them a habit
— See any Java text (often in an appendix though)
— And/or see Sun’s javadoc how-to pages

Converting designs into code

e Largely a direct translation of key artifacts
— Class specs — variables and method definitions
— Class and package diagrams — associations
o Translate to instance variables and/or method arguments
— Interaction and state-chart diagrams — method calls
and sequences
e Still involves creativity, and probably change
— Good ideas often arise during coding — okay, go for it
e But also plan to revise design artifacts to match later

Defining attributes and methods

public class SalesLineltem B
{

private int quantity;
public SalesLineltem(ProductSpecification spec, int qty) { ... }
public Money getSubtotal() { ... }

}

o

- ProductSpecification
SalesLineltem’

D " h description : Text
quantity : Integep - = price : Money

1 | itemID : ItemID

getSubtotal() : Money

Translating associations

N public class SalesLineltem N
Simple attribute—-- . {

private int quantity;

| private ProductSpecification productSpec;

Reference allrib@ . public SalesLi

public Money getSubtotal) !

ion spec, int qgty) {..

: ProductSpecification
SalesLineltem k

" * | description : Text
quantity : Integer | Dy by 2 price : Money
1 | itemID : ltemiD
getSubtotal() : Money

Implementing interactions — e.g.,
enterltem(id, gty)

{ N
ification spec = catalog. ification(i
sale.makeLineltem(spec, qty);

p—
enterltem(id, qty)— 2: makeLineltem(spec, qty)=

:Register :Sale

1: spec := getSpecification(id)

:Product
Catalog

Least- to most-coupled order

address : Address | 1
t

Uses

> 1
name : Tex F'vodumspecwmae
ProductCatal
addsale(...) Contains | description : Text
’ price : Money
1 Looks-n 1 1 1.%| itemiD : ItemiD
[9etpectieationt.]
Houses
1 1 e sale e
Register date : Date
isComplete : Boolegin
Captures | time : Time Contains
endsale() 1 1 u -
becomeComplete()
enterltem(...) makeLineltom(..) getSubtotal()
makeNewSale() makePayment(...)
makePayment(...) getTotal()

. " SiE Payment
Paid-by
| amount : Money

Use your resources

e i.e., “don’t reinvent the wheel” if possible
— JDC Tech Tips, Java user groups, &c — see web
— See books like Effective Java (by Joshua Bloch)
for lots of useful advice
e On a real project: consider 3 party
solutions, existing code, other quick fixes
— Of course, we hope you do yourself in CS 50
e And don’t wrestle with revision control
problems — use a revision control system

Revision control problem

Tro asers rend the sorve fie

Pegeritony

They bt beger o e copies
Repasiary
L%

{ |
.“l ."~| 7 | T
Harry Sally .mn .‘-lla-.
s Moy version
Repunilony Repesitary
b

élhw—' D j e w\.v—B

Hany Sally Harry saly

Lock-Modify-Unlock Solution

My A, thon copert W oy s, Sl bk
Repositery
gt
T
e

Copy-Modify-Merge Solution: 1

e sy the e B ey boch bt i thri copies.
"55‘.:" "'JE‘.:"'
Ll A
b —' i —,
'_.\.\ _.h _\.\ s
[[[® ()
iy Sally iy fally

; = Continued
=) | = E next slide

Copy-Modify-Merge Solution: 2

oy compre the ket verion A e merges e b v
e

Repusitiry Repenitary
«) -]
g
{
M e T
4] [(9
arry Saly arry Sally
Ihe menped weiaae 5 bt Nowr both saers hae ook
T
J ___J e.g., Subversion
- e — an open source
9 A @ |] and widely used
ay pre oy P revision control

Testing — goal is to find faults

e Faults (a.k.a. bugs) cause systems to fail

— e.g., a system crashes — the most obvious type of fault

- e.g., a security system that allows unauthorized entry

— e.g., a shot-down plane that continues on its flight path
e Can verify the presence of bugs, not their absence
e Testing and debugging are separate processes

— Testing identifies faults

— Debugging corrects/removes faults

e But it can also introduce new ones, so retesting is required

When are faults introduced?

e During requirements analysis
— Incorrect, missing, or unclear requirements

e During domain analysis and system design
— Incorrect or unclear translation of problem
— Incorrect or unclear design specification

e During system implementation

— Misinterpretation of system design Note how naive to
—[Incorrect syntax or semantics] COfI‘SiUEF this ‘fhs
e Even during testing QLY Soufte ol ul

— New faults introduced when old ones corrected

Testing steps

e Unit testing — insure each part is correct

— Each method of each class of each package should be
tested independently

e Integration testing — insure parts work together
e System testing
— Functional tests — a.k.a. use case testing
— Performance tests — test system attribute requirements
— Acceptance tests — client hands-on testing
— Installation tests — final platform testing (on-site)

Unit and integration testing

e Test parts of the system before the whole
— Units - test basic parts (methods, classes, packages)
— Integration — test basic connections between parts
e Requires special purpose test programs
— i.e., “driver” programs and “stubs”
— Or can use a framework
e e.g., JUnit — by Erich Gamma and Kent Beck

e Java note — any class can have a main method
— Can use just for testing all parts of that class

System testing phases

e Use case testing

— Test pre- and post-conditions of system
functions
— Best if independent of the user interface
e i.e., also requires special purpose testing code
e Performance, acceptance, installation tests

— All involve the complete working system,
GUI and all

e If any changes to code — rerun all tests

Tragic truth: testing takes time

e But it can save time and money in the long run
— Get in the habit: “code a little, test a little, ...”

e Inadequate testing costs lots of real world $$$
and maybe lives

e Fact: costs of testing/debugging increase as
development progresses
— Cheapest during requirements analysis (especially if

an impossible requirement is uncovered)

— Cheaper during unit than integration testing, ...

Remaining “lecture” plan and
student responsibility summary

Week Monday Wednesday Friday
N
7 2/15 - 2117 - 2/19 — No lecture; 1st
Holiday Exam implementation due,
. Y a2 2024 - 26— N
3 Presentations 3 Presentations 3 Presentations
9 3/1- 33— 3/5-
™\ _3 Presentations 3 Presentations 3 Presentations]
Y
10 3/8 — No lecture; 3/10 - Evals; 3/12 - No lecture;
work on project Demonstrations final project due A

