From designing to coding

- 1st step: *sensibly* split work among team members
 - Choose splits along "thin" interfaces
 - · Probably not equal parts; split biggest parts again later
 - Formalize the interfaces think of them as contracts
 - Write least-coupled parts first ... most-coupled last
 - i.e., classes that don't depend on any other classes
- Oh yeah, one more thing to think about: Reserve ample *time* for testing!

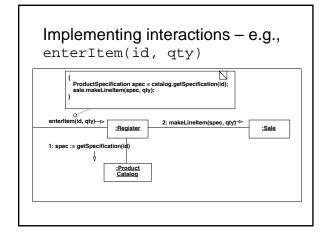
interface - a Java contract

- So write the interfaces
- Formalizes much of the contract
 - Precisely defines available services (methods)
 - But pre- and post-conditions are not insured
 - These are communicated by documentation only
- Implement class and client class independently
 - Can even compile clients (but cannot fully test)
- Note: maybe change an interface to a class later
 - e.g., client developed using interface A okay to replace with class A later

Pre- and post-conditions

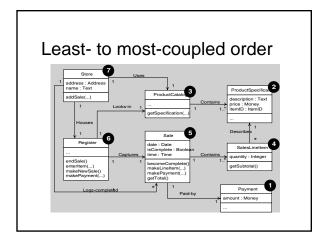
- The most important points to document
- Pre-conditions what the client is responsible for
 - The "requires" clauses of the contract
 - Especially include any restrictions on calling arguments
 - Also any associations that should already exist
- Post-conditions what will be accomplished by the operation *if* the pre-conditions are met
 - The "effects" and/or "modifies" contract clauses
 - Including all side effects (objects created/destroyed, associations formed/broken, attribute values modified)
 - Also should state any exceptions that might be thrown

javadoc comments


- "Cheap" external documentation
 - Handy way to share just a class's interface with team
 - Should always use to document all public declarations classes, instance variables, methods
 - Easy way to communicate pre- & post-conditions
 - Even ready to post on the web (or intranet)
 - Easily kept up-to-date just recompile with javadoc after completing each class
- Learn to use javadocs then make them a habit
 - See any Java text (often in an appendix though)
 - And/or see Sun's javadoc how-to pages

Converting designs into code

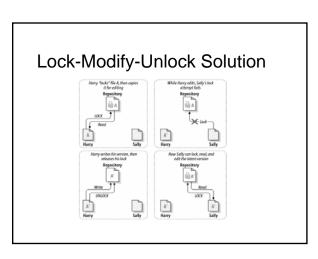
- Largely a direct translation of key artifacts
 - Class specs variables and method definitions
 - $\ Class \ and \ package \ diagrams associations$
 - Translate to instance variables and/or method arguments
 - Interaction and state-chart diagrams method calls and sequences
- Still involves creativity, and probably change
 - Good ideas often arise during coding okay, go for it
 - But also plan to revise design artifacts to match later

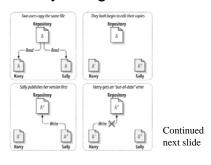

Use your resources

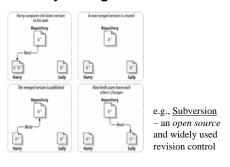
for lots of useful advice
 On a real project: consider 3rd party solutions, existing code, other quick fixes

 Of course, we hope you do yourself in CS 50

 And don't wrestle with revision control problems – use a revision control system


i.e., "don't reinvent the wheel" if possible
 <u>JDC Tech Tips</u>, Java user groups, &c – see web
 See books like <u>Effective Java</u> (by Joshua Bloch)


Revision control problem



Copy-Modify-Merge Solution: 1

Copy-Modify-Merge Solution: 2

Testing – goal is to find faults

- Faults (a.k.a. bugs) cause systems to fail
 - e.g., a system crashes the most obvious type of fault
 - e.g., a security system that allows unauthorized entry
 - e.g., a shot-down plane that continues on its flight path
- Can verify the presence of bugs, not their absence
- Testing and debugging are separate processes
 - Testing identifies faults
 - Debugging corrects/removes faults
 - But it can also introduce new ones, so retesting is required

When are faults introduced?

- During requirements analysis
 - Incorrect, missing, or unclear requirements
- During domain analysis and system design
 - Incorrect or unclear translation of problem
 - Incorrect or unclear design specification
- During system implementation
 - Misinterpretation of system design
 Incorrect syntax or semantics

Note how naïve to consider this the only source of bugs

• Even during testing

- New faults introduced when old ones corrected

Testing steps

- Unit testing insure each part is correct
 - Each method of each class of each package should be tested independently
- Integration testing insure parts work together
- System testing
 - Functional tests a.k.a. use case testing
 - Performance tests test system attribute requirements
 - Acceptance tests client hands-on testing
 - Installation tests final platform testing (on-site)

Unit and integration testing

- Test parts of the system before the whole
 - Units test basic parts (methods, classes, packages)
 - Integration test basic connections between parts
- Requires special purpose test programs
 - i.e., "driver" programs and "stubs"
 - Or can use a framework
 - e.g., JUnit by Erich Gamma and Kent Beck
- Java note any class can have a main method
 - Can use just for testing all parts of that class

System testing phases

- Use case testing
 - Test pre- and post-conditions of system functions
 - Best if independent of the user interface
 - i.e., also requires special purpose testing code
- Performance, acceptance, installation tests
 - All involve the complete working system, GUI and all
- If any changes to code rerun *all* tests

Tragic truth: testing takes time

- $\bullet\,$ But it can save time and money in the long run
 - Get in the habit: "code a little, test a little, ..."
- Inadequate testing costs lots of real world \$\$\$ and maybe lives
- Fact: costs of testing/debugging increase as development progresses
 - Cheapest during requirements analysis (especially if an impossible requirement is uncovered)
 - Cheaper during unit than integration testing, ...

Remaining "lecture" plan and student responsibility summary

Week	Monday	Wednesday	Friday
7	2/15 – Holiday	2/17 – Exam	2/19 – No lecture; 1st implementation due
8	2/22 –	2/24 –	2/26 –
	3 Presentations	3 Presentations	3 Presentations
9	3/1 –	3/3 –	3/5 –
	3 Presentations	3 Presentations	3 Presentations
10	3/8 – No lecture;	3/10 – Evals;	3/12 – No lecture;
	work on project	Demonstrations	final project due