Computer Science 5JA

Introduction to Computer Programming

(Java™ Flavor)

e No pre-requisites
— But primary goal is to learn how to program
in Java — requires practice (and commitment)
e Designed for non-majors
— CS pre-majors welcome to prepare for CS 10

e But should skip to 10 if they already know how to
program in any language

What CS 5JA is not

o Not for people with zero computer experience
just wanting to know how to use computers
— Attend short courses offered by IC instead (or first)
o Word processing, spreadsheets, web browsing and e-mail, ...
— Such people are frustrated by CS 5JA’s requirements
o Not a comprehensive course in the Java
programming language
— Text and lectures focus on a “strategic subset” of Java
- to teach fundamental programming concepts
— Must learn advanced Java on your own — but CS 5JA
covers ways to go about learning such things, and CS
10, 20, 50, ... cover more ways (but still not all of Java!)

Course structure

e Mostly follows the text, Chapters 1-8
— Intro to computers, programming, Java: Ch. 1 & 2
— Data, memory, operators, ...: Ch. 3, and App. A-D
Exam 1 about here
— Control structures: Ch. 4 & 5, and App. |
— Graphical programming (aside): probably supplement
— Writing and using methods: Ch. 6, and App. G
Exam 2 about here
— Arrays and other collections: Ch. 7, and supplement
— Designing classes & using objects: Ch. 8
e Special Java topics throughout — as time permits

Requirements

o Homework assignments — 30 percent of total grade
— Mostly programming projects
e 2 midterm exams — 20 percent each
— Wednesday, Jan. 28, and Friday, Feb. 20
e Cumulative final exam — 30 percent
— Thursday, Mar. 19, 9-10:30am (1.5 hours, not 3 hours)
e Course web pages are mandatory reading
— www.cs.ucsb.edu/~mikec/cs5ja/ - updated regularly
e Questions about the requirements?

To do — this week

e Read chapters 1-2 in the text
— In general, read ahead of the lectures — see Syllabus
e Confirm access to JDK (SE), version 1.5 or higher

— JDK is the Java Development Kit: necessary to create
and execute Java programs (SE is standard edition)

— Instructional Computing (IC) lab is a good backup

e Compile and execute at least one sample program
— See chapter 2 examples

e Go to a discussion section Friday

What is a computer?

e \Webster: “one that computes”
— Compute: “to determine esp. by mathematical means
— Abacus?
— Slide rule?

e Person?

— Actually a 1940s job title!

o Ballistics project for U.S. War Dept. — computed artillery
trajectories by desk calculator — up to 30-40 hours each

— Led to the first electronic computer — ENIAC

”

ENIAC — electronic numerical
integrator and computer — 1945

[

© 100 feet long,
by 10 feet high,
by 3 feet deep
30 tons!

¢ 17,468 vacuum
tubes, 70,000
resistors, and
6,000 switches

o Trajectories
computed in 30
seconds instead of
40 hours

Electronic computer hardware

e Central processing unit — CPU

— Controls the other components, performs arithmetic,
directs the flow of all data

e Main memory — ak.a. RAM (“random access”)
— Fastest access, but short term — power must be on
— States are binary - e.g., electronic pulse up or down
— Also ROM (“read-only”) — mostly for starting up
e Secondary storage — disks, CDs, tapes, ...
— Long-term memory — usually magnetic, so no power
e Input/output — I/O — keyboard, mouse, monitor, ...

Hardware evolution

e Vacuum tubes phased out long ago
— Suggest: Player Piano by Kurt Vonnegut
— Replaced by transistors — faster, smaller
— Then by integrated circuits — “chips”
e Currently tens of millions of transistors
e Continually getting faster, smaller, cheaper, ...

e |/O and storage improvements too
— Direct wiring = IBM cards > keyboard > wireless
— Line printer = dot-matrix - laser/color & more
— Disk drums & 9-track tapes > 50 gigabyte drives ...

Today: “Personal” Computers

PC hardware — schematic

; Hand dik
..... > L =
r— = Comoll ’
Kerb CDROM deive
‘2
en yir
Moaior
|| o
Meewedk
el

Figure 5 Schematic Diagram of a Computer

What is programming?

e Basically: instructing a computer what to do
e Programs — a.k.a. “Software”
— Includes operating system, utilities, applications, ...
— Computer just sits there until instructions fed to CPU
e Machine language — basic CPU instructions

— Completely numeric — i.e., computer “readable”

e e.g.,43065932752, might mean add (operation 43) value
at memory address 065 to value at address 932 and store
result at address 752

e But in binary form, of course — 1001101...
— Specific to particular computer types — not portable

Programming languages

e Assembly language — 1% real advance
— Human-readable instructions — translated to machine
language by assembler programs
eeg,ADD X Y T
e Symbolic names represent operations and memory addresses
— Very basic — lots of instructions to do simple things
— Still processor-specific
o High-level languages — much bigger advance
— Easier to write/read: result = (first + second)
— Translated to assembly language (usually) by
compiler programs
e Same code works on many types of processors

High-level language history

e Procedural languages — focus on functions
— Fortran (by IBM, 1957) — first high level language
o Easy to learn — spawned thousands of new programmers
— C, Pascal, others — developed through 1970s
e Even easier to learn/use — ever more programmers into 1990s
e Object-oriented languages — focus on objects
— C++ (early 1980s), ..., Java (1996)
— Idea is to build objects — then let them perform tasks
— Many side benefits — facilitates team efforts,
“software reuse”, rapid application development, ...

Java — became popular quickly

e Code looks like C (and C++) — familiar
for many existing programmers
— Object-oriented without complexities of C++

o Killer API (application programmers interface) I."‘_"‘:
— Built-in networking features £
— Graphical user interface (GUI) objects
— Threads, media support, ... »

o |s free! L p—
e Java virtual machine — JVM - -
“Write once, run anywhere.”]AVA

A simple Java program

e Java “programs” are actually classes
— Aclass defines a type of object

e A first java application: class Hello
1. Create file called Hello. java

2. Compile — javac Hello.java
(creates bytecode file named Hello.class if
successful)

3. Execute — java Hello
(invokes JVM)

