Java Applications — FY| for now

e Always include a class with a marn method

€.g., public static void main(String args[]){ }
e Huh?

public — can be invoked from another package

static — same for all instances of this class

void — does not return anything

main — the method’s name

(String args[]) —argument list (an array of Strings)

{ } - Dblock delimiters {method definition is inside}

Comments and white space

e Compiler ignores — but important to human reader
e 3 types of comments:

// for single line or end-of-line comment

/> for comment that may

span lines */

/** Javadoc comment (will discuss later) */

e \White space:
— Indent methods, structures, other meaningful units
— Leave blank lines between meaningful sections
— Insert spaces before and after operators

Errors — 2 basic types

e Syntax errors — what beginners first see

— Improperly formed (or typed) source code
e e.0., public cass Hello €< should be class
e .0, .printIn(“Hi); € missing ” (end of string)
e €.0., system.out._printIn(“Hi”); €& System
— Compiler won’t compile the source code
e Important to learn to read the error messages —

e Logic errors —a.k.a., “bugs”
— Compiler said it’s okay, but results are wrong

— Often have to fix the algorithm (the step-by-step
solution to the problem — program should translate)

Variables and memory

e Every variable has:
— aname, atype, a size, and a value
e Concept: name corresponds to a memory location

e If primitive type (text calls “number type”) — the
actual value Is stored there

e |If object type — just a reference to the object
stored there (actually it’s a memory address)

— The object is stored somewnhere else
— Or the reference might be nul |

Defining variables

Must declare type for memory locations
— Compiler must know how big and how to interpret
Syntax: typeName variableName;
int x; //forintegers, like 4, -125
double a, b; //forfloating point numbers, like 1.25, -0.9
String s; /I for references to strings, like “dog”, “cat”

Also must assign value, or compiler won’t let you use it
X = 2; [l useassignment operator — looks like “equals” sign
double y = 7.3; //caninitialize when declare — a good idea

And If a reference, must create an object to use
String name = “Mike”;
Rectangle box = new Rectangle();

|dentifiers

e Names of classes, variables, methods
e Rules:
— Sequence of letters, digits, ,$ ONLY
— Must not begin with digit; must not contain spaces
— No Java reserved words
e Unwritten rule: Use meaningful names.
e Conventions:
— NameOfClass — begin with uppercase
— other or otherName, unless name of constant, like Pl

Assignment

— 1S the assignment operator

— It does not mean “equals’ (but we say it like that)
—e.g., x = 5; // means “assign 5 to x”

e Now 5 is stored in the memory location called x
—e.g.,y = x + 2; /lassign(X+2)toy

e The value stored in X IS retrieved, 2 Is added to It,
and the result is stored in y

—e.g0.,x = x + 2; /lassign (X + 2) to x
e It’s okay! It doesn’t mean “x equals x+2”. Right?

Special characters

e Escape sequences — start with \ (the “back slash”
character)

— \n — newline character
— \t-tab
— \”” — double quotes
— \” —single quote
— \\ — back slash itself
e Experiment with it — (e.g., change)
e Note: “a string\n” vs. characters— “c”, “\n’

Standard Output, and Strings

e System.out — an object of type PrintStream
— printIn(string) — prints string and newline
— print(string) — prints string, no newline
e String — literal is delimited by quotes: “a string”

— Remember: special characters start with “\”
e e.g., \nis anewline character
e SO printIn(“Hi”) Issame as print(“Hi\n)

+ concatenates: e.g., ““a” + 5 + ”’b’ becomes “a5b”’
o Note: first 5 is converted to a String.

Formatted printing

e Java 5.
— Method of PrintStream class — so System.out has
System.out.printf(“x = %d”, x); //XIisan integer
— Or use %o or %x to show same value in octal or hexadecimal
e U%T or %e or %g for floating point, and %s for strings
— Also control field width, precision, and other formatting
LprintfC*%-9s%7 . 2F%n”’, “Value”, v);
e Complete details In
— Format dates, times, ...
— Can use to create formatted String objects too:
String s = String.format(“pt: %d, %d'", X, y);

Standard input, and more Strings

e Actually have to read keyboard or other
INnput as a String (also requires exception handling)

e SO must “parse” string to interpret
numbers or other types
—e.g., String sl = 426”7, s2 = “
— Then sl can be parsed to find an int or a
double, and s2 can be parsed to find a double:

InNt n = Integer.parselnt(sl);
double d = Double.parseDouble(s2);

java.util .Scanner

e |mportant Java 5 enhancement greatly simplifies
Input processing

e First construct a Scanner object —pass it
System. In (or other input stream, or even a string)

Scanner In = new Scanner(System.in);

e Then get next string, int or double (or others)
String s = in.next();
String wholeLine = iIn.nextLine();

InNt X = In.nextInt();
double y = 1n._nextDouble();

e See (Fig. 2.7, p. 47)

Arithmetic

e Operators:
+, —, *, / add, subtract, multiply, divide
% modulus operator — remainder
@) means whatever is inside Is evaluated first

e Use java.lang.Math for difficult calculations
— E.g., Math.sqrt(x), Math.cos(x), ... (more later)
e Precedence rules so far (will expand):

1.0
* 1, Y%

2.
3. +, -
4

Analyzing an expression

(-b + Math.sqrt(b = b - 4 x a = c)) / (2 % a)
1_____"‘____} LN v A '-,_,._Y.._J'
b2 dac 2a

A

v

b?— 4ac

h

\lé?z—-f-h:zu:
—
—E?+~JE?2—4¢:.*:
—E?+\“?2—4#c
2a

Simple decisions — using 1If

e Do something or don’t do something ...
depending on the circumstances

1T (value < 0)
System.out.print(“negative™);

— Only prints If value Is less than zero

e Formal definition to Implement decision:

1T (boolean expression)
statement-to-execute ; // only if expression is true

Simple boolean expressions

e Relational operators: <, >, <=, >=, ==, 1=
- e.g,,

— Lower precedence than arithmetic

X >= 7 — y ?<}:“true

X == Z + Yy ?<}:“ false
* Note notsameasx = z + y // would make x be 5

Notequal: z 1= x +y ? <}:“ false
e See (Fig. 2.15, p. 57)

