
Define and use a simple classDefine and use a simple class
First version of GradeBook.java (Fig. 3.1, p. 75)
public class GradeBook {

public void displayMessage() {
System.out.println (“Welcome …”);

}
}
First GradeBookTest.java (Fig. 3.2, p. 77)
public class GradeBookTest {

public static void main(String args[]) {
GradeBook myGradeBook = new GradeBook();
myGradeBook.displayMessage();

}
}
Notice all GradeBook objects are exactly the same

Instance variablesInstance variables
Each object is an instance of its class, and each instance
can have different attributes
e.g., course name for GradeBook object:
private String courseName;
Related set and get methods:
public void setCourseName(String name)
{ courseName = name; }
public String getCourseName()
{ return courseName; }
See enhanced GradeBook.java (Fig. 3.7, p. 83) and new
GradeBookTest.java (Fig. 3.8)
– Notice name is null before set method is used
– Numeric values default to 0 & boolean values to false

ConstructorsConstructors
Definition looks like a method, but … always has
same name as the class, and no return type
e.g., alternate constructor for GradeBook:
public GradeBook(String name)
{ courseName = name; }

– Initialize course name as object constructed:
GradeBook myBook =

new GradeBook (“CS 5JA”);

– No need to set later, and never equals null
See another GradeBook.java (Fig. 3.10) and
another new GradeBookTest.java (Fig. 3.11)

Syntax for defining methodsSyntax for defining methods

Method has two parts – a header and a body
type name (parameter declarations) // header
{ local declarations and statements } // body

Parentheses in header and brackets around body are required

type – refers to the result of the method
– May be any primitive type, or any class
– Or may be void – means it does not return any results

If not void, statements in the method body must
include a return statement

Java has 8 primitive data typesJava has 8 primitive data types
(everything else is an object)(everything else is an object)

7 are “number” types
– 5 of the number types are integral types:

int – most fundamental; 4, -123, 9587123 are int
long – for longer integers (>2,147,483,647)
short, byte – save space for shorter integers
char – to represent characters; ‘A’, ’a’, ‘\n’

– Other 2 number types are floating point types:
double – most fundamental; 0.4, -123.3, 95.
float – save space for less precision

8th type is boolean: to represent true or false

About floating point typesAbout floating point types
Rounding errors occur when an exact conversion between
numbers is not possible
double f = 4.35;
System.out.println(100 * f); // prints 434.99999999999994

Illegal to assign a floating-point expression to an integer
double balance = 13.75;
int dollars = balance; // Error
– Casts: used to convert a value to a different type

int dollars = (int) balance; // OK
Cast discards fractional part – truncates

Math.round converts floating-point to nearest integer
– long rounded = Math.round(balance);

If balance is 13.75, then rounded is set to 14

