
1

Comparing objects, like Strings
Do NOT use == to test equality
– That just compares references! For example,

String s1 = “dog”;
String s2 = “DOG”.toLowerCase();

s1 == s2 // false! – different objects
Use equals method instead (if defined by class)

s1.equals(s2) // true – same contents
– But not all classes define equals method.  Be careful.

Some objects (like Strings) are Comparable, so
s3.compareTo(s4) // returns -1, 0, or 1

boolean variables

A primitive type to store true or false
– e.g., boolean done = false;

…
if (!done) {

…
done = true;

}

Often used just for readability:
boolean pass = grade >= 70;
if (pass) ...

if/else Selection Structure

? TF

Implementing if/else

General way – use if and else:
if (grade >= 60)

message = “Pass”;
else 

message = “Fail”;

– Either clause can be a block – i.e., {…}
Sometimes – use selection operator:

message = grade >= 60 ? “Pass” : “Fail”;

// same result as if/else above
– Applications are much more limited though

Nesting & indenting
No such thing as multiple else blocks – others 
actually nested inside else block
– e.g.,

if (grade >= 90)
message = “Excellent”;

else
if (grade >= 60)
message = “Pass”;

else 
message = “Fail”;

– Gets messy, so usually else/if on same line:
else if (grade >= 90) …

Nesting/indenting (cont.)

Critical to test relations in the correct order
– Sometimes means stating the negative condition

Also watch out for “dangling else” problems
if (first-level condition)

if (second-level condition)

do something;
else (what level?) …

|this else should be indented to here



2

while Iteration Structure

?
T

F

Implementing/applying while

while (boolean expression)
operation; // or a block, delimited by { }

Can be used for counter-controlled loops:
int counter = 0;

while (counter < 10) {

System.out.println(counter*counter);

counter = counter + 1;

}

– Must: (1) initialize, (2) check against limit, (3) increment
– See related version of GradeBook.java (Fig. 4.6, pp. 119-121)

// initialize
// compare to limit

// increment

Applying while (cont.)

Processing unlimited amounts of input data
– e.g., better GradeBook.java (Fig. 4.9, pp. 127-128) –

reads grades until sentinel entered by user
Special note: watch out for endless loops!
– i.e., boolean expression never becomes false

Use ctrl^C at command line to interrupt

– But some situations call for it – in such cases:
while (true) ... // intention is clear this way

Notes about type conversions
Automatically applies to promotions only:
– e.g., int n = 5; double d = n; // okay

n is “promoted” to double before assignment happens
– e.g., int n = 5; double d = n/2.0; // okay

n promoted to double before division; result is double

Must “cast” to force other conversions:
– e.g.,  double d = 5.; int n = d; // error

double d = 5.; int n = (int)d; // okay
– But not all casts are legal (basically must make sense):

String s = “dog”; int n = (int)s; // error

Combining control structures
Two ways only:
– Stack – in sequence
– Nest – one inside 

other
Analysis.java (Fig. 
4.12, p. 134) shows 
both ways
– An if/else structure 

inside a while loop
– And an if structure 

in sequence after 
the while loop

counter 
<= 10 ?

T

Initialize:
pass = fail = 0

counter = 1

Get result (0 or 1) 
from user

result 
== 1 ?

T
Add 1 to passAdd 1 to fail

Print pass and fail

pass > 8 
?

T
Print "Raise Tuition"

Add 1 to counter

F

F

F

Aside – simple drawings

Really just a preview of upcoming topic
Need a Graphics object to draw on
– Any subclass of JComponent – e.g., JPanel –

can be passed one by the windowing system
Inherits method: paintComponent(Graphics g)

– See DrawPanel.java (Fig. 4.19, p. 142)

And a window to show it – e.g., a JFrame
– See DrawPanelTest (Fig. 4.20, p. 143)



3

Assignment with arithmetic

Assignment operators
e.g.,   a += 5;

// same as:       a = a + 5;
– Also  -=, *=, /=, and %=

Special forms for += and -=, called increment 
and decrement operators, respectively
– ++ increments by 1    (same as += 1)

-- decrements by 1   (same as -= 1)
– e.g. counter++; // same as counter = counter + 1;

Pre/post versions of ++ and --

Post-increment is not exactly the same as pre-
increment (same goes for decrement)

Post version changes after used in expression
e.g., say x = 7, then
System.out.println(x++);

would print 7
Pre version changes before it is used
System.out.println(++x);

would print 8.
– In either case, x equals 8 after the print.

Operator precedence update

1. ( )
2. ++, --
3. *, /, %
4. +, -
5. =, +=, -=, *=, /=, %=

More iteration structures

Remember: 3 ways to implement “loops” in Java
– while, for, and do/while
while loop is most basic
– i.e., can always replace a for loop or do/while loop 

with while alone
But other forms are handy, and recommended sometimes

Exam tip:
– Translating a loop is a favorite exam problem

for Iteration Structure

?
T

F

increment

initialize

for purpose:
counter-controlled loops

Recall the 3 steps with while:
int c = 0; // initialize control variable
while (c < 10) { // continuation condition

System.out.println(c*c);

c = c + 1; // increment control variable
}

One for does all:

for (int c=0; c<10; c++)
System.out.println(c*c);

initialize co
nd

itio
n

increment



4

for Notes
Header requires three fields
– i.e., always two “;” – but can leave one or more blank

Manipulate control variable in the header
– Manipulate other variables in loop body
– Also best to NOT change control variable in body

“Increment” not limited to ++
– Can decrement too: for (int i=10; i>0; i--)
– Or use any amount: for (int i=0; i<100; i+=5)

Scope of control variable limited to loop
– Unless it is declared outside the loop

Applying for loops

Find the sum of even integers from 2 through 20
int total = 0;
for (int num = 2; num <= 20; num += 2)

total += num;

Print digits (0 to 9) with spaces between
for (int i = 0; i < 10; i++)

System.out.print(i + “ ”);

// prints “0 1 2 … 9 ”

Use to do any operation a fixed number of times
– e.g., Interest.java (Fig. 5.6, p. 167)


