
do/while Iteration Structuredo/while Iteration Structure

?
T

F

Implementing Implementing do/whiledo/while

do {
statements;

} while (boolean expression);

Notes:
– Always executes at least once

Good for user input checking
– Don’t forget the semicolon at the end

switchswitch Selection StructureSelection Structure

? T

F

break

? T

F

break

 .
 .
 .

Implementing Implementing switchswitch
switch (controlling integral expression) {

case constant integral expression:
statements;
break; // important

case constant integral expression:
statements; break;

...
default:

statements to do if no case matches;
}
See updated GradeBook.java (Fig 5.9, pp. 171-173)

switchswitch NotesNotes
Do NOT forget the breaks!
Integral types only:
– Just byte, short, int, char (but not long)
– And new Java 5 feature – enumeration types

e.g, enum Section {FIELD, LOGE, PAVILION};

Constant integral expression (a.k.a., case “label”) :
– No ranges, but can stack, like:

case 1: case 2: case3:

Can always rewrite as nested if statements
– Safer, more structured, recommended in most cases

breakbreak and and continuecontinue

Ways to get around the strict structures
– i. e., not really structures anymore
– break – completely exits the structure
– continue – skips the rest of current iteration

(while, for, or do/while structures only)
Also labeled versions for nested structures
Usual advice is to find a better way
– i.e., should look for a structured alternative

Boolean operators: Boolean operators: &&&&, , ||||, , !!
For combining simple boolean expressions into
more complex expressions
– Operands are boolean expressions
– e.g., grade == ‘A’ && weight > 10

Note: relational operators have higher precedence
Truth tables – whole result given partial results
– op1 && op2 - true if both operands are true
– op1 || op2 - true if either operand is true
– !op - true if operand is false
– See LogicalOperators.java (Fig. 5.18, pp. 184-185)

Note: && has greater precedence than ||

QuizQuiz -- Logical ExpressionsLogical Expressions

Actually just a self-test (but please try anyway)
Say int x=2, y=8, z=17;
– What is (x<y || z>x && y>z)?
– What is (x < y-z)?
– What is (x+y > y + z / y)?

What is (--z == x * y++)?
– And after that statement executes, what is

(z > y * x)?

true

false

false

true

false

How did you do?How did you do?

2 or less

3

4

5

InterpretationNumber correct

Lagging

Expected after about ½ of CS 5JA

Very savvy

Might as well flip a coin!

More boolean expressionsMore boolean expressions

Note a difference from math descriptions:
– In math: (0 < amount < 1000)
– In Java: (0 < amount && amount < 1000)

De Morgan’s Law – has 2 forms, both useful to
simplify boolean expressions
– Let A and B represent boolean values

1. !(A && B) is the same as !A || !B
2. !(A || B) is the same as !A && !B

Q: How say not(0 < amount < 1000)?

Review: 7 control structuresReview: 7 control structures

?
T

F

?
TF?

T

F

?
T

F

increment

initialize

? T

F

break

? T

F

break

 .
 .
.

?
T

F

Iteration

SelectionSequence

Structure Structure ““rulerule”” #1:#1: start with the start with the
simplest flowchartsimplest flowchart

One rectangle
A good (and widely
applicable) example:

get some data, calculate
and show some results

Really just a way to start;
clarifies the “big picture”

Very
general;
top-level
algorithm

Rule #2: Rule #2: replace any rectangle by two replace any rectangle by two
rectangles in sequencerectangles in sequence

This “stacking rule” can apply repeatedly:
one two, two three, … For example:

1. Get data
2. Process
3. Show results

Rule 2

Rule #3: Rule #3: replace any rectangle by any replace any rectangle by any
control structurecontrol structure

This “nesting rule” also applies repeatedly,
as each control structure has rectangles
e.g., nest a while loop in an if structure:

if (n > 0)
while (i < n)

System.out.println(i++);

Rule 3 Any one of 7
choices in Java

Rule #4: Rule #4: apply rules #2 and #3 apply rules #2 and #3
repeatedly, and in any orderrepeatedly, and in any order

Stack, nest, stack, nest, nest, stack, … gets more
and more detailed as one proceeds
– Think of control structures as building blocks that can

be combined in two ways only.
– Captures the essence of stepwise refinement: keep

adding details as they arise
Basically means keep adding control structures as long as
they are needed

Top-down design: start with forest, do trees later

Programming graphicsProgramming graphics
Need a window – javax.swing.JFrame
– Several essential steps to use (necessary “plumbing”):

Set the size – width and height in pixels
Set a title (optional), and a close operation
Make it visible

– e.g., see lines 20-25 of ShapesTest (Fig. 5.27, p. 193)
Add javax.swing.JComponents to window
– Note: JPanel is a subclass of JComponent
– Draw shapes, colors, … on these components

That’s all there is to it!
– Except for the painstaking labor, of course

