
1

What is an array?
General answer: a fixed number of consecutive
memory locations, all of the same type.
– Can refer to all as a group by array’s name
– Can refer to any one by name[position]

Position is called array “subscript” or “index”
First position is 0 (others are “offset” from 0)

Additional Java answer: an object whose purpose
is to store collections of items of the same type
– Either primitive data values of the same type
– Or references to any one class of objects

Arrays are objects in Java
Even a public instance variable: length
– Range of positions: 0 ... length-1
– Length is fixed after created (instantiated)

Declare, instantiate – separate steps:
int x[]; // declare array of int named x

int[] x; // same thing (clear that x is an int array)
x = new int[4]; // instantiate array of length 4

– Both steps can be done with one statement:
int x[] = new int[4];

Assign values in a later step:
x[0] = 53; // first element set to 53

Accessing array elements

First, another way to instantiate:
– And initialize at the same time
int x[] = { 3, 7, 4, 5 };
Quiz - what is:

x[0] ?
x[1]-x[0] ?
x[x[0]] ?
x[4] ?

3

4

5

throws ArrayIndexOutOfBoundsException

Using arrays
for loops are especially useful:
for (int i=0; i < x.length; i++)

x[i]=getValue(); // access each xi in order
Copying can be “deep” or “shallow”
– Shallow copy: a new reference to same array

int[] a = x; // if x is an int array already
– Deep copy: a new array with copies of all values

int[] a = new int[x.length]; // same length as x
for (int i=0; i < x.length; i++)

a[i] = x[i];

Using arrays to count: RollDie.java (Fig. 7.7, p. 262)

Enhanced for loop: Java 5

Actually a “for each” loop
for (int element : array)

– Reads “for each element in array”
e.g., array of strings: String words[] = …
for (String s : words)

System.out.println(s);

Note the loop control variable is the array
element itself, not its array index
– So not applicable if index value is required

Like deep copy algorithm, and many others

Some basic array operations
Summing array elements:
int sum = 0; // initialize before loop starts
for (int item : x) // for each integer item in array

sum += item;

Finding a maximum (or other extreme):
int max = x[0]; // initialize to first value
for (int i=1; i < x.length; i++)

if (x[i] > max) max = x[i];

Printing on one row of standard output:
for (int item : x) System.out.print(“ “ + item);
System.out.println(); // newline after row is done
– Q: How to print in reverse?

2

More array techniques
Finding a value

int i = 0, target = (some number);
boolean found = false;
while (i < x.length && !found)

if (x[i] == target) found = true;
else i++;

if (found) ... // know target is at x[i]
else ... // know target is not in x

Removing an element – 2 cases
– 1. If order doesn’t matter, replace removed item with last item
– 2. Otherwise, must move all trailing items forward one slot

Inserting an element – same two basic cases in reverse

Arrays as parameters
Imagine hypothetical methods, f1 and f2:

void f1(int a) { … }
void f2(int[] a) { … }

and some data:
int x = 5, y[] = {3, 92, 17};

f1 works with a copy of a primitive value, so:
f1(x); // f1 cannot change x
f1(y[0]); // f1 cannot change y[0]

f2 works with a copy of a reference
f2(y); // f2 cannot change y, can change elements of y

See PassArray.java (Fig. 7.13, p. 271)
Note: command line arguments passed to main as array
of String objects – see InitArray.java (Fig. 7.21, p. 291)

Arrays of objects
Arrays of objects require 3 steps to use:
Rectangle[] boxes; // 1. declare array of references
boxes = new Rectangle[3]; // 2. instantiate array
// 3. instantiate each object in the array:
for (int i=0; i<boxes.length; i++)

boxes[i] = new Rectangle(5,5,5,5);

Infinite applications
– Imagine: Car[] myFleet = ...

Then: for(...) myFleet[i].draw(g);
See Card and DeckOfCards (Fig. 7.9,10, pp. 266-7)
Advice: choose array of objects over parallel arrays

Arrays of arrays

Arrays store anything, including arrays!
– Not exactly multidimensional, but workable
– e.g., int table[][] = new int[10][4];

A “table” of integers, with 10 rows and 4 columns
table.length is 10
Each table[i].length is 4, for all i

– Component array sizes can vary
table[2] = new int[6]; // now 3rd row has 6

Typically use nested for loops to process
– See updated GradeBook.java (Fig. 7.18, pp. 283-286)

Handling array size limitations
Issue: array size is fixed after construction
– Don’t always know what size to allocate at start

Solutions
– Allocate “way more than enough”

Absolutely limits the size of the problem – not a good idea
– Create new, larger array, and copy values

if (dataSize >= data.length) {
int[] newData = new int[2 * data.length];
... // here: deep copy up to (data.length – 1)
data = newData; // copy reference (discard old array)

}

– Even better – use an ArrayList instead

java.util.ArrayList
An array-like data structure
– Fill with add method – adds element to end

Size is not fixed (grows dynamically as necessary)

– Also an insert method – inserts element anywhere
Specify position 0..size (like arrays) where element goes

– Use set and get methods to change and access:
Cannot use = or [] notation like arrays

New with Java 5 – is a generic class
– Specify particular data type to store
– Insures all are same type – so easier to handle

3

How to use ArrayLists
Declare/create ArrayList (no need to size it):
ArrayList<T> a = new ArrayList<T>();

// where T is an object type – not a primitive data type

Add objects to end, or set and get specific objects
ArrayList<Rectangle> a = new ArrayList<Rectangle>();

a.add(new Rectangle(5,5,5,5));

Rectangle r = a.get(0); // gets first
a.set(0, new Rectangle(0,0,10,10)); // replaces first

Simple insert and remove too
a.insert(i, r); // inserts in position i
a.remove(i); // removes element in position i

ArrayList and primitive types

Must use “wrapper” classes for primitive data types
– Byte, Short, Integer, Long, Float, Double,
Character, Boolean

E.g., to store double values in list:
ArrayList<Double> list = new ArrayList<Double>();
list.add(new Double(17.64)); // what really happens
list.add(0.74); // what Java 5 “autoboxing” feature allows

Convert back to primitive type on retrieval:
double d = list.get(0).doubleValue(); // what really happens
double d = list.get(0); // with Java 5 “auto-unboxing” feature

More java.util collections
List – actually an interface
– Defines a set of common methods like add, size, iterator

Shared by ArrayList, LinkedList, and others
– Note: Collections methods to manipulate List objects:
Collections.shuffle(list); // randomly shuffles the list
Collections.sort(list); // assuming items are Comparable
Stack – a LIFO (last in, first out) data structure
Stack<String> s = new Stack<String>();
s.push(“dog”); ... // push objects onto top of stack
while (!s.isEmpty())

... s.pop(); // removes/returns top object
– e.g., use a stack to print array in reverse order (ReverseArgs.java)

Also trees, sets, hash tables, … – covered in CS 20

