Recap: What an object can do

e Defined by its interface
— Consists of public methods and public data

e Accomplished by its implementation

— Includes private members and internal details of
methods

e A class provides both the interface and
Implementation for objects of a particular type

— Defines the public interface
— Defines the data that objects store
— Implements the methods (both public and private)

Label objects for example

o — what clients need to know
— Includes accessors: public String getText()
— And mutators: public void setText(String text)

— Even constants: public static final int CENTER
e Also LEFT and RIGHT — where to display the text
e Implementation is Iin class (java.awt)Label

— Defines the public methods — so they actually work

— Has non-public features too: text, alignment, ...
e Includes methods that clients don’t have to know about
e Reason: these parts can change without ruining client’s work

A custom example: BankAccount

e A software designer identified the need for
objects that represent bank accounts

— Part of a banking system, or personal portfolio, or ...
e Q: Why objects, not just numbers?

— A bank accounts are more complex than numbers
e Include data (balance, account holder information, ...)
e And methods (controlled ways to deposit and withdraw, ...)

e ldea is that other software objects will:
— Create new BankAccount objects
— Use the objects’ public features to solve problems

Notes about choosing classes

A class represents a concept from the problem domain

Name for a class — a noun that describes the concept
— e.g., geometric concepts: Point, Rectangle, Ellipse, ...
— Or real life concepts: BankAccount, CashRegister, ...

Lots of general types of concepts/classes:

— e.g., Actors (end in -er, -or) — do some kinds of work for you
e Scanner is a good example
e Random is not (better name would be RandomNumberGenerator)

— e.g., Utilities (like Math) — often just static methods/constants
— e.g., Program starters — only have a main method

Advice: don't turn actions into classes
— e.g., Paycheck is better name than ComputePaycheck

Accessor and mutator methods

e Accessors — to allow access to private data

— Usually call same as variable, or getVariable
e €.J., private iInt var; ..

public int getvar() { return var; }

— Note: only if other classes need such access
e Mutators — to allow changes to private data

— e.g., deposit and withdraw methods of BankAccount

— Basic mutators are usually called “set” methods
public void setVar(int x) { var = x; }

— Note: only If other classes should change the data, and
only in ways that keep the object in a valid state

Notes about this

this Is an object reference — a constant an object
uses to refer to itself (“me” better reflects the concept)

e.g., print me: System.out.print(this);
Often just an implicit reference: calculate();
— Same as explicitly saying this.calculate();

— Also the case for instant variables: x <> this.x
o See (Fig. 8.4, pp. 323-324)

Has a special purpose for overloaded constructors
— See (Fig. 8.5, pp. 325-327)
Has no meaning (so illegal to use) In a static context

Predicate methods

e Methods that return a boolean value

— e.g., BankAccount enhancement:
public boolean 1sOverdrawn() {

return balance < 0O;

}
e Can simplify and clarify programs that use them
1T (nmyAccount. 1sOverdrawn()) ..

e Lots of APl examples
— e.g., Scanner: 1nput.hasNextint()
— e.g., Stack: stack. 1sempty()
— e.g., Character: Character.i1sDigit(aChar)

Avoid “side effects” of methods

e Any externally observable data modification
e e.g., modifying an explicit parameter

void transfer(double amount, Account other){
balance = balance - amount;
other .balance = other.balance + amount;

}
e Unexpected output Is another example

— 1.e., don’t print unless that is the method’s purpose

— In fact, any printing at all might cause problems

public void printBalanceé) { /I Not recommended
y System.out.printin(*“Balance 1s $'" + balance);

e Now only works in English locale
e Also relies on System.out — might not be available in GUI

Packages

Uppermost level of Java modules
— Used to bundle related classes — a good design idea

Declare in each class — package my.stuff;
Store all in same directory — ./my/stuff/

Must qualify class names to use them

— Either explicitly each time name is used — my .stuff.Thing
— Else import my.stuff.Thing;

— Or import my.stuff.*; //to getall classes in package
See text section 8.16 (and related Fig. 8.19 and Fig. 8.20)

Package access — a.k.a. “friendly” — no access modifier

Applets — an alternate approach

e A way to run a program — but not an application
— No main method necessary

e Need a subclass of Applet (or JApplet)
— S0: class _ extends Applet (or extends JApplet)

e Most web browsers know how to create a new
applet, and how to use certain Applet methods

— S0, applets must be embedded in an html page

— And, to be useful, they must include at least one of the
methods the browser invokes (e.g., paint)

“Running” an Applet

e The applet Is started by the web browser as
soon as the web page (html file) is visited

e The html file (stands for hypertext markup language)
— must have an applet tag in It:
<html> ..

<applet code=AppletClassName.class

width=### hei1ght=###>
</applet> <!-- needs a closing tag too —->
. </html>

FYI: a littte more html

e All based on tags — which come in pairs
— e.g., Italics — “a <i>stressed</i> word” —would
show on web page as “a stressed word”
— Also underline - <u>..</u>, bold - ..,
subscript - _{..}, and so on

— Can nest like “<u>ok</u>ay then!” shows
up as “okay then!”
e But wrong if not nested, like “<u>..</u>"

e Best kind of tags are hyperlinks

— e.(¢., “my school"

shows up like *
e See any of many web resources

Implementing a “simple” applet

e import javax.swing.JApplet; // mandatory
— Also usually Graphics and Graphics2D and others

e Declare a class that extends JApplet:
public class RectangleApplet extends JApplet

e Implement paint method (at least)
— Same procedures as paintComponent for components

e Create an html file to load the applet in a web
browser or the appletviewer (provided with JDK)

® £.0., (see link on Slides page)

Notes on rendering text

e Actually necessary to “draw” the text at a
specified location on the Graphics object
— g.-.drawString(aString, X, VY)

— Uses current rendering context (e.g., color), and
current text attributes (e.g., font)

e Font: a face name, a style, and a point size
Font f = new Font(“Seri1f”’, Font.BOLD, 24);

g.setFont(F); // now drawsString uses this font

e Note: often can just use a JLabel to show In
adjacent component

— Other text display components too — even Text objects

Various applet examples

—fonts, and text centering

— converting units to pixels

— Note: vertical axis increases downward — so must flip y
coordinates if drawing typical graph

— displaying/scaling images
— handling mouse events
— slider (state-change) events

Note: all of these programs could have been applications
Instead. Don’t need applets to have graphical features in
programs — just to include the programs on a web page.

5JA done! Where to go from here?

e Much deeper computer science to study

— 1sttake CS 10 - if you still like it, take more
e Many other programming languages out there

— Beginning C is part of Engineering 3 curriculum

— C++, VisualBasic, C#, ... at UC Extension, SBCC,

and tech schools like SB Business College
— But you can learn them by yourself now too!
e For specifics: just get a book, and/or look for online tutorial

e Lots more Java technigues to learn about

— Suggest starting with Java Tutorial — books, and
online at

