
1

Unix and C – historical partners
Unix (or is it UNIX?) comes in many flavors
– AT&T Bell Laboratories – System V standard

1969-70: Ken Thompson wrote Unix in “B”
1972: Dennis Ritchie developed C – a better B
Unix rewritten in C, 1973 … finally System V, 1983

– UC Berkeley – BSD standard
Started with a copy of System IV, late 1970s
Lots of changes/additions in 1980s – now FreeBSD

– Open source – Linux, since early 1990s
Many C flavors too – but ANSI standard in 1988

Shared philosophy of C & Unix

Small is beautiful
– Each program does just one thing

Pipe commands (in Unix) or use successive functions (in C)
to accomplish more complicated things

– Less typing is best (using 1970s computers)
Short Unix commands (ls, cp, mv, …) and terse C programs

Users & programmers know what they are doing
– So brevity is sufficient
– And very few restrictions (or safety nets) apply

C looks like Java in some ways
{ } – indicates a block, including functions
Function headers are just like method headers
Mostly same primitive types – int, double, …
– Except C has no boolean type – 0 means false
– Also C data sizes can vary, and type conversions are

more liberal (i.e., no casts required for “demotions”)
– And C has unsigned integer types

Same arithmetic/relational operators
– Including increment/decrement and assignment ops

Same selection and iteration structures (+ goto !!!)

Formatted printing to stdout
printf(format string, value, value, …);
– Almost same as adopted by Java 5
%s, %d, %f for strings, integers, floating points
– printf(“my string is %s”, stringvar);
– printf(“int is %d, float is %f”, ivar, fvar);

Field width, precision, and more:
– printf(“int is %5d, float is %8.2f\n”, ivar, fvar);

See KR chapter 7 and appendix B
But C programmers are just as likely to process
characters one at a time
– See input/output demos at ~cs60/demo01

Constants
Some are same as Java:
– 15, 017, 0xf – same value in dec, oct, hex
– 0.0012, 1.2e-3 – regular and scientific floats
– ‘c’, ‘\n’ – individual chars; also “a string”

But no true or false – use non-zero, and 0
No final keyword – use const instead
Symbolic constants – e.g., #define MAX 50
– Text substitution by C preprocessor – more in ch. 4

Enumerations – e.g., enum state { in, out };

– Type is enum state – in, out are particular values

Arrays and character strings
Declare array and fixed size at same time
– int x[50]; /* size must be a constant */

Do not use new keyword – does not exist in C
Also may not reassign array name: x = … /* illegal */

C string: a char array, terminated by ‘\0’
– e.g., int length(char s[]) {/* string length */

int i;
for (i = 0; s[i] != ‘\0’; i++);
return i;

} /* note: size of array is probably greater */
Much more coverage of arrays and strings – later
– And see ~cs60/demo01/longest.c

2

Function basics
Must be declared before use
– Can do with forward declaration (prototype):

e.g., long multiply (int, int);
Parameter names are optional in prototypes

Must be defined somewhere (for linker)
– Definition includes header and function body
– Parameter names are required in definition

Parameters are always copies of argument values
– return – required if type is not void

Value returned is also a copy

Note: old style functions
No types for parameters
– Instead – declare types after), before {
– e.g., double squared(value)

double value;

{ /* function body */ }

Prototypes have empty parameter lists:
– e.g., double squared();

Problem – compiler cannot verify correct types
– Old style still works – but recommend do not use

See ~cs60/demo01/oldC/

External, static, and scope
External variables: declared outside any function
– Scope is “global” – whole program can use

If static – scope is limited to this file
– Duration is as long as the program is running
– See calc1.c (K&R pp. 76-79)

Automatic variables have local scope
– Includes parameters (local copies)
– Duration is as long as the function executes

If static – lasts as long as the program runs

Note: all C functions are external

