
1

Very artificial scope example
/* some global variables */
long x;
float y;
int z;

/* a function */
void fn(char c, int x) { /* parameter x hides global x */

double y = 3.14159; /* local y hides global y */
extern int z; /* refer to global z */
{ char y; /* hides first local y */

y = c; /* assign to second local y */
}
y = y / 3.0; /* assign to first local y */
z++; /* increment global z */

}

Initialization
Default: 0 for external and static variables
– If explicit, must initialize with a constant

No default (undefined) for automatic vars
– Contains garbage if not explicitly initialized
– May be constant or expression involving vars
– Note: same for register variables

Arrays – can use comma-separated list:
– int x[] = {7, 17, -12, 4}; /* size computed */
– Alternative for character arrays:

char classname[] = “Computer Science 60”;
/* size computed, including ‘\0’ appended automatically */

Compiling, linking, & make files
Compiling only – e.g., gcc -c pgm.c
– Creates object file called pgm.o (or pgm.obj in DOS)

Linking only – e.g., gcc pgm.o –o pgm
– Makes executable file called pgm (or pgm.exe in DOS)

Can automate process with a makefile:
pgm: pgm.o # dependency

gcc pgm.o –o pgm # action (tab is required)
pgm.o: pgm.c

gcc -c pgm.c

– Then just type “make” – Unix tool executes the
actions as necessary to satisfy the dependencies

C preprocessor
Runs before the compiler
– Can run separately by cpp (outputs to screen)
#include – includes all text of named file
– #include <library-file.h> or “user-file”
#define – substitutes text in source file
– Not just for symbolic constants – any text okay
– Can include arguments – but watch out for side effects

If #argument – will create character string
If ## between arguments – will concatenate the arguments

Conditional compilation possible with #if and !
– Also #elif, #else, #endif; and #ifdef, and #ifndef

Dealing with multiple modules
Imagine a program for factorial, consisting (for illustrative
purposes only) of 3 modules:
factorial.h – contains the function prototype
factorial.c – implements the function
testfac.c – uses the function
– Both .c files #include “factorial.h”

Makefile – separately compiles testfac and factorial,
then links them
– If just change factorial.c – make recompiles that file only

and relinks to existing testfac.o

Another example in ~cs60/demo02/krcalc
– And more coverage of makefiles in discussion section – soon

C Pointers
What are C pointers?
– Ans: variables that store memory addresses

i.e., they “point” to memory locations
And they can vary – be assigned a new value

Background: every variable really has two values
int m = 37; /* What does the compiler do? */

(1) sets aside 4 bytes of memory (usually) to hold an int
(2) adds m and this memory address to a symbol table
(3) stores 37 (one value) in those 4 bytes of memory

– The other value – a.k.a. lvalue – is the memory address

2

* and &
The * has 2 meanings for C pointers
– (1) to declare a pointer variable:

int *p; /* now p can point to an int */
– (2) to dereference a pointer:

p = 19; / stores 19 at location p points to */
printf(“an int value: %d”, *p);

/* finds and prints the value where p is pointing */
The & retrieves a variable’s lvalue:

p = &m; /* points p at address where m is stored */
scanf(“%d”, &m); /* gets an input value for m */
scanf(“%d”, p); /* same as above in this case */

Pointer types
Compiler knows type of data a pointer points to
– For dereferencing, and for pointer arithmetic

e.g., an int * can only point to an int
Exception: a void * can point to any type
– e.g., double d = 1.5;

int x = 6, *ip;

void *vp = &d; /* vp points to a double */
vp = &x; /* okay, now vp points to an int */

– But cannot dereference vp directly – must cast first:
printf(“%d”, *vp); /* error */
ip = (int *)vp; /* now can dereference ip */

Array names are not pointers
(but they are close)

int x[10]; /* What does this statement do? */
– Allocates memory for 10 consecutive int locations
– Permanently associates x with the address of the first

of these int locations – i.e., x always points to x[0]
So &x[i] is exactly the same as (x+i)
– And therefore, x[i] is exactly the same as *(x+i)

Also, if int *p (p is a pointer to int), then:
– p = &x[0] is exactly the same as p = x

But x = p is illegal, because x is not really a pointer
– Then p[i] is an alias for x[i]
– ++p moves p to point at x[1], and so on

/* copy t to s */
void stringcopy(char *s, char *t)

One way to implement – use subscript notation:
int i = 0;
while ((s[i] = t[i]) != ‘\0’) i++;

Another way – use the pointer parameters:
while ((*s = *t) != ‘\0’)
{ s++; t++; }

Usually just increment in the while header:
while ((*s++ = *t++) != ‘\0’);

And it’s possible to be even more cryptic:
while (*s++ = *t++);

Pointer arithmetic – arrays only
Can add or subtract an integer – as long as result is
still within the bounds of the array
Can subtract a pointer from another pointer – iff
both point to elements of the same array

char word[] = “cat”;

/* create array of four chars: ‘c’‘a’‘t’‘\0’ */
char *p = word; /* point p at first char */
while (*p++ != ‘\0’); /* move pointer to end */
printf(“word length: %d”, p-word-1);

/* subtract one address from another – result is 3 */

No pointer multiplication or division allowed

C function memory reminders
Parameters and local variables are automatic
– i.e., they exist only while the function executes

So should never return a pointer to an automatic variable
– Dynamic memory allocation is different – later

Variables always passed to functions “by value”
– i.e., the value is copied, so functions operate on a copy

One issue: is inefficient to pass structures – pointers better
Another issue: functions need pointers to change values

change(x); /* x’s value unchanged when function returns*/
change(&x); /* function may have changed x’s value */

Return values are copies too – so similar issues

