
A parameter passing exampleA parameter passing example
void triple1(int x) { x = x * 3; }
void triple2(int *x) { *x = *x * 3; }
int a[] = {10, 7};
main() {

triple1(a[0]); /* What is being passed? */
printf("%d\n", a[0]); /* What is printed? */
triple2(a); /* What is being passed? */
printf("%d\n", a[0]); /* What is printed? */

Be sure to understand why these results occur.
– Hint: draw the memory storage – including storage duration

Analogous example, re pointersAnalogous example, re pointers

First, recall that pointers are values too … then:
void repoint1(int *p) { p = p + 1; }
void repoint2(int **p) { *p = *p + 1; }
int a[] = {10, 7};
int *ap = a;
main() {

repoint1(ap); /* What is being passed? */
printf("%d\n", *ap); /* What is printed? */
repoint2(&ap); /* What is being passed? */
printf("%d\n", *ap); /* What is printed? */

sizeofsizeof

A unary operator – computes the size, in bytes,
of any object or type
– Usage: sizeof object or sizeof(type)

If x is an int, sizeof x == sizeof(int) is true
– Especially useful to find the sizes of structures – later

Works for arrays too – total bytes in whole array
– Sometimes can use to find an array’s length:

int size = sizeof x / sizeof x[i];

Actually, type of result is size_t
– An unsigned integer defined in <stddef.h>
– Also ptrdiff_t – result type of pointer subtraction

2 ways to allocate memory2 ways to allocate memory
Static memory allocation – done at compile-time
– int x; double a[5]; /* space for 1 int, 5 doubles */
– Both size and type are clearly specified ahead of time

– x can only hold int values, a only doubles
Dynamic memory allocation – during execution
– Must use library functions like malloc

Allocates specific amount of memory, returns void *
ip = (int *)malloc(sizeof(int));
So must cast to appropriate pointer type – then use as always
Note: malloc returns NULL if memory is not available

– To free up dynamic memory: free(ip);

SelfSelf--Quiz Quiz –– Pointers & memoryPointers & memory
Sayint *a, *b;

a = (int *)malloc(sizeof(int));
b = (int *)malloc(sizeof(int));
*a = 5; *b = 17;

– What does this mean?
– What are (all) the results of: a = b; in this case?
– What code would swap the values stored at a and b?
– What would happen if we tried this: b = 17; ?
– How about this: printf(“b is 0x%x”, b); ?

Returning pointers from functionsReturning pointers from functions

Okay if points to dynamically allocated (or external) storage:
int *goodPtr(void) {

int *p = (int *)malloc(sizeof(int));
*p = 4;
return p; }

Big mistake if points to local storage (inc. parameter values):
int *danglingPtr(void) {

int x = 8;
int *p = &x;

return p; }
– p is a dangling pointer – as memory for x is erased and/or reused

MultiMulti--dimensional and pointer dimensional and pointer
arrays, and arrays, and pointers to pointerspointers to pointers

Multi-dimensional arrays – arrays of arrays
– int x[5][3]; /* allocates memory for 15 ints */
– Actually, 5 arrays, each able to store 3 integers

Arrays of pointers
– int *p[5]; /* allocates memory for 5 pointers */

for (i=0; i<5; i++) p[i] = x[i]; /* x as above */
Now p can be used as an alias for x

Pointers to pointers
– int **px = x; /* points to first array in x */
– px++; /* moves pointer to next array */

First ExamFirst Exam
Friday, October 16Friday, October 16

