
1

A few more pointer points
Beware null & wayward pointers! (Learn from Binky)

Command line arguments
– int main(int argc, char *argv[]) {…}

– Equivalent argv declaration: char **argv

– Either way, argv[i] refers to ith argument
Pointers to functions – function name is a pointer
– Can pass to another function as an argument
– void other (int (*func)(func’s parameters))

See libqsort.c in ~cs60/demo03 for example

Complicated declarations – read from right to left
– Decipher using K&R’s dcl.c (in ~cs60/demo03)

int printf(char *fmt, a1, a2, …)

Prints to stdout – formatted
– Same as fprintf(stdout, char *fmt, a1, …)

– Variable length argument list after format – one for
each % in format string (in order)

%[-][width][.][precision]character
– ‘-’ specifies left justification
– width – maximum field width in characters
– [.][precision] – for floating point nums only
– Character – specific for type to convert

d, i, o, x, u – for integers
f, e, g – for floating point
s for strings, and c for chars

Line input and output

Note: K&R getline is non-standard – better to
use fgets from <stdio.h>:
char *fgets(char *line, int max, FILE *fp);

– Reads at most max – 1 characters, including ‘\n’
– The array, line, must be able to hold max chars

But do not use gets(…) – it’s dangerous
fputs – alternative to fprintf to output lines:
int fputs(char *line, FILE *fp); /* returns EOF if error */

– Or just use puts(…) for stdout

int scanf(char *fmt, a1, a2, …)

Formatted input from stdin
For all except %c – skips white space
Arguments corresponding to conversion
characters must be pointers:

int x;
char word[20];
scanf(“%d %s”, &x, word);

– Note – word is already a pointer, so no &
– Another note – word array must be large enough

Also sscanf and fscanf – for input from a
string or a file (i.e., like sprintf and fprintf)

Variable-length argument lists
#include <stdarg.h>
va_list ap;

/* first: declare pointer to unnamed args */
va_start(ap, last named-arg);

/* aim pointer at first unnamed argument
(note: must be at least one named argument) */

type value = va_arg(ap, type)
/* get current unnamed argument, and increment */

va_end(ap);
/* must be called when done – before returning */

File input/output

FILE *fp; /* declare a file pointer */
fp = fopen(“filename”, mode);

/* associate a file with the pointer */
– mode is char * – either “r”, “w”, or “a”

Input or output using the file pointer:
– getc(fp); /* returns next int from file */
– putc(intValue, fp); /* outputs value to file */
– fscanf(fp, format, …); /* input from file */
– fprintf(fp, format, …); /* output to file */

2

Error handling basics

Do NOT print errors to stdout
– Print error messages to stderr instead:

fprintf(stderr, “message”, args…);

Often need to terminate execution due to errors
– In main – return EXIT_FAILURE; /* or any non-zero */

– In other functions – exit(EXIT_FAILURE);

Sometimes want to check error status of file (fp)
– General error – ferror(fp); /* returns 0 if no errors */

– End-of-file – feof(fp); /* returns non-0 if end of file */

C structures – some basics
Structures are user-defined types with multiple data fields
e.g., define structure to hold a char and a double:
struct example{ /* type is 2 words: struct example */

char c;
double d;

}; /* the semicolon is mandatory */
Create a structure, and declare and assign a pointer
struct example e, *ep = &e;

Or, if won’t need to refer to type name again:
struct { /* can leave off the “tag” */

char c;
double d;

} e, *ep;

More structure basics

Access fields with the dot ‘.’ operator
– By using the structure’s name: e.d = 2.5;
– Or the pointer: (*ep).c = ‘a’; /* parens needed */

Easier to use the arrow ‘->’ operator for pointers
– ep->c = ‘a’;

Can initialize all fields in one step:
– struct example e2 = { ‘c’, 97.14 };

Note – size of structure >= sum of field sizes:
– sizeof e >= sizeof(char) + sizeof(double)

typedef
Can precede any declaration with typedef
– Defines a name for the given type:
typedef struct example ExampleType;

ExampleType e, *ep; /* e, ep same as prior slide */
Can even use a defined type to define another:

typedef ExampleType *ETPointer;

ETPointer ep; /* ep same as above */
Note – can simplify code with macros too:

#define C(p) (p)->c

C(ep) = ‘b’; /* preprocessor substitutes correct code */

Structures and functions

Usually better to pass pointers – avoid copy costs
– But gives function access to original fields

Note: const not guaranteed in C

Do not return pointers to local structure variables
– In this case, accept the copying costs
– But okay if dynamically allocate memory for structure

Returning defined types aids readability:
– ETPointer someFunction() is easy to read
– struct example *someFunction() is not

Collections of structures
Arrays – an alternative to “parallel arrays”
– Mostly handle like all other array types

ExampleType array[/*size*/], *p;
p = array + 2; /* p points at third struct */

– See keyword counting programs, K&R p. 134 & 137
(today’s demo programs in ~cs60/demo04/)

Linked data structures – a.k.a. self-referential
typedef struct node {

DataType data;

struct node *next; /* a pointer to next node */
} ListNode;

– Also see binary search tree program, K&R pp. 140-2

3

Unions
Can hold different data types/sizes (at different times)
e.g., define union to hold an int or a double:
union myValue{

int x;
double d;

} u, *up; /* u is a union, up can point to one */
Access x or d by u. or up-> just like structures
sizeof u is size of largest field in union
– Equals sizeof(double) in this case

Often store inside a structure, with a key to identify type
– Otherwise might be no way to know which field to access

More library functions
Become familiar with K&R appendix B!
<string.h> – to deal with char * data
<ctype.h> – to handle individual chars
<math.h> – trig functions, logs, many more
– Note: usually must link to libm.a – use -lm
<stdlib.h> – various utilities
– Inc. atoi, qsort, rand, malloc, exit, system, …
<assert.h> – one cool macro: assert(int)
<time.h>, <limits.h>, … – check them out!

