
System calls from C programsSystem calls from C programs

Essentially operating system functions
– So not portable across systems
– But usually more efficient than C functions

Input-output uses a file descriptor integer
– 0 - stdin, 1 - stdout, 2 - stderr: always open
– Basic I/O: read(int fd, char *buf, int n) and
write(int fd, char *buf, int n) – both return int

– For files – use open, creat, close, unlink
– Also lseek(int fd, long offset, int origin)

More system callsMore system calls

See ~cs60/demo05/basiccopy.c and basiccat.c
Can also inquire about a file with stat(…)
– Fills a struct with same info can get by ls -l

– See ~cs60/demo05/filemode.c for example
Note: also works on Windows, but results may differ

Note: “syscalls.h” (in K&R examples) not standard
Also note: if you want to communicate directly
with Unix, then chances are good that you should
be writing a Unix script instead of a C program!

C++C++ –– a better C, and morea better C, and more
Born in 1982 – “Classes: An Abstract Data Type
Facility for the C Language”
– A collection of C macros and library routines by

Bjarne Stroustrup, Bell Labs
Evolved during 1980s to whole new language
– But always backward compatible to C

Means any C program is also a C++ program
Also means C++ has “legacy problems”

– Effective use requires abandoning some C features
Most notably C’s I/O library, strings, and memory allocation

WellWell--styled C++ programs styled C++ programs ……
dondon’’t look like C programst look like C programs

Starts with new style of commenting – //
Includes new way to initialize variables
– int x(7), sum();
– MyClass myObject(constructor arguments);
– And a related philosophy – Nagler’s PITA

rule: “prefer initialization to assignment”
A Boolean type: bool cool = true;
main – must be declared int explicitly
– And automatically returns 0

using namespace std;using namespace std; // huh?// huh?
Namespaces – a way to manage global symbols
To create – namespace A { /* C++ code */ }
3 ways to access (hmm … like Java packages):
– Directly – each time a name is used – with scope

resolution operator – std::cout << data;

– Or with a using declaration – using std::cout;

– Or access all names in a namespace with a using
directive – using namespace std;

std – the namespace for most C++ library tools

#include <iostream>#include <iostream>

Instead of <stdio.h> (actually cstdio now)
– So no printf, scanf, putchar, FILE *, …
– Is legal to mix, but generally frowned upon
– The good news – iostream is easier to use

Except for formatting – see Nagler chapters 14-16
cout – an ostream object (so is cerr)
– << – insertion operator, overloaded for many types
cin – an istream object
– >> – extraction operator, also works for many types

See addvalues.cpp in ~cs60/demo05/

constconst

Part of an object’s type – always enforced in C++
– char const *s = “a string”; // must initialize

Cannot ever change s – same as Java final modifier

– someFunction(s); // only okay if const parameter
– void someFunction(char const *string) { … }

string may not be changed in scope of function
So okay to pass in a constant argument

In fact any string literal (“…”) is constant in C++
– So always must “const qualify” parameters to handle

Nagler: SCO rule – “support constant objects”

New ways of castingNew ways of casting
C way still works, but discouraged
– int x = (int)7.25; // okay, but not recommended
– int x = static_cast<int>(7.25); // better
static_cast – for equivalent value in different
representation
reinterpret_cast – interpret bits differently
– Very rarely useful
const_cast – to add or take away const-ness
– Do not use lightly – i.e., consider ramifications
dynamic_cast – relates to inheritance (upcoming)

Default function argumentsDefault function arguments
Can specify parameter values in the function declaration
– void func(int x = 12);

Then function user can choose to accept the default
value(s) or specify new one(s)
– func() // accept default value for x
– func(97) // specify new value for x

Mandatory arguments are ones without default values –
and these must come first
– void func(int x = 12, int y); // illegal
– void func(int y, int x = 12); // okay

Note also must specify in declaration, not definition – so
compiler is sure to know about default values

Reference variablesReference variables

Neither C nor Java has anything like this
A.k.a. references – actually aliases – not pointers
– int x, &y = x; // now y is an alias for x
– y = 12; // now x is 12

Usefulness comes in with reference parameters
– void aFunction(int &value) { value = 12; }

Note how parameter passing is like assignment

– No need to pass &x, nor to use *value in function
See params.cpp and array.cpp in …/demo05/

More reference variablesMore reference variables
Okay to const-qualify a reference:
– void display(int const &ref) { … }

– Then all of the following are legal calls:
int const var = 2; display(var);

display(7); // an actual constant
display(9 + 3); // a constant temporary result

Can also have a reference to a pointer
– void initialize(char *&ptr) { … }

And can return references from functions
– int &oneGreater(int x) { return ++x; }

– int y = ++oneGreater(6); cout << y; // prints 8

Declaring variables, tags, enumsDeclaring variables, tags, enums

Can declare anywhere in block now
– Even in for loop header: for (int i = 0; …)

Tag name is the type name – no two-word types
to declare struct, enum or class objects
– struct Foo { … }; // still need it to define type
– Foo myFoo; // not struct Foo myFoo;

The enum constants are exclusive sets
– No more treating as if just another int
– enum Answer {yes, no};

– Answer a = 0; // illegal – must be yes or no

