
Dynamic memory with C++Dynamic memory with C++

No need to use malloc or free anymore
– Use new and delete – to manage the “free store”

No need to specify the size either
– Just int *ip = new int; // compiler knows sizeof(int)

*ip = 7; // must dereference pointer to use
… delete ip; // “If you allocate it, you release it”

– Or int &ir = *new int; // “Name that space!”
ir = 4; // no need for pointer notation – ir is a reference
… delete &ir; // but releasing still requires a pointer

Arrays on the free storeArrays on the free store
int *ptr = new int[5]; // array of 5 ints
– Size of array can be an expression
– No way to initialize array elements!

Must iterate, and assign to each one individually

delete [] ptr; // use [] to delete array
Array of C strings requires array of char *
– So array pointer is char **
– Allocate space for each char array – release in reverse order
– Multidimensional arrays are similarly handled

See …/demo06/newarray.cpp, cstrings.cpp and study
text section titled “Do You Understand?” on pp. 69-70

C++ structures: C++ structures: structstruct, , classclass

Either one can have data and functions
struct Square { // or class Square

int side;

double area() const // supports constant objects
{ return side * side; }

};

Only 2 differences – both in default accessibility
– e.g., both side and area() are public above – both

would be private if class instead of struct
– Other small difference is in default inheritance access

Declaring and defining classesDeclaring and defining classes
class Foo; // just a declaration
– Sometimes all you need – usually in header files
– e.g., need ostream & – #include <iosfwd>

class Foo { … }; // a definition
– Note: some or all implementation likely elsewhere

Usual definition style is most to least accessible
public: // the public interface is listed first

int getValue();
protected: // for subclasses (like Java) – omit if not used
private: // most data should be here – listed last

int value;

Implementing classesImplementing classes
Usually in a separate file – foo.cpp, not foo.h
– So #include “foo.h”

Identify class with scope resolution operator
int Foo::getValue() { return value; }

Implementation can include other stuff too
– Use helper functions, data, constants, even classes
– No worries about name conflicts in other files

Usually one implementation file per public class

Using class instances Using class instances –– objectsobjects
Declare to create on stack or global space
– Foo foo1, foo2; // created two Foos

Or use new to create on free store
– Foo *fooPtr = new Foo; // one more Foo

Contact object directly with . operator
– foo1.getValue();

Or through a pointer with -> operator
– fooPtr->getValue();

See point-circle example in …/demo06/

Second ExamSecond Exam
Friday, November 6Friday, November 6

