
inlineinline, and , and enumenums in classess in classes
inline – an alternative to macros
– Explicit – use inline keyword

Necessary if outside class definition
– Implicit – any complete function in class definition
– Both types should be placed in header files

But note: just a request – compiler may ignore
Encapsulated enums should be public
– Just a type – no risk to implementation
– Means no need for multiple get and set functions –

just need two: setFoo(type t) and type getFoo()

– See clock example in …/demo06/

Constructors Constructors -- ctorsctors
A ctor is invoked every time an instance is
created (whenever a class is instantiated)
– Includes objects on the stack and the free store

Also includes temporary objects (like result of expression),
and copies passed to/from functions

– But not invoked by creation of pointer or reference
Compiler supplies default ctor if no ctor written
– Compiler-supplied version can take no arguments
– Also default ctor if default values for all parameters –
Square(int = 1);

Can invoke with 0-1 arguments – Square a, b(5);

Destructors Destructors -- dtorsdtors
A dtor is invoked whenever an object goes out of
scope, or by delete for objects on free store
– Compiler supplies one if you don’t

But it doesn’t do any work – so write one if need to release
free store space or other resources

Defined like a ctor, but with a ~ in front, and it
may not take any arguments
~Foo(); // syntax in header file
Foo::~Foo() { … } // syntax in implementation file

Can be invoked directly (unlike ctors)
myFooPtr->~Foo(); // must do if use new placement syntax

Manager functionsManager functions
4 important functions every class should have –
“the orthodox canonical class form”
– A default ctor, a copy ctor (below), a dtor, and an

assignment operator (next week)
Compiler supplies all 4 – but usually should write own

Copy ctor – Foo(Foo const &other);
– Compiler-supplied version makes a “shallow copy”
– Invoked when initializing with object as argument:
Foo foo(aFoo); // or C-style: Foo foo = aFoo;

Also when passing an object to/from a function by value
– See String example in …/demo07

Wednesday, November 11Wednesday, November 11

Implicit type conversionImplicit type conversion
Converting ctors – for conversion of primitive
types to user-defined types
– Any ctor that takes exactly one argument
– Invoked whenever an argument of that type is passed

to a function that expects an object
See Assignment 4, part 4: testcomplex.cpp

Operator conversion functions – for conversion
of user-defined to primitive (usually)
– e.g., operator int() const; // in class Foo

Means a Foo instance should be implicitly converted to
int in certain circumstances, like cout << myFoo;

– But can be risky – better to overload << instead

Base member initializationBase member initialization
Only applies to ctors – to initialize data

Foo::Foo(int v) : value(v) { }
No function body in this case, but still need { }

– Separate the items in the list (after :) by commas
– Note: initialization order same as declaration order,

not order in list (usually match though)
Must use for constants and reference variables
Should use for user-defined types if default ctor
not appropriate (otherwise extra ctor and dtor calls)
Always a better style than assignment – “PITA”

Dealing with arrays of objectsDealing with arrays of objects
Oops – can’t initialize array elements in a class
– Only choice: default initialize; then assign in body

Fortunately, can initialize if outside a class
Foo a[] = { Foo(5), Foo(), Foo(-2) }

Default constructor is only called for a[1]

Initialization restriction also applies to free store
– Decent “trick” is to use an array of pointers instead

Foo **ap = new Foo *[3]; // no ctors called yet
ap[0] = new Foo(5); // construct each element

Remember: delete each element when done; then delete array

thisthis

A pointer to the invoking instance
– i.e., it has the same meaning as Java’s this

But used differently: this->x, instead of this.x
– It is passed as a hidden first parameter to non-static

member functions
So *this is the instance itself
– Use *this for making copies

Foo myClone(*this);

– Also return *this to return a self-reference or copy
Returning a self-reference allows for “function chaining”
See String::refresh() example in …/demo07

