
1

static members
static data members – “class variables”
– Just one copy (in global space) shared by all instances

Declare inside class; initialize in global space (w/out static)

– Use for instance counters, common constants, shared
data, ... – see String::count() example in …/demo07/

static methods – also instance independent
– In fact, don’t need any instances to invoke them

int result = Foo::aStaticFunction();

– Caution: no this pointer, because no instance involved
So there is no way to access non-static data or methods

friends
A class can grant friendship to a function

class Foo
{ friend void showValue(Foo const &me); … }

– Now okay for global function to access private data
void showValue(Foo const &obj)
{ cout << obj.value; }

– See String::join() in …/demo07
A class can grant friendship to a class too

friend class FooFriend;

– Now all of FooFriend’s functions can access value

Exceptions
No Exception class like Java
Instead throw any valid C++ expression
– Then exception propagates to calling function

Process continues until the expression is caught
Program terminates if exception is never handled

– Any objects on the stack are popped first
Use try/catch block to handle (like Java)

try { /* call function that might throw an exception */ }
catch (TypeX e) { /* handler if TypeX is thrown */ }
catch (…) { /* default handler – catches any type */ }

See quotient.cpp example in …/demo08/

new may throw exception

If insufficient memory, new throws type
std::bad_alloc (defined in <new>)
try { int *ptr = new int(7); … delete ptr; }
catch(std::bad_alloc const &)
{ cerr << “out of memory\n”; }

Can prevent by nothrow expression
– Then new returns 0 pointer instead (like malloc does)
int *ptr = new (std::nothrow) int(7);

if (ptr) { /* process */ }
else cerr << “out of memory\n”;

Note: dtors are not allowed to throw exceptions

Exception specifications

A little bit like Java’s throws clauses
Limits what a function may throw
void func() throw(double, TypeX) {…}

// may only throw a double or a TypeX
void func2() throw() // may not throw anything
void func2() // may throw anything

Beware: compiler might not catch violations
– Might not be able to detect indirect violations
– Might choose to ignore, or just issue warning

Function overloading
Same basic idea as Java – but more versatile
– A function’s signature is name(argument list)
– Overloading means reusing a name in the same scope

Requires a different argument list – number/order/type
The return type does not matter
const-qualified arguments or member functions do matter

– Compiler “mangles” the names for the linker (see p. 250)

Can overload class member, or global functions
– But not overloading to have one of each type – use ::

C++ bonus: can overload operators (+, -, …) too!

2

Operator function overloading
Can overload almost any C++ operator
– At least one argument must be user-defined type
– Precedence, “narity”, and associativity rules apply as

always for each operator
e.g., + has usual precedence, is binary or unary, l-r
e.g., = has lower precedence, is binary only, r-l

– “Just because you can does not mean you should”
e.g., don’t overload , or && or || – see charts, pp. 255-7, 284

Defining – ADT operator+(ADT &, ADT &);
– Overloads + to return an ADT object (hopefully the sum of

the two ADT arguments – best to not change operator’s meaning)

3 free member operators
Assume any class – even class C {};
It has an assignment operator

C &operator=(C const &);

– Makes a shallow copy, like free copy ctor
And it has 2 different address-of operators
– One for mutable objects:

C *operator&();

– And one for constant objects:
C const *operator&() const;

If you’re skeptical, see …/demo08/freeops.cpp

Member vs. non-member ops
Some functions are better as class members
– Like any one that needs a this pointer: ++, +=, …
– And there are four operators that can only be

overloaded as class members: =, (), [], and ->
– Usually a better choice – avoids need to be friend

And it always has a required user-defined argument

Sometimes non-member functions better though
– e.g., binary functions, where arg order doesn’t matter:

==, <, …, and binary forms of +, -, *, /, %
– Also when other types must access – like << and >>

that must be accessed by cout and cin

Non-member operator functions
e.g., operator+ – (binary version)
– Usually a friend – to access data with less overhead
friend ADT const operator+

(ADT const &, ADT const &);

– Can invoke by using either functional or infix notation
ADT a, b; …
ADT c = operator+(a, b); // functional notation
ADT d = a + b; // infix notation
– Note: either a or b must be an ADT instance for both notations

Another example: operator<<
friend ostream &operator<< // returns ostream &

(ostream &, ADT const &);

– Note: ostream& is left argument; ADT& is right (must be explicit)

See
String::
+ and << in
…/demo08

Member operator functions
First argument is this – but it’s hidden
– Is the left argument of binary operations

So there can be no implicit conversion of left argument
– Is the only argument of unary operations

e.g., operator+= – a compound assignment op
ADT &ADT::operator+= (ADT const &right)

– {return *this = *this + right;} // assumes = and + exist
Sometimes need 2 versions – operator[] – subscript op
– e.g., String might allow access to chars
char &String::operator[](int index) {…} // mutable for lvalue
char String::operator[](int index) const {…} // not mutable
– Ops ++ and -- even more interesting – see …/demo08/String

Inheritance in C++
Usual C++ terms: Base and Derived classes
Usual definition – class D : public B {…}
– Makes D a public derivation of class B
– See …/demo08/employees/ example

Rarely: class E : private B {…} // or just: class E : B
– E inherits B members, but not B’s interface

Can make specific member, m, available by using B::m;
– Also protected derivations/members – subclass access only

Note: if struct instead of class – default is public

“Is-a” rule only applies for public derivations

