
1

Moving templates in front of
remaining slides on inheritance

For the sake of assignment 5 –
covering chapter 12 before

finishing chapter 11

C++ templates
Like “blueprints” for the compiler to use in
creating class and function definitions
– Repeat – the compiler writes the code for you

Involve one or more parameterized types
– e.g., function template to compare object sizes
template <typename T1, typename T2>
int sizeComp(T1 const &o1, T2 const &o2)

{ return (sizeof o1 – sizeof o2); }

– e.g., class template for a list that holds any type
template <typename DataType> class List{…};

Function templates
Alternative to function overloading
– But code for concrete types created only as needed

And the programmer does not have to write it!
– Compiler deduces parameter types if not specified

int x = sizeComp(‘a’, 7); // now the compiler will use
the template to create sizeComp(char, int)

x = sizeComp<int, int>(‘a’, 7.5); // specify(int,int)

– And no casts or run-time conversions required
Better choice than macros
– Strictly type-checked, and no nasty side effects

See greater example in …/demo09/function_template

More function templates
Template definition must be in header file
– Compiler must know how to define function

So template cannot be in separate .cpp file

Can specialize for particular types
– Tells the compiler to use specialized version instead

of creating a new definition
In this case, okay to declare in .h and implement in .cpp

– e.g., template <> int const &greater<int>(…);
No template parameters – exact types everywhere else

– No type conversions are made – must be exact match
So it is usually better to just overload instead of specialize

Class templates
Alternative to inheritance – and more flexible
– No cosmic superclass in C++ (like java.lang.Object)

Objects are always a particular type
– e.g., List<int> is unrelated to List<char>

i.e., not a hierarchy like inheritance provides
– User must specify the type – not deduced by compiler

Unless default type in definition: <typename T = int>

Can grant friendship to functions or classes
Can be specialized, fully or partially
Can be derived classes, and can be base classes

Implementing class templates
All but specializations must be in header file
– Compiler can’t write the class without the blueprint

Note: the separate compilation model using the export
keyword (Nagler pp. 392-6) does not work with g++ yet

– Simplest way is implicit inline inside class definition
If implement outside class (but still in header file) –
must parameterize class name wherever it is used
– See Complex example in …/demo09/class_template

Specialized functions may be in a .cpp file
– But declare in header to let compiler know not to create

2

Inheriting functions
Function hiding – if function defined in derived class
with same name as function(s) in base class
– Hides all non-virtual base class functions with same name
– But can do using Base::name to unhide

Manager functions are never inherited
– But still often must access – e.g., always need base’s ctor

Can use Base(arg list) in derived class’s initializer list
In operator= and others – use scope resolution
Base::operator=(…)

Upcasts – base pointer/reference for derived instance OK
– Never upcast with arrays – different sizes ruin pointer arithmetic
– Called “object slicing” if derived instance copied to base instance

Back to inheritance topics

virtual functions
Polymorphism is not automatic in C++
– Function must be declared virtual in base class

Otherwise derived class will hide it, not override it
Virtual functions stay virtual for all descendants

– See …/demo08/loans/ example
Note: dtors must be virtual to allow derivation
Abstract base classes – any class with a “pure
virtual” function – cannot be instantiated per se
– e.g., virtual void func() = 0; // pure virtual

Derived classes must implement or they are abstract too
– All instances are actually derived class instances

