Moving templates in front of
remaining slides on inheritance

For the sake of assignment 5 —
covering chapter 12 before
Inishing chapter 11




C++ templates

o Like “blueprints” for the compiler to use In
creating class and function definitions

— Repeat — the compiler writes the code for you

e Involve one or more parameterized types

— e.g., function template to compare object sizes
template <typename T1l, typename T2>
INt si1zeComp(T1l const &ol, T2 const &02)

{ return (sizeof ol — sizeof 02); }

— e.g., class template for a list that holds any type
template <typename DataType> class List{.};




Function templates

e Alternative to function overloading

— But code for concrete types created only as needed
e And the programmer does not have to write it!

— Compiler deduces parameter types if not specified

int x = sizeComp(“a’, 7); // now the compiler will use
the template to create sizeComp(char, int)

X = sizeComp<int, int>(®a’, 7.5); //specify(int,int)
— And no casts or run-time conversions required

e Better choice than macros
— Strictly type-checked, and no nasty side effects

e See greater example In ../demo09/function_template




More function templates

e Template definition must be in header file

— Compiler must know how to define function
e So template cannot be in separate .cpp file

e Can specialize for particular types

— Tells the compiler to use specialized version instead
of creating a new definition
e In this case, okay to declare in _h and implement in .cpp
— €.g., template <> Int const &greater<int>(.);
o No template parameters — exact types everywhere else
— No type conversions are made — must be exact match
e So it is usually better to just overload instead of specialize




Class templates

e Alternative to inheritance — and more flexible
— No cosmic superclass in C++ (like java.lang.Object)

e Objects are always a particular type

— e.g., List<int> Is unrelated to List<char>
e 1.e., not a hierarchy like inheritance provides

— User must specify the type — not deduced by compiler
e Unless default type in definition: <typename T = int>

e Can grant friendship to functions or classes
e Can be specialized, fully or partially
e Can be derived classes, and can be base classes




Implementing class templates

e All but specializations must be in header file

— Compiler can’t write the class without the blueprint

o Note: the separate compilation model using the export
keyword (Nagler pp. 392-6) does not work with g++ yet

— Simplest way is implicit inline inside class definition
e If implement outside class (but still in header file) —

must parameterize class name wherever it Is used

— See Complex example in ../demo09/class_template
e Specialized functions may be ina .cpp file

— But declare in header to let compiler know not to create




Back to inheritance topics

Inheriting functions

e Function hiding — If function defined in derived class
with same name as function(s) in base class

— Hides all non-virtual base class functions with same name

— Butcan do using Base: :name to unhide
e Manager functions are never inherited

— But still often must access — e.g., always need base’s ctor
e Can use Base(arg list) in derived class’s initializer list

e In operator= and others — use scope resolution
Base: :operator=(..)

e Upcasts — base pointer/reference for derived instance OK

— Never upcast with arrays — different sizes ruin pointer arithmetic
— Called “object slicing™ if derived instance copied to base instance




virtual functions

e Polymorphism is not automatic in C++

— Function must be declared virtual In base class

e Otherwise derived class will hide it, not override it
e Virtual functions stay virtual for all descendants

— See ../demo08/loans/ example
e Note: dtors must be virtual to allow derivation

e Abstract base classes — any class with a “pure
virtual” function — cannot be Instantiated per se

— €.g., virtual void func() = O; //pure virtual
e Derived classes must implement or they are abstract too

— All instances are actually derived class instances




