
1

Multiple inheritance

Can derive a class from more than one base class
e.g., class Appliance;
class Radio : virtual public Appliance;

class AlarmClock : virtual public Appliance;

class ClockRadio : public Radio, public AlarmClock;

– A ClockRadio is both a Radio and an AlarmClock –
so it is also an Appliance

– Note virtual – just 1 Appliance subobject, not 2
– See ClockRadio example: …/demo08/multi-inherit

But note: hierarchy is messed up – best to avoid

Aside: how to safely read data
Execute …/hw4/array – enter “junk” (after 1st iteration)

– Use ctrl-C to stop the infinite loop, because that 
program is not “crash-proofed” at all

See a better way in …/demo10/goodflush/
– If bad data, clear error bits in cin – cin.clear()

– Then must remove the bad data from the input stream
e.g., read it into a C string like the example programs

Note: Nagler technique (p. 443-4) doesn’t work
– Becoming a theme? Try it in …/demo10/badflush

Other C++ input/output notes
std::ios_base – atop the iostream hierarchy
– Many public constants and functions
– e.g., cout.width(5); cout.setf(ios_base::right); …
#include <sstream> – for string streams
– ostringstream oss; // now use oss just like cout

Get the string when done – e.g., cout << oss.str();

Can do character I/O just as easily as in C
– Use cin.get() and cout.put(char)

Line input is easy too – good for crash-proofing
– Use cin.getline(C-string, size [, delim_char])

More C++ I/O notes
Manipulators – functions with special signatures 
that are invoked by << and >>
– Lots of built-in manipulators
cout << right << setw(5) << ‘a’ << endl;

– Easy to write your own too – chapter 16 shows how
File I/O – use ifstream and ofstream objects
– Once opened, treat like cin and cout, respectively
– Simplest way is to open on construction

ofstream out(“myfile”); out << “my data\n”;

– Easy to learn other file techniques from chapter 17 

std::string

Object-oriented way to deal with character strings
Actually defined type for basic_string<char>
– Other: typedef basic_string<wchar_t> wstring;

Must #include <string> to use these types
Most of the features of Nagler’s class String
– And more: overloaded ops =, +, +=, [], all relational 

ops, plus insert(), substr(), getline(), …
– No conversion op – use c_str() function to get char*

See stringDemo() function in 
~cs60/demo10/librarytools.cpp

Standard template library (STL)
A framework of generic containers and algorithms
– STL containers are class templates – for storing and 

accessing parameterized data types
– STL algorithms are function templates – mostly 

involving contents of STL containers
Iterators are the framework’s linchpins
– Essentially pointers to container elements

In fact, pointers into arrays can usually qualify
– Each container type has a set of possible iterators
– The algorithms access container elements using these 

iterators – so their use is standardized across containers



2

STL sequence containers
vector<typename> – basically a smart array
– Can even access random elements with []
– Unlike arrays, vectors grow dynamically as required, and have 

methods like size(), empty(), clear(), insert(), …
– See vectorDemo function in librarytools.cpp
list<typename> – a double-linked list
– Quick insertion and removal of elements
– No random access – but has bi-directional iterators providing 

access relative to existing elements
deque<typename> – a vector/list combination

Adaptive sequence containers

Underlying data structure is other sequence
– But access is restricted in some defined way
stack<typename> – LIFO access
– Basic operations are push(), pop(), and top()
queue<typename> – FIFO access
– Operations are push(), pop(), and front()
priority_queue<typename>

– push(), pop(), and top() (like stack, not queue)
But pop() and top() access highest priority element

Associative containers
Designed for accessing data by search keys
– Main feature – quick insert()and find() operations
– Also feature a natural ordering of the data elements

Sets – the data are the keys
– set<typename, functor> – no duplicates

The functor is used to order the elements

– For duplicates: multiset<typename, functor>
Maps – elements are key/data pairs
– map<keyT, dataT, functor>, or allow duplicates 

with multimap< keyT, dataT, functor>

STL algorithms
Function templates – mostly work with iterators
– Idea – alternative to algorithms built into containers

Facilitates consistent handling of the various containers

Usual: alg(iterBegin, iterEnd, other args)
– e.g., fill(vector.begin(), vector.end(), 0);
– e.g., random_shuffle(v.begin(), v.end());
– More examples in …/demo10/librarytools.cpp

One last thing – complete STL documentation is 
available online at http://www.sgi.com/tech/stl/

Unix shells
Unix systems come with a variety of shells
– Most common: Bourne (sh), C (csh) and Korn (ksh)
– Newer: Bash (bash) and TC (tcsh)

Primary purpose – interpret user commands
– So a.k.a. command interpreters
– Essentially interfaces to Unix kernel

The kernel is the actual operating system program
Also programming languages in their own rights
– Shell programs – series of shell commands, but also 

variables, conditional branching, loops, functions, …
– A.k.a. scripts – are interpreted languages

Bourne shell programs
Are text files with sh commands – e.g., myScript
– To execute, can do sh myScript

The program runs in a new shell – called a child shell
– Or chmod u+x myScript – then just myScript

But might not work if sh is not default shell
# – usually identifies a comment
– Special case if line 1 – #!/bin/sh – identifies shell

Means use sh as child shell for this script – works in all shells
Can access command line arguments: $1 to $#
– e.g., cp $1 $2 # copies first to second (if files)
– e.g., echo $# # prints number of arguments



3

sh variables and assignment

name=“Jack Sprat” # note no spaces
echo “The name is $name” # need ‘$’
workdir=`pwd` # use `…` to assign result of …
– Similarly, echo “date and time is `date`”

Can read from standard input and calculate too
– echo “enter value”
– read val

– doubleval=`expr $val + $val`
Or just: echo “doubled: `expr $val + $val`”

sh control structures

An if-then-elif-else-fi statement
– Expression is a test: test $# -gt 0

– Or simpler: [ $# -gt 0 ] # spaces mandatory
– Can test files too: -d, -f, -e, -r, -w, -x, …

A while statement – same expressions
A for statement – for variable in list

– List is command line arguments if not specified
See ~cs60/demo10 for examples                       
(sh examples have “demo” in filenames)

C shell programs
csh – can look a bit more like C programs
– e.g., use $argv[1] instead of $1
– if-then-else-endif – i.e., no fi or elif

Expressions more natural too: (), ==, >, ||, &&, …
– while and switch structures also more like C

Some things weirder than Bourne shell though
– Need set for assignment, or @ if numeric
– Reading input is awkward: set x = `head –1`

But can use arrays, and system calls easier
– See *.csh examples in …/demo10

Learn about shell syntax with man – csh, sh, …

Perl – a command language
Not a shell – but interprets and compiles scripts
– Compiles at start of execution – to run loops much faster 

Written by a linguist, not a CS person – Larry Wall
– Practical Extraction Report Language – more versatile than shell 

scripts, but less complicated than C programs
print “hello world.\n”; # note C-like syntax
$name = “John Smith”; # need ‘$’ even for first use
Has arrays, and associative arrays (lookup tables)
Also string operators; C-like if, while, for; file I/O; 
functions; and access to library functions
See …/demo10/loan.pl (many more at www.perl.com)


