
Constructing Finite State Machines for Fast Gesture Recognition

Pengyu Hong*, Matthew Turk+, Thomas S. Huang*

*Beckman Institute
University of Illinois at Urbana
Champaign, 405 N. Mathews

Urbana IL61801, USA
{hong, huang}@ifp.uiuc.edu

+Microsoft Research
Microsoft Cooperation

One Microsoft Way
Redmond, WA 98052-6399, USA

mturk@microsoft.com

Abstract

This paper proposes an approach to 2D gesture
recognition that models each gesture as a Finite State
Machine (FSM) in spatial-temporal space. The model
construction works in a semi-automatic way. The
structure of the model is first manually decided based on
the observation of the spatial topology of the data. The
model is refined iteratively between two stages: data
segmentation and model training. Given the continuous
training data of a single gesture, we roughly segment the
gesture trajectory into phrases using the spatial
information alone. The segmentation results are used to
initialize an FSM. The model is used to re-segment the
data. The results of the re-segmentation are used to refine
the parameters of the model. After the FSM is trained, we
incorporate a modified Knuth-Morris-Pratt algorithm into
the FSM recognition procedure to speed up the gesture
recognition. The computational efficiency of the FSM
recognizers allows real-time on-line performance to be
achieved.

1. Introduction

Non-obtrusive human computer interfaces demand
real-time automatic gesture recognition systems using
computer vision techniques. Early research on moving
light display experiments suggested that many human
gestures could be recognized solely by motion
information. Motion profiles and trajectories have been
investigated to recognize human gestures. Recently,
HMMs have been used extensively in visual gesture
recognition [1,2]. HMMs are trained on data that is
temporally well aligned. Given a new gesture trajectory,
HMMs use dynamic programming to recognize the
observation sequence.

Recently, some state-based approaches have been
proposed for gesture modeling and recognition. The
advantage of a state approach is that it doesn’t need a
large set of data in order to train the model. Bobick and
Wilson [3] proposed an approach that models a gesture as
a sequence of states in a configuration space. The training
gesture data is first manually segmented and temporally

aligned. A prototype curve is used to represent the data,
and is parameterized according to a manually chosen arc
length. Each segment of the prototype is used to define a
fuzzy state representing traversal through that phase of the
gesture. Recognition is done by using dynamic
programming technique to compute the average combined
membership for a gesture.

Davis and Shah [4] used finite state machine to model
four qualitatively distinct phases of a generic hand
gesture: (1) static start position, (2) smooth motion of the
hand and fingers during the gesture, (3) static end
position, and (4) smooth motion of the hand back to the
start position. They represented gestures as a list of
vectors that are then matched to the stored gesture vector
models using table lookup based on vector displacements.

McKenna and Gong [5] modeled gestures as sequences
of visual events, each represented by a probabilistic model
of pre-segmented feature trajectories. Gesture recognition
is performed using a probabilistic finite state machine.
State transitions depend on both the observed model
likelihood and the estimated state duration p.d.f.

Learning and recognizing even 2D gestures is difficult
since the data sampled from the trajectory of any given
gesture varies from instance to instance. There are many
reasons for this, such as sampling frequency, tracking
errors or noise, and, most notably, human variation in
performing the gesture, both temporally and spatially. The
above gesture modeling techniques require labor-intensive
data segmentation and alignment work. We desire a
technique to help segment and align the data, without
involving exhaustive human labor. The representation
used by this method can be immediately used to build
recognition models.

Toward this goal, we modeled gestures as sequences of
states in spatial-temporal space [6]. Each state is modeled
as a multivariate Gaussian. The gesture recognition model
is represented by an FSM. A threshold is pre-defined to
allow a certain degree of spatial variance in each state.
The number of the states is then calculated by dynamic k-
means clustering on the training data of the gesture
without temporal information. The spatial and the
temporal information of the gesture are learned together
iteratively. The recognition is performed online at frame

rate. In this paper, we improve the above method by
proposing a semi-automatic model construction method
and a modified Knuth-Morris-Pratt algorithm for fast
gesture recognition.

The rest of the paper is organized as follows. Section 2
presents the model representation and the iterative
procedure for model construction and training. Section 3
shows how to utilize the Knuth-Morris-Pratt algorithm to
speed up the recognition procedure. Experimental results
are shown in Section 4, and we conclude in Section 5.

2. Modeling Gestures with FSMs

2.1. Gesture modeling

The centroids of the 2D positions of the head and
hands are acquired from the live input video images by
color tracking, normalized, and used as features (as
described in [6]). A gesture is defined as an ordered
sequence of states in spatial-temporal space and modeled
by an FSM (Figure 1). The structure of an FSM is like that
of an HMM. Each state can jump to either itself or its next
state.

Each state si has parameters >Σ< maxmin ,,,, iiiii TTdµr

to specify the spatial-temporal information captured by it,

where iµr is the 2D spatial centroid of a state, Σi is the 2x2
spatial covariance matrix, di is a spatial threshold, the

temporal parameter],[maxmin
ii TT is a duration interval. The

spatial-temporal information of a state and its neighbor
states specifies the motion and the speed of the trajectory
within a certain range of variance. In the training phase,
the function of the states is to help to segment the data and
temporally align the training data automatically.

2.2. Model Initialization

In the rest of the paper, we assume that the training
data sequence contains only a single gesture recurring
continuously. Some random data samples are allowed
between two consecutive corpora if the start position and
the end position of a gesture are not the same. A semi-
automatic approach is proposed to learn the spatial-
temporal information iteratively. First, we learn the spatial
distribution of data without temporal information. A
variance of dynamic local K-means [7] is used to learn the
spatial parameters of the states (classes) without temporal
information. Mahalanobis distance between a sample and
the spatial center of a state is used as similarity
measurement. The spatial variance of the state is

calculated as the distance variance. A constraint is
superimposed: the spatial variance of each state should be
less than σ0. The parameter σ0 depends on the
applications. The dynamic k-means algorithm begins with
1 class and stops when the variances of all the classes are
smaller than σ0.

For example, Figure 2 (a) shows the trajectory of the
training data of the “wave left hand” gesture. The
dynamic local k-means produces 3 states to cover the
spatial data. The centroids of the states are represented by
the white circles in Figure 2(b). Each signal sample is
assigned a label corresponding to the state to which it
belongs. Hence, we get a label sequence corresponding to
the signal sequence. The label sequence is shown in
Figure 2(c, d). The adjacent signals are grouped together
if they have the same label. Each group defines a state.
This produces a state sequence for the training data. The
structure of this gesture’s FSM is manually defined.

Assume a gesture model consist of the state sequence:
(s1, s2, …, sn). Two cases are considered for initializing
and refining the parameters of the states: (1) The label of
s1 is different from that of sn; (2) The label of s1 is same as
that of sn. For case 1, we consider the state sequence of
the FSM to be a string S1 and the state sequence of the
training data as another string S2. We search all the sub-
strings of S2 that match with S1. The data segments
corresponding to those sub-strings are the corpora of the
gesture that are roughly temporally aligned. In this way,
the training data are segmented. The parameters

>Σ< ii ,µr of a state si in the FSM can be initialized by

][xEs

rr
=µ and =Σ s]))([(TxxE µµ rrrr

−− , where x
r

is the

(a) (b)

(c)

(d)
Figure 2. The training data of “wave left hand”. (a)
Shown in temporal-spatial space; (b) Shown in spatial
space (vertical axis is time axis); (c) The state sequence
plotted by x position along the time; (d) The state
sequence plotted by y position along the time.

SK 1 2 EK

Figure 1. The FSM of a gesture with 4 states < SK, 1, 2, EK >

data sample belonging to state si and di is set as 3σ0. The
temporal parameters of the states are left open to be
decided later (see Section 2.3).

For case 2, only the state sequence s2, …, sn-1 is used
for string matching. The central part of the gesture
corpora is found and used to initialize the spatial
parameter of s2, …, sn-1. We first build a temporary FSM
that only contains the states s2, …, sn-1. Later on, states s1

and sn will be added during modeling refining. The
temporal parameters of s2, …, sn-1 and all the parameters
of s1 and sn will be left open to be decided later (see
Section 2.3).

2.3. Model refinement

A procedure similar to Segmental k-Means [8] is used
to refine the model. It performs recognition and retraining
iteratively. The recognition is equivalent to segmenting
the training data sequence into a state sequence. The
segmentation results are used to retrain the parameters of
the states.

In the recognition phrase, the training data sequence is
fed to the FSM continuously. Recognition can be done
without temporal information because we assume each
training sequence only contains examples of one gesture.
There may occasionally exist some non-gesture data
samples between two consecutive corpora. This will be
handled by the spatial checking. Given a data sample x

r
,

the Mahalanobis distances),(ksxD
v

and),(1+ksxD
v

are

calculated.),(ksxD
v

is the distance between x
r

and the

current state sk.),(1+ksxD
v

is the distance between x
r

and

the next state sk+1. A state transition happens if one of the
following conditions is met: (1) if),(1+ksxD

v ≤),(ksxD
r

and),(1+ksxD
r

≤ 1+kd ; (2)),(1+ksxD
r

≤ 1+kd and

),(ksxD
r

≥ kd . So the transition between states is equal

to classifying the data samples along the temporal axis.
A gesture is recognized when the last state of the FSM

is activated. Its corresponding data segment begins with
the first data sample accepted by the FSM and ends with
the last data sample accepted by the FSM. Every time a
sub-sequence is recognized as a complete gesture, it is
collected. The sub-sequence is also segmented into even
small units according to the state sequence during the
recognition phrase. The collected sub-sequence is then
used to update the spatial parameters of the states. The di

parameters of the states are set as 3σ0 again. Then the
recognition and retraining procedure repeats until the
change of the spatial parameter is very small.

If the labels of the begin and end states are different,
the constructed FSM covers the whole gesture. If the end
state and the beginning state have the same label, the
temporary FSM only contains states s2, …, sn-1. In other
words, the above iterative procedure only trains the center
part of the FSM (states s2, …, sn-1). The sub-sequence set,
called Ω, corresponding to s2, …, sn-1 in the training

sequence is located. The spatial parameters of states s1

and sn can be calculated by gradually growing the sub-
sequences in Ω. The growing procedure collects the data
samples belonging to state s1 and sn as below. Take s1 as
an example:
(1) Set n = 0, the sample set of s1: X(n) = {}, and Ω(n) = Ω.
(2) The data samples right before those sub-sequences in Ω(n)

form a sample set Y. Stop if Y = {}.
(3) Use X(n) ∪ Y to calculate the mean µr and covariance

matrix Σ . Set d as three times of the standard derivation of
the distances of the samples from the center of s1.

(4) If d < σ0, (a) set Ω(n+1) = Ω(n)+ Y by attaching the signals
in Y to the sub-sequences in Ω(n) according to their physical
positions. (b) set X(n+1) = X(n) ∪ Y. Go to (2).

(5) Otherwise, set the spatial parameters of s1 as µr , Σ , and d.

This algorithm is applied to all the states. While in step
(2), the data samples to be collected are those right behind
the sub-sequences.

After estimating the spatial parameters, the training
data sequence is segmented into pieces such that each of
them is an example of the gesture. Those pieces are
temporally aligned according to their state sequence. We
can calculate the number of samples belonging to each
state for each gesture corpus. The temporal parameters of

a state si can be simply set as: (1) min
iT = the smallest

number of the samples belongs to si among all the corpora

of si; and (2) max
iT = the smallest number of the samples

belongs to si among all the corpora of si.

3. Speeding up the recognition procedure

Using an FSM as the representation, gesture
recognition can be thought as string matching between a
data sequence and the state sequence of an FSM. This
inspires us to use the Knuth-Morri-Pratt (KMP) algorithm
[7], a fast string-matching algorithm, to speed up the
recognition procedure. It runs in linear time by using a
prefix function. The prefix function encapsulates the
information about how a pattern matches against shifts of
itself. This information can be used to avoid testing
useless match trials. In the rest of this paper, we assume
readers are familiar with KMP algorithm.

3.1. Compute Prefix-Function

Given a pattern string P [1…m] = (p1, p2, …, pm), the
prefix function for the pattern P is the function π: {1, 2,
…, m} → {0, 1, …, m-1} such that π(q) = max{k : k < q
and Pk ⊃ Pq}, where Pk = P[1…k], Pq = P[1…q], and Pk ⊃
Pq denotes a string Pk is a prefix of a string Pq. See [7] for
the details of how to calculate the prefix function.

The prefix function calculation is modified for the
FSM to fit into our task by changing the similarity
measurement. Assume we have two states in an FSM, si

and sk. The state si is listed in front of sk in the FSM.

Instead of using exact matching, we use inexact matching.
A state si is said to match with sk if),(

ki ssD µµ rr
<

ksd and

),(
ik ssD µµ rr

<
isd .

3.2. FSM-KMP Gesture Recognizer

Using the new prefix function, we incorporate the
KMP algorithm into the FSM gesture recognition
procedure, called FSM-KMP recognizer. During the
online gesture recognition, a global buffer B is used to
store the data sequence currently being recognized. The
first element of the global buffer is the first sample
accepted by one of the FSM gesture recognizers. The last
of the element of B is the data sample observed at the
current time point. Each state of the FSM maintains a
pointer pointing to the position of the global buffer where
it begins to accept the data. The global buffer is initialized
as empty. The pointers of the states are set to the
beginning of the buffer. When a gesture is recognized as
completed or it is decided that no gesture could exist in B,
the buffer are cleaned up and the pointers are reset.

Different from the original KMP, the FSM-KMP
algorithm tries to match an FSM with a data sequence.
The state sequence of the FSM is equal to the pattern in
the KMP algorithm. We replace the pattern shift step in
KMP with a state shift. Similar to that in KMP, the shift is
performed based on the prefix function. At the same time,
the buffer pointer of the state is updated accordingly so
that the states know where to look for the data.

The complexity of the FSM-KMP algorithm is O(KN),
where N is the length of the data sequence to be
recognized and K is the number of FSMs. This is much
lower than DTW, HMM and other state approaches.

4. Experiments

We tested the proposed approach on two kinds of data.
In the first case, the data is the 2D hand position in the
image captured by a skin color tracker. The hand gestures
include waving left hand, drawing a circle, and drawing a
figure eight. In the second case, mouse trajectories were
sampled when the user used a mouse to draw some
patterns continuously. The results are shown in Tables 1
and 2. For hand gestures, recognition rates are 90% or
better. For mouse gestures, rates are as low as 70% for
complex gestures and 90-100% for simpler gestures.

5. Conclusions

We have developed an efficient approach for gesture
modeling and recognition. The gesture is modeled as an
FSM. In contrast to much work on gesture modeling, our
method allows a semi-automatic way for constructing the
gesture models. One of the advantages of an FSM
approach is that it does not need large data sets in order to
train a good model. The algorithm first learns spatial

information by decoupling the spatial and temporal
information of the data. The result provides support for
data segmentation and alignment. The temporal
information is then learned from the aligned data
segments. The KMP algorithm is incorporated into the
FSM recognition procedure to achieve fast recognition
speed. The computation efficiency will potentially allow
this approach to be applied to a very large vocabulary.
The proposed approach has been successfully tested on a
set of hand gestures captured from live video and mouse
gestures.

Gesture Wave
left hand

Draw a
circle

Draw
‘8’

Size of training set 30 26 24
Size of testing set 10 9 10

Number of states in FSM 3 9 13
Recognition rate on

training set
100% 96.1% 100%

Recognition rate on test set 100% 100% 90%

Table 1. Results of hand gestures

Gesture Z ∇ � �

Size of training set 30 30 30 30
Size of testing set 10 10 10 10

Number of states in FSM 7 6 15 6
Recognition rate on

training set
100% 100% 86.7% 93.3%

Recognition rate on test set 90% 100% 70% 90%

Table 2. Results of mouse gestures

References

[1] J.L. Yamato, J. Ohya and K. Ishii. “Recognizing human action in
time-sequential images using hidden markov model,” In Proc.
Conf. on Computer Vision and Pattern Recognition, Champaign,
IL 1992, pp. 379-385.

[2] T.E. Starner and A. Pentland. “Visual recognition of American
Sign Language using hidden Markov models,” In Proc. Int’l
Workshop Automatic Face and Gesture Recognition, Zurich, 1995.

[3] Aaron F. Bobick and Andrew D. Wilson. “A state-based approach
to the representation and recognition of gesture,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
19, no. 12 Dec. 1997.

[4] James Davis and Mubarak Shah. “Visual gesture recognition,”
Vision, Image and Signal Processing, 141(2), 1994, pp. 101-106.

[5] Stephen J. McKenna and Shaogang Gong. “Gesture recognition for
visually mediated interaction using probabilistic event
trajectories,” Ninth British Machine Vision Conference, Sep. 1999.

[6] P. Hong, M. Turk, and T.S. Huang, “Gesture modeling and
recognition using finite state machines,” Proc. Fourth IEEE
International Conference and Gesture Recognition, March 2000,
Grenoble, France.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, The MIT Press and McGraw-Hill, 1990.

[8] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, Vol.
77, No. 2, pp. 257-286, 1989.

