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Abstract
For some time, graphical user interfaces (GUIs)

have been the dominant platform for human computer
interaction.  The GUI-based style of interaction has
made computers simpler and easier to use, especially
for office productivity applications.  However, as the
way we use computers changes and computing
becomes more pervasive and ubiquitous, GUIs will not
easily support the range of interactions necessary to
meet users’ needs.  In order to accommodate a wider
range of scenarios, tasks, users, and preferences, we
need to move toward interfaces that are natural,
intuitive, adaptive, and unobtrusive.  The aim of a new
focus in HCI, called Perceptual User Interfaces
(PUIs), is to make human-computer interaction more
like how people interact with each other and with the
world.  This paper describes the emerging PUI field
and then reports on three PUI-motivated components:
computer vision-based techniques to visually perceive
relevant information about the user.

1. Introduction
Recent research in the sociology and psychology

of how people interact with technology indicates that
interactions with computers and other communication
technologies are fundamentally social and natural [1].
That is, people bring to their interactions with
technology attitudes and behaviors similar to those
which they exhibit in their interactions with other
people. Current computer interfaces, however, are
primarily functional rather than social or natural,
developed primarily for office productivity applications
such as work processing.  Meanwhile, the world is
becoming more and more “wired” – computers are on
their way to being everywhere, mediating our everyday
activities, our access to information, and our social
interactions [2,3].  Rather than being used as tools for a
small number of tasks, computers will soon become
part of the fabric of everyday life.

Table 1 shows the progression of major paradigms
in human-computer interaction (HCI).  At first, there
was no significant abstraction between users
(programmers) and machines – people “interacted”
with computers by flipping switches or feeding a stack
of punch cards for input, and reading LEDs or getting a
hardcopy printout for output.  Later, interaction was
focused on a typewriter metaphor – command line
interfaces became commonplace as interactive systems
became available.  For the past ten or fifteen years, the
desktop metaphor has dominated the landscape –
almost all interaction with computers is done through
WIMP-based graphical interfaces (using windows,
icons, menus, and pointing devices).
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Table 1. Evolution of user interfaces

In recent years, people have been discussing post-
WIMP [4] interfaces and interaction techniques,
including such pursuits as desktop 3D graphics,
multimodal interfaces, virtual reality and augmented
reality.  These arise from a need to support natural,
flexible, efficient, and powerfully expressive
interaction techniques that are easy to learn and use [5].
In addition, as computing becomes more pervasive, we
will need to support a plethora of form factors, from
workstations to handheld devices to wearable



computers to invisible, ubiquitous systems.  The GUI
style of interaction, especially with its reliance on the
keyboard and mouse, will not scale to fit future HCI
needs.

2. Perceptual User Interfaces
The most natural human interaction techniques are

those which we use with other people and with the
world around us – that is, those that take advantage of
our natural sensing and perceiving capabilities, along
with social skills and conventions that we acquire at an
early age.  The ultimate interface is one which
leverages these natural abilities, as well as our
tendency to interact with technology in a social
manner, to model human-computer interaction after
human-human interaction.  Such perceptual user
interfaces [6,7], or PUIs, will take advantage of both
human and machine capabilities to sense, perceive, and
reason.  Some advantages of PUIs are:

• Moving beyond the current “glorified
typewriter” GUI model, based on commands
and responses, to a more natural, expressive
model of dialog.

• Reducing the dependence on proximity that is
required by keyboard and mouse systems.

• Transfer of natural social skills to the HCI
makes learning the interface easy or
unnecessary.

• Interfaces which extend to a wider range of
users and tasks

• Interfaces that are user-centered, not device-
centered.

• An emphasis on transparent and unobtrusive
sensing.

Perceptual user interfaces should take advantage of
people’s perceptual capabilities in order to present
information and context in meaningful and natural
ways.  So we need to further understand human vision,
auditory perception, conversational conventions, haptic
capabilities, etc.  Similarly, PUIs should take
advantage of advances in computer vision, speech and
sound recognition, machine learning, and natural
language understanding, to understand and
disambiguate natural human communication
mechanisms.

These are not simple tasks, but progress is being
made in all these areas in various research laboratories
worldwide.  A major emphasis in the growing PUI
community [6,7] is on integrating these various sub-
disciplines at an early stage.

For example, the QuickSet system at OGI [8] is an
architecture for multimodal integration, and is used for
integrating speech and (pen) gesture as users create and
control military simulations.  Another system for
integrating speech and (visual) gesture is described in
[9], applied to parsing video of a weather report.

Another example of tight integration between
modalities is in the budding “speechreading”
community [10,11].  These systems attempt to use both
visual and auditory information to understand human
speech – which is also what people do, especially in
noisy environments.

The main reason that GUIs became so popular is
that they were introduced as application-independent
platforms.  Because of this, developers could build
applications on top of a consistent event-based
architecture, using a common toolkit of widgets with a
consistent look and feel.  This model provided users
with a relatively consistent mental model of interaction
with applications.  Can PUIs provide a similar platform
for development?  Are there perceptual and social
equivalents to atomic GUI events such as mouse clicks
and keyboard events?  (For example, an event that a
person entered the scene, a user is looking at the
monitor or nodding his head.)  These and other
questions need to be address more thoroughly by the
nascent PUI community before this new paradigm can
have a chance to take over from the GUI stronghold.

An objection to computer interfaces that are
modeled after human-human interaction, and to
anthropomorphic interfaces in general, is articulated by
Shneiderman [12].  He emphasizes the importance of
direct, comprehensible and predictable interfaces,
giving users the feeling of accomplishment and
responsibility.  Without going into the complete
argument here, we suggest that there are many
situations where sophistication and power are preferred
over complete predictability.  Tools and tasks that are
expected to be predictable should be so – but as we
move away from office productivity applications to
more pervasive use of computers, it may well be that
complete predictability is too limiting.

3. Vision Based Interfaces
Present-day computers are essentially deaf, dumb,

and blind.  Several people have (playfully) pointed out
that the bathrooms in most airports are smarter than
any computer one can buy, since they “know” when a
person is using the sink or toilet.  Computers, on the
other hand, tend to ask us questions when we’re not
there (and wait 16 hours for an answer) and decide to
do irrelevant (but CPU-intensive) work when we’re
working on a document.



Vision is clearly an important element of human-
human communication.  Although we can
communicate without it, people still tend to spend
endless hours travelling in order to meet face to face.
Why?  Because there is a richness of communication
that cannot be matched using only voice or text.  Body
language such as facial expressions, silent nods and
other gestures add relevant and important information
in human-to-human dialog.  We expect it can do the
same in human-computer interaction.

Vision based interfaces (VBI) is a subfield of
perceptual user interfaces which concentrates on
developing visual awareness of people.  VBI seeks to
answer questions such as:

• Is anyone there?

• Where are they?

• Who are they?

• What are the subject’s movements?

• What are his facial expressions?

• Are his lips moving?

• What gestures is he making??

These questions can be answered by implementing
computer vision algorithms to locate and identify
individuals, track human body motions, model the head
and face, track facial features, interpret human motion
and actions.  (For a taxonomy and discussion of
movement, action, and activity, see [13]).

In general, VBI can be categorized into two
aspects: control and awareness.  Control is explicit
communication to the system – e.g., put that object
there.  Awareness, picking up information about the
subject without an explicit attempt to communicate,
gives context to an application (or to a PUI).  The
system may or may not change its behavior based on
this information.  For example, a system may decide to
stop all unnecessary background processes when it sees
me enter the room.  Current computer interfaces have
little or no concept of awareness.  While many research
efforts emphasize VBI for control, it is likely that VBI
for awareness will be more useful in the long run.

The next three sections describe VBI projects to
quickly track a user’s head and use this for both
awareness and control (Section 4), (2) recognize a set
of gestures in order to control virtual instruments
(Section 5), and track the subject’s body using an
articulated kinematic model (Section 6).

4. Fast, Simple Head Tracking
In this section we present a simple but fast

technique to track a user sitting at a workstation, locate

his head, and use this information for subsequent
gesture and pose analysis (see [14] for more details).
The technique is appropriate when there is a static
background and a single user – a common scenario.

First a representation of the background is
acquired, by capturing several frames and calculating
the color mean and covariance matrix at every pixel.
Then, as live video proceeds, incoming images are
compared with the background model and pixels that
are significantly different from the background are
labeled as “foreground”, as in Figure 1(b).  In the next
step, a flexible “drape” is lowered from the top of the
image until it smoothly rests on the foreground pixels.
The “draping” simulates a row of point masses,
connected to each neighbor by a spring – gravity pulls
the drape down, and foreground pixels collectively
push the drape up.  See Figure 1(e). A reasonable
amount of noise and holes in the segmented image is
acceptable, since the drape is insensitive to isolated
noise.  After several iterations, the drape rests on the
foreground pixels, providing a simple (but fast) outline
of the user, as in Figure 1.

   

                  (a)                              (b)

   

(c) (d)

(e)

Figure 1. (a) Live video (with head location).  (b)
Foreground segmentation.  (c) Early "draping"
iteration. (d) Final “drape”.  (e) Draping simulates
a point mass in each column, connected to its
neighbors by springs.
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Once the user outline (“drape”) settles, it is used to
locate the user’s head – Figure 1(a) shows the head
location superimposed on the live video.  All this is
done at frame rate in software on a standard, low-end
PC.  The head location can then be used for further
processing.  For example, we detect the “yes” and “no”
gestures (nodding and shaking the head) by looking for
alternating horizontal or vertical patterns of coarse
optical flow within the head box.  Another use of the
head position is to match head subimages with a stored
set, taken while looking in different directions.  This is
used to drive a game of Tic-Tac-Toe, where the head
controls the positioning of the user’s X.

Finally, the shape of the drape (Figure 1(d)) is
used to recognize among a small number of poses,
based on the outline of the user.  Although limited to
the user outline, this can be used for several purposes –
for example, to recognize that there is a user sitting in
front of the machine, or to play a simple visual game
such as Simon Says.

5. Appearance-Based Gesture Recognition
Recognizing visual gestures may be useful for

explicit control at a distance, adding context to a
dialog, and monitoring human activity.  We have
developed a real-time, view-based gesture recognition
system, in software only on a high-end PC, with the
goal of enabling an interactive environment for
children [15].  The initial prototype system reacts to the
user’s gestures by making sounds (e.g., playing virtual
bongo drums) and displaying animations (e.g., a bird
flapping its wings along with the user).

The algorithm first calculates dense optical flow
by minimizing the sum of absolute differences (SAD)
to calculate disparity.  Assuming the background is
relatively static, we can limit the optical flow
computation time by only computing the flow for
pixels that appear to move.  So we first do simple
three-frame motion detection, then calculate flow at the
locations of significant motion.

Once the flow is calculated, it is segmented by a
clustering algorithm into 2D elliptical “motion blobs.”
See Figure 2 for an example of the segmented flow and
the calculated flow blobs.  Since we are primarily
interested in the few dominant motions, these blobs
(and their associated statistics) are sufficient for
subsequent recognition.

  

 (a)                                            (b)

Figure 2. (a) Original image (b) Flow vectors and
calculated flow blobs

After calculating the flow blobs, we use a rule-
based technique to identify an action.  The action rules
use the following information about the motion blobs:
the number of blobs, the direction and magnitude of
motion within the blobs, the relative motion between
blobs, the relative size of the blobs, and the relative
positions of the blobs.  Six actions – waving, clapping,
jumping, drumming, flapping, and marching – are
currently recognized.  Once the motion is recognized,
the system estimates relevant parameters (e.g., the
tempo of hand waving) until the action ceases.  Figure
3 shows two frames from a sequence of a child playing
the “virtual cymbals.”

Informal user testing of this system is promising.
Participants found it to be fun, intuitive, and
compelling.  The immediate feedback of the musical
sounds and animated characters that respond to
recognized gestures is engaging, especially for
children.

We have begun to work on a learning technique,
involving decision trees and Hidden Markov Models,
to learn gestures rather than explicitly model them.
The results are very preliminary, but eventually it will
be vital to more easily learn new gestures and to adapt
to differences among users.

 

                           (a)                                        (b)

Figure 3. A user playing the virtual cymbals, with
flow blobs overlaid



6. Full Body Tracking
To interpret human activity, we need to track and

model the body as a 3D articulated structure.  We have
developed a system [16] which uses disparity maps
from a stereo pair of cameras to model and track
articulated 3D blobs which represent the major portions
of the upper body: torso, lower arms, upper arms, and
head.  Each blob is modeled as a 3D gaussian
distribution, shown schematically in Figure 4.  The
pixels of the disparity image are classified into their
corresponding blobs, and missing data created by self-
occlusions is properly filled in.  The model statistics
are then re-computed, and an extended kalman filter is
used in tracking to enforce the articulation constraints
of the human body parts.

Figure 4. Articulated 3D blob body model

After an initialization step in which the user
participates with the system to assign blob models to
different body parts, the statistical parameters of the
blobs are calculated and tracked.  In one set of
experiments, we used a simple two-part model
consisting of head and torso blobs.  Two images from a
tracking sequence are shown in Figure 5.

  

Figure 5. Tracking of connected head and torso
blobs

In another set of experiments, we used a four-part
articulated structure consisting of the head, torso, lower

arm and upper arm, as shown in Figure 6.  Detecting
and properly handling occlusions is the most difficult
challenge for this sort of tracking.  The figure shows
tracking in the presence of occlusion. Running on a
233 MHz Pentium II system, the unoptimized tracking
runs at 10-15 Hz.

  

Figure 6. Tracking of head, torso, upper arm, and
lower arm

7. Discussion
Sections 4, 5, and 6 are examples of projects

which use computer vision techniques to monitor
human activity in certain ways.  Starting with a
resurgence of face recognition research in the late
1980s, there are now many such “looking at people”
research efforts as well as an international conference
devoted to this area (see http://www-
prima.imag.fr/FG99/).

Similarly, there are numerous research efforts in
areas such as speech and sound recognition,
multimodal user interfaces, haptic interfaces, 3D
graphics and visualization, and other areas that are vital
to the general goals of Perceptual User Interfaces.
What has been missing is a significant overlap and
integration among these areas, and also a significant
interaction with sociologists and cognitive
psychologists.  The recent workshops devoted to PUIs
[6,7] are an initial attempt to get together a mix of
researchers in some of these areas who may not
otherwise interact, and to generate enthusiasm for this
field.

Early results are promising.  As some of the
component technologies become closer to commercial
success (e.g., speech recognition and face recognition),
there appears to be more and more interest in both
academia and industry to see natural, intuitive,
perceptual user interfaces develop.

Although there may not be a single, coherent
interface platform to replace GUIs, the approach of
perceptual user interfaces provides a model and a
research direction that may prove to enable the future
of how people interact with computers and technology.
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