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Abstract

This thesis describes a vision system which performs face recognition as a special-
purpose visual task, or “visual behavior”. In addition to performing experiments
using stored face images digitized under a range of imaging conditions, I have imple-
mented face recognition in a near-real-time (or “interactive-time”) computer system
which locates and tracks a subject’s head and then recognize the person by com-
paring characteristics of the face to those of known individuals. The computational
approach of this system is motivated by both biology and information theory, as well
as by the practical requirements of interactive-time performance and accuracy. The
face recognition problem is treated as an intrinsically two-dimensional recognition
problem, taking advantage of the fact that faces are normally upright and thus may
be described by a small set of 2-D characteristic views. Each view is represented by
a set of “eigenfaces” which are the significant eigenvectors (principal components)
of the set of known faces. They form a holistic representation and do not neces-
sarily correspond to individual features such as eyes, ears, and noses. This approach
provides for the ability to learn and later recognize new faces in an unsupervised man-
ner. In addition to face recognition, I explore other visual behaviors in the domain
of human-computer interaction.
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Chapter 1

Introduction

Most working robots also cannot see. If a part is missing from an assembly

line, a robot will act as if it were there. In the future, robots will be able

to “see” as well as sense pressure. They will do more jobs and even better

ones than they do today.

C-3PO’s Book About Robots

1.1 Face recognition by man and machine

The human ability to recognize faces is remarkable. Faces are complex visual stimuli,

not easily described by simple shapes or patterns; yet people have the ability to

recognize familiar faces at a glance after years of separation. The subject of visual

processing of human faces has received attention from philosophers and scientists for

centuries. Aristotle devoted six chapters of the Historia Animalium to the study

of facial appearance. Physiognomy, the practice or art of inferring intellectual or

character qualities of a person from outward appearance, particularly the face, has

had periods of fashion in various societies [62]. Darwin considered facial expression

and its identification to be a significant advantage for the survival of species [28].

Developmental studies have focused on strategies of recognition or identification and

the differences between infant and adult subjects. Neurological disorders of face

perception have been isolated and studied, providing insight into normal as well as

abnormal face processing. In recent years, computers have been introduced into

various aspects of the subject, with systems which attempt to model, display, and
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recognize human faces.

There is something about the perception of faces that is very fundamental to

the human experience. Early in life, we learn to associate faces — particularly the

mother’s face — with pleasure, fulfillment, and security. As we get older, the subtleties

of facial expression — a glance between friends or lovers, a chilling stern look from

one in authority — enhance our explicit communication in myriad ways. The face is

our primary focus of attention in social intercourse; this is observable in interaction

among animals as well as between humans and animals. The face, more than any

other part of the body, communicates identity, emotion, race, and age, and also is

quite useful for judging gender, size, and perhaps even character.

A desire to understand and to replicate (or at least approximate) the human abil-

ity to recognize and “read” faces has naturally lead to the advent of computational

approaches to face processing. Computer systems that can recognize and identify

faces may be useful in a number of applications. For example, the ability to model a

face and distinguish it from a large number of stored face models is essential for the

automation of criminal identification. The non-intrusive nature of face identification

is well suited for security systems. The detection of faces in photograph negatives or

originals will be quite useful in color film development, since the effect of many en-

hancement or noise reduction techniques depends on the picture content. Automated

color enhancement is desirable for most parts of the scene, but may have an undesir-

able effect on flesh tones. (It is fine for the yellowish grass to appear greener, but not

so fine for Uncle Harry to look like a Martian!) In the areas of image compression for

transmission of movies and television, and in general any “semantic understanding”

of video signals, the presence of people in the scene is important. For example, in

partitioning the spatial-temporal bandwidth for an advanced HDTV transmission,

more bandwidth should be given to people than to cars, since the audience is much

more likely to care about the image quality and detail of the human actors than of

inanimate objects.

In the area of human-computer interaction, an ultimate goal is for machines to

understand, communicate with, and react to humans in natural ways. A machine that

understands gestures, perceives direction of gaze, uses lip reading to disambiguate and

facilitate speech recognition, and visually identifies individuals and their moods and

emotions, is the stuff of science fiction — e.g. the computer Hal in 2001: A Space

Odyssey — yet all these problems are currently being addressed by a number of

12



researchers. Although there are many other avenues to person identification — gait,

clothing, hair, voice, and height are all useful indicators of identity — none are as

compelling as face recognition.

In computer graphics and related fields, the accurate graphic display and ani-

mation of faces has many applications as well. There are research groups working

towards animated actors in film and video productions. A computer system process-

ing face information has recently been publicized through television news and popular

magazine reports [68]. This system simulates aging by applying appropriate transfor-

mations to facial images, and has been directly responsible for the location of missing

children years after their disappearance. In the medical field, surgeons and computer

scientists are working to develop interactive graphic systems for modeling and predic-

tion in craniofacial surgery. Coding faces for low-bandwidth teleconferencing is also

an active area of research.

As these observations suggest, the visual processing of faces is an interesting and

potentially useful and enlightening direction of research. The goals are quite ambi-

tious, in that these are high-level visual tasks, while basic areas such as stereo and

motion perception are still not completely understood. However, the tasks involved

in face processing are reasonably constrained; some may even have a degree of “hard-

wiring” in biological systems. Faces present themselves quite consistently in expected

positions and orientations; their configuration (the arrangement of the components)

seldom changes; they are rather symmetrical. On the other hand, human face recog-

nition and identification is very robust in the face of external changes (e.g. hair styles,

tan, facial hair, eyeglasses), so a recognition scheme cannot be overly constrained.

1.2 Paradigms of visual object recognition

Models of recognition have been debated in neuroscience for decades. The oversim-

plified view of object recognition as hierarchical feature extraction [74] involves cells

at different stages of processing signaling different visual features. At the earliest

level, cells detect basic image features such as edges at particular orientation, posi-

tion, and contrast. At higher stages neurons are tuned to combinations of these basic

features, corresponding to more complex features or shapes. At the apex of the hier-

archy are so-called “gnostic units”, whose activation signal the perception of familiar

objects over different viewing conditions. The infamous “grandmother cell”, which
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fires whenever one’s grandmother is in the visual scene, is an example of a gnostic

unit. With the highest level of gnostic cells replaced by the concept of population

encoding of neurons, this is a popular neural model of visual processing, at least in

neuroscience textbooks.

The reigning paradigm for object recognition in computational vision involves

matching stored models to representations built from the image data, beginning with

the detection of features and moving on to some description of surfaces or parts. This

modular approach to vision, often referred to as the Marr paradigm [64], involves some

variation of the following framework (see also Figure 1-1(a)):

1. The primal sketch or intrinsic images: From the input image intensities, make

important information (e.g. intensity changes and their 2-D geometry) explicit.

2. 21
2
-D sketch: Calculate the orientation, depth, and discontinuities of visible

surfaces in a viewer-centered frame.

3. 3-D representation: Describe the object shape, using volumetric and surface

primitives in an object-centered frame.

Each step of the Marr paradigm involves a transformation to a “higher-level” rep-

resentation, one that reduces the imaging-specific dependencies such as illumination

and viewpoint. Recognition is possible once the image data and the object models are

in a common form. At the highest level, the 3-D shape representation is compared to

models of known 3-D objects.

In the past decade, much effort has been devoted to discovering useful constraints

and exploring ways to make this paradigm computationally feasible. The use of

groupings such as those proposed by the Gestalt psychologists [63], multiple canonical

representations [71], and alignment techniques [102] have encouraged a degree of

interaction between previously independent levels of the recognition process.

While this approach is appropriate for general object recognition, there appears to

be both biological and computational motivation to develop special-purpose recogni-

tion capabilities. Bruce and Young [15], for example, argue that Marr’s representation

scheme is not suitable to cope with the fine discriminations needed for face recogni-

tion, where all the “objects” have similar overall shapes.

In recent years a new paradigm has gained popularity in the field of computer vi-

sion which emphasizes fast, goal-oriented vision (e.g. [96, 3, 4]). These ideas, termed
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3D representation

Models

Scene

Task #1

Task #2

Task #3

Task #4

(a) (b)
Figure 1-1: (a) The Marr vision paradigm: horizontal layers (b) The active
vision, or visual behaviors, paradigm: vertical layers
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active vision or animate vision, are in most aspects orthogonal to the more general

Marr paradigm, emphasizing relatively simple processing and recognition strategies

in limited domains. While Marr viewed the main job of vision to be to derive a repre-

sentation of shape, the function of an active vision system is application-dependent.

1.3 Visual behaviors

In his article, “Intelligence without representation,” Rod Brooks [13] argues for de-

veloping intelligent systems incrementally, relying on interaction with the real world

rather than on representations. He describes limitations of the traditional notion

among artificial intelligence researchers of functional decomposition (e.g. the Marr

paradigm), and proposes a fundamental slicing up of intelligent systems into activity

producing subsystems, each of which is best suited for a certain “ecological niche”.

The advantage of approaching intelligence through such layers of activity, or skills, or

behaviors, is that “it gives in incremental path from very simple systems to complex

autonomous intelligent systems.” These multiple parallel activities do not depend on

central representations; instead, the collection of competing behaviors can produce a

coherent pattern of behavior similar to Minsky’s [66] theories of human behavior.

The distinctions between Brooks’ views and the traditional AI views of intelli-

gence are parallel to the paradigms of object recognition discussed above. They are

not either/or alternatives, but instead different ways of solving different problems.

Biological vision gives evidence for both general and special purpose components —

a likely proposition is that in evolutionary terms, early visual systems are primarily

special-purpose and later visual systems added capabilities such as general object

recognition. Figure 1-1(b) shows a schematic representation of the active vision, or

visual behaviors paradigm.

I claim that the ability to quickly recognize faces is primarily a special-purpose

system biologically, and that it makes sense to approach it as a special-purpose system

(a visual behavior or active vision component) computationally. Human faces all share

the same basic configuration and 3-D structure — the subtle differences are what

distinguish one from another. While it is certainly possible to inspect and compare

face shapes and complex structure, the physiological and psychological studies of face

perception (see Chapter 2) seem to point to a fast, special-purpose face recognition

system somewhat independent of general recognition.
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Although there is no compelling reason to model intelligent computer-based sys-

tems directly on biological systems, the existence proof of the biological system is

at the least suggestive. As is often pointed out, modern airplanes do not flap their

wings as birds, yet the study of birds and flight led to discovering the principles of

aerodynamics which enables planes to fly. Intelligent computer systems do not need

to duplicate biological strategies, but to learn from their lessons. There is sufficient

motivation to devote research energy into the “visual behaviors” approach to object

recognition, and face recognition in particular.

1.4 Face recognition and interactive-time vision

Figure 1-2 depicts the intersection of three aspects of vision research which are appli-

cable to the pursuit of computer-based face recognition. In human-computer interface

(HCI), we want to model human-to-computer interaction after human-to-human in-

teraction, to the degree that it is appropriate. Menu-based applications and graphical

user interfaces (GUIs) just begin to scratch the surface of “user-friendly” machines.

Before people will really accept the idea of intelligent machines being a vital part of

society, and before these machines are really accessible to the general public, the man-

machine interaction must be considered natural. This will involve not only currently

important technologies such as speech recognition and synthesis, but more subtle abil-

ities such as recognizing gestures, identity, and facial expressions from visual input.

“Interactive-time vision” is a term meant to include not only real-time systems

(i.e. systems which give an answer in a matter of milliseconds or less, fast enough

for the inner control loop of some process), but also systems which respond quickly

enough for the task at hand to feel interactive to the user or observer. As with the

“real-time” label, the boundaries of interactive-time are always changing along with

improvements in hardware and software. However it is not just a label of convenience

— people demand interactive-time performance in order to consider a machine an

active, intelligent participant rather than an advanced but impersonal calculator.

In addition, interactive-time systems can be tested in the real world, on real time-

varying data, in a way that non-interactive systems cannot. Rather than limiting

the environment to overly simple scenarios (e.g. the “blocks world” in vision), or to

stored unreal data (e.g. synthetic scenes plus gaussian noise), significant advances

should be made by developing intelligent systems which can interact with the real,
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Human-computer
interface

Interactive-time 
vision

Complex 
object recognition

Face 
recognition

Figure 1-2: Face recognition lies in the intersection of three fruitful areas
of research: human-computer interface, interactive-time vision, and complex
object recognition.

dynamic world.

Similar to Brooks’ requirements for his “Creatures”, or autonomous agents[13],

requirements for an interactive-vision system include the following:

1. The system must act appropriately and timely in a dynamic environment.

2. The system should be robust, in that small changes in the environment should

lead to at worst a gradual decline in the system performance rather than a total

collapse.

3. The system should be able to maintain multiple goals — e.g. a face recognition

system (or behavior) may be used to either locate faces, identify them, or both.

4. The system should have some useful (behavior-enabling) skill on its own. (So

for example a stereo module which produces a range map as its output does not

qualify).

Faces are complex objects, not easily described by simple features, surface mod-

els, or volumetric models. Trees, water, and clouds are examples of other complex

objects which can be modeled relatively well for rendering in computer graphics, but
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cannot be reliably recognized by any current computer vision system. The strategy

of building increasingly complex systems to recognize complex objects is not the only

option. It is possible at times — as in the case of faces — to develop relatively simple

strategies and rely on rather simple representations to support recognition in some

limited domain of circumstances. It may be more efficient, for example, to build “oak

tree detectors” and “maple tree detectors” rather than general “tree detectors”.

My approach to face recognition lies in the intersection of these three components

of interest — human-computer interface, interactive-time vision, and complex ob-

ject recognition. Going along with the “visual behaviors” idea, it seemed fruitful to

approach the practical problem of recognizing human faces in this framework. The

research of this thesis shows this to be the case.

1.5 Overview of the thesis

This research has been focused towards developing a sort of early, preattentive pat-

tern recognition capability that does not depend upon having three-dimensional in-

formation or detailed geometry. The goal is to develop a computational model of

face recognition which is fast, reasonably simple, and accurate in constrained envi-

ronments such as an office or a household. In addition the approach is biologically

implementable and is generally in concert with preliminary findings in the physiology

and psychology of face recognition.

The scheme is based on an information theory approach that decomposes face

images into a small set of characteristic feature images, called “eigenfaces”, which

are the principal components of the initial training set of face images. Recognition

is performed by projecting a new image into the subspace spanned by the eigenfaces

(“face space”) and then classifying the face by comparing its location in face space

with the locations of known individuals.

Automatically learning and later recognizing new faces is practical within this

framework. Recognition under widely varying conditions is achieved by training on a

limited number of characteristic views (e.g., a frontal view, a 45◦ view, and a profile

view). The approach has advantages over other face recognition schemes in its speed

and simplicity, learning capacity, and insensitivity to small or gradual changes in the

face image.
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Chapter 2 surveys the relevant literature on biological and computational face

recognition. Some insight from the physiological studies of face-selective cells, as well

as studies on disorders of face recognition abilities and the strategies people use in

recognizing faces, was motivational to the computational approach presented in this

thesis.

Chapter 3 introduces a method of computational face recognition using “eigen-

faces”, while Chapters 4 and 5 describe experiments exploring the performance of

the approach on stored face images and with a near-real-time system. The biologi-

cal implications of the system and some relation to neural networks are discussed in

Chapter 6.

The general class of interactive-time systems performing useful human-computer

interface tasks is explored further in Chapter 7, where a simple system to detect

eye blinks — and therefore alert observers — is described, as well as investigations

into detectors for the direction of gaze and expressions. Chapter 8 summarizes the

main ideas of the thesis and the state of the current implementation, and discusses

future research directions and work in progress at other labs building on these ideas.

Appendix A relates part of this work to the techniques of correlation and matched

filtering.

Before continuing, a brief note about terminology. The terms “recognition” and

“identification” are often used interchangeably in both common conversation and in

the scientific literature. In this thesis they are also quite often both used to mean

the general process of perceiving, and perhaps establishing the identity of, a known

object. When it is necessary to distinguish between different aspects of this process —

which will be evident in the context — recognizing a face will refer to the perception

of a face as a face, while identifying a face will refer to correctly naming the perceived

face as one out of a known group. These distinctions are unfortunately often ignored

in both the human vision and computer vision literature, although in principle there

may be quite different mechanisms underlying the two.
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Chapter 2

Background

CHURCH-TURING THESIS, THEODORE ROSZAK VERSION:

Computers are ridiculous. So is science in general.

Douglas Hofstadter, Gödel, Escher, Bach

2.1 Introduction

In the past two decades there has been a growing interest in face recognition and iden-

tification in physiology, neurology, psychology, and computer vision. Motivated by

such diverse interests as commercial security systems and people meters, model-based

coding for telecommunications, understanding the development of human visual capa-

bilities from infant to adult, and understanding visual dysfunction in brain-damaged

patients, face recognition has become a popular topic. An understanding of the

processes involved in face recognition may reveal important clues as to the neural

structures underlying recognition and important hints to the construction of com-

putational recognition systems. This chapter reviews the relevant literature in both

biological and computational vision.

2.2 Prosopagnosia

Visual agnosia is a neurological impairment in the higher visual processes which leads

to a defect in object recognition [34]. Agnosic patients can often “see” well, in that

there is little apparent deficit in spatial vision or perception of form. The dysfunction
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is specific to some class of objects or shapes, such as perceiving letters or any object

from an unusual viewpoint. Etcoff et al. [38] report a patient’s description of his

agnosia to be like “attempting to read illegible handwriting: you know that it is

handwriting, you know where the words are and letters stop and start, but you have

no clue as to what they signify.”

Lissauer’s seminal paper on visual agnosia in 1890 (see [90] for an abridged En-

glish version with commentary) presented the first thorough clinical description of

an agnosic patient, and distinguished between two aspects or forms of agnosia: ap-

perceptive and associative. Apperception is the process of constructing a perceptual

representation from the visual input, while association is the process of mapping a

perceptual representation onto stored knowledge of the object’s functions and associ-

ations [80]. So apperceptive agnosia involves a problem in constructing the perceptual

representation, while in associative agnosia there is difficulty associating the repre-

sentation with any memory of the specific object.

Prosopagnosia, from the Greek prosopon (face) and agnosia (not knowing), refers

to the inability to recognize familiar faces by visual inspection1 [37, 83, 27]. Prosopag-

nosics can typically identify the separate features of a face, such as the eyes or mouth,

but have no idea to whom they belong. They may recognize the sex, age, pleasantness,

or expression of a face, without an awareness of the identity:

I was sitting at the table with my father, my brother and his wife. Lunch had

been served. Suddenly. . . something funny happened: I found myself unable

to recognize anyone around me. They looked unfamiliar. I was aware that they

were two men and a woman; I could see the different parts of their faces but

I could not associate those faces with known persons. . . . Faces had normal

features but I could not identify them. [Agnetti et al., p. 51, quoted in [29]]

Studies of covert recognition (e.g. [98, 30]) show that some prosopagnosics actually

carry out some steps of the recognition process despite their lack of awareness, leading

to the suspicion that prosopagnosia is an associative agnosia. However, others show

no signs of covert recognition. Tranel and Damasio [98] suggest a four-part model of

facial learning and recognition:

1. Perception

1Using the precise terminology described at the end of Chapter 1, prosopagnosics can recognize
faces but not identify them. But I defer here to the terminology of the sources.
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2. Templates — records of past visual perceptions of a face can be aroused by

current perception.

3. Activation — multimodal memories corresponding to the face are evoked.

4. Conscious readout — the experience of familiarity.

They suggest that impairment of the activation step may explain prosopagnosia. As

we will see in Chapter 3, these parts loosely correspond to my computational approach

to face recognition. Prosopagnosic patients, although very few in number, have proved

to be a valuable resource in probing the function of face recognition.

2.3 Face-selective cells

There is evidence that damage to a particular area of the right hemisphere has

a predominant role in producing face recognition difficulties. The question arises, is

face recognition a special, localized, subsystem of vision?

One way to approach this question, and additionally to learn about the neu-

ral mechanisms involved in face recognition and object recognition in general, is by

recording the activity of brain cells while performing visual tasks including observing

and recognizing faces. Through single cell recording, a number of physiologists have

found what seem to be “face” neurons in monkeys, responding selectively to the pres-

ence of a face in the visual field. Perrett et al. [72, 74, 75] have found cells in area STS

of the rhesus monkey which were selectively responsive to faces in the visual field.

Many of these cells were insensitive to transformations such as rotation. Different

cells responded to different features or subsets of features, while most responded to

partially obscured faces. Some cells responded to line drawings of faces. About 10%

of the cells were sensitive to identity. Other researchers (e.g. [14, 31, 82]) have found

cells with similar properties in monkey inferior temporal cortex, concluding that there

may be specialized mechanisms for the analysis of faces in IT cortex. Kendrick et al.

[52] have even found face-selective cells in sheep.

Table 2.1 lists various properties of these face cells reported by various laboratories.

One should be cautious about drawing broad conclusions about face recognition from

these findings. They may seem to suggest a uniqueness of face recognition, a rather

localized and “hard-wired” system of grandmother-like cells. A careful look at the
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data, however, suggests some sort of population coding of information, and a not very

straightforward one at that.

In a review article, Desimone [32] suggests that “face cells could turn out to be

a model system for studying the neural mechanisms of complex object recognition,

rather than an exception.” Although properties of the “eigenfaces” or the recognition

strategy described in Chapter 3 are analogous to many of properties of the faces cells

studied to date, there is no evident one-to-one correspondence. As the face cells

become better understood, they should motivate other approaches to complex object

recognition as well.

2.4 Mechanisms of face recognition

Psychologists have used both normal and prosopagnosic subjects to investigate mod-

els of face processing, recognition, and identification. In addition to the theoretical

and clinical pursuits of neuroscience, the validity and limitations of eye-witness testi-

mony in criminal proceedings has spurred much face recognition research in cognitive

psychology.

Yin [106] presented pictures of faces in various orientations and tested subsequent

recall, finding that the recall performance for inverted faces was degraded more than

that of other configuration-specific stimuli such as landscapes or animals. He argued

for a special face-processing mechanism to account for this effect. Others have fur-

thered these techniques to experiment with face images which have been modified in

myriad ways.

Developmental studies (e.g. [61]) have observed the development of face recogni-

tion from infant to adult. Carey and Diamond [20] found that the effect of inversion

on face recognition described by Yin increases over the first decade of life, suggesting

that young children represent faces in terms of salient isolated features (“piecemeal

representation”), rather than in terms of configurational properties used by older chil-

dren and adults (“configurational representation”). In recent years there seems to be

a growing consensus that both configurational properties and feature properties are

important for face recognition [14].

Carey and Diamond [33] claim that face recognition is not a special, unique sys-

tem, and that the inversion effect may be due to a gain in the ability to exploit
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Property Results
color most cells not sensitive to color [72]
orientation not very sensitive to orientation (rotation in the viewing plane)

[31]
line drawings most cells not significantly responsive to line drawings of faces

[72]
position not dependent on position of the face [31]
size most not dependent on size of face [31, 81]
contrast relatively invariant to magnitude and sign of contrast [81]
identity about 77% respond differently to different faces [6]
identity seems to be encoded not in individual neurons but in an ensem-

ble [6]
identity most responded independent of identity [72]
identity about 10% are sensitive to identity [75]
expression about 10% are sensitive to expression [75]
identity/expression some are sensitive to expression but not identity [74]
identity/expression expression and identity seem to be encoded by separate popula-

tions of cells in separate anatomical locations [32]
face view some respond best to front view, some to profile [31]
face view most are view-dependent [72]
face view view-dependent cells have been identified across the entire 360◦

range [47]
occlusion most respond despite occluding some parts of the face [72]
features most respond more to the whole face than to any one part [72, 31]
features many are sensitive to the presence of a particular facial feature

only [75]
features scrambling the configuration of features reduces or eliminates

the response [31, 75]
features cells detect the combination of distances between different parts

of the face [105]
eye contact many respond best when the observed face is making eye contact

[74]

Table 2.1: Properties of face-selective cells from single-cell recordings in mon-
key cortex (areas STS and IT).
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distinguishing “second-order relational features”. For faces and many other complex

objects the first-order relational features — the spatial relationships between similar

parts — are constrained. Such objects must be differentiated by distinctive relation-

ships among the elements of the common configuration. Such second-order relational

features may be vital in many complex object recognition tasks. What is important

here is that the strategies used for face recognition should be applicable to many

other recognition tasks.

A number of experiments have explored feature saliency, attempting to discern

the relative importance of different features or areas of the face. Although the early

of these generally agreed to the importance of face outline, hair, and eyes — and the

relative unimportance of the nose and mouth — there is evidence that these results

may be biased by the artifacts of the techniques and face presentations used [14].

Along with stored face images, a number of researchers [11, 59] have used face

stimuli constructed from Identikit or Photofit 
2 to explore strategies of face recogni-

tion. Use of these kits may actually bias the experiments, however, since there is an

underlying assumption that a face can be properly decomposed into its constituent

features: eyes, ears, nose, mouth, etc.

One lesson from the study of human face recognition is that approaches which

treat faces as a collection of independent parts are unlikely to be relevant to the

perception of real faces, where the parts themselves are difficult or impossible to

delimit [14]. Consequently artists’ sketches are better than face construction kits in

reproducing the likeness of a target face. Faces grow and develop in a way such that

features are mutually constraining. In fact these growth patterns can be expressed

mathematically and used to predict the effects of aging [76]. Such techniques have

already been used successfully in the location of missing children years after their

disappearance [68].

Other studies have shown that expression and identity seem to be relatively in-

dependent tasks [48, 107], which is also supported by some neurological studies of

prosopagnosics.

Caricatures are simplified yet exaggerated representations of faces — a facial cod-

2Identikit and Photofit are face construction kits, used mostly by police departments, which
superimpose layers of facial features to produce a large number of different faces. Newer systems, such
as the Minolta Montage Synthesizer, use optics or image processing to blend together a composite
face image.
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ing which “seeks to be more like the face than the face itself” [12]. Studies of caricature

can provide insight into the mental representation and recognition of faces. Rhodes,

Brennan, and Carey [79] tested recognition ability on faces shown as photographs,

line drawings, and caricatures of varying extent. Their results are consistent with a

holistic theory of representation in which distinctive aspects of a face are represented

by comparison with a norm, referred to as the distinctiveness hypothesis. The repre-

sentation based on “eigenfaces” described in Chapter 3 is based on a similar notion,

since only the deviation from the average face is encoded.

2.5 Computational approaches to face recognition

Much of the work in computer recognition of faces, for the last twenty-five years,

has focused on detecting individual features such as the eyes, nose, mouth, and head

outline, and defining a face model by the position, size, and relationships among these

features. In the past decade new approaches have emerged, most notably those based

on neural networks, correlation-based techniques, and shape matching from range

data.

2.5.1 Feature-based approaches

Bledsoe [9, 10] was the first to report semi-automated face recognition, using a hybrid

human-computer system which classified faces on the basis of fiducial marks entered

on photographs by hand. Parameters for the classification were normalized distances

and ratios among points such as eye corners, mouth corners, nose tip, and chin point.

At Bell Labs, Harmon, Goldstein and their colleagues [39, 44] developed an interactive

system for face recognition based on a vector of up to 21 features, which were largely

subjective evaluations (e.g. shade of hair, length of ears, lip thickness) made by

human subjects. The system recognized known faces from this feature vector using

standard pattern classification techniques. Each of these subjective features however

would be quite difficult to automate.

Sakai et al. [85] described a system which locates features in a Laplacian-filtered

image by template-matching. This was used to find faces in images, but not to recog-

nize them. A more sophisticated approach by Fischler and Elschlager [35] attempted

to locate image features automatically. They described a linear embedding algorithm

27



which used local feature template matching and a global measure to perform image

matching. The technique was applied to faces, but not to recognition.

The first automated system to recognize people was developed by Kelly [51]. He

developed heuristic, goal-directed methods to measure distances in standardized im-

ages of the body and head, based on edge information.

Kanade’s face identification system [50] was the first automated system to use a

top-down control strategy directed by a generic model of expected feature character-

istics of the face. His system calculated a set of facial parameters from a single face

image, comprised of normalized distances, areas, and angles between fiducial points.

He used a pattern classification technique to match the face to one of a known set,

a purely statistical approach depending primarily on local histogram analysis and

absolute gray-scale values. Figure 2-1 shows the fiducial points and the definition of

the parameter vector.

In a similar spirit, Harmon et al. [45, 46] recognized face profile silhouettes by

automatically choosing fiducial points to construct a 17-dimensional feature vector

for recognition. Others have also approached automated face recognition by charac-

terizing a face by a set of geometric parameters and performing pattern recognition

based on the parameters (e.g. [19, 25, 104]).

The local/global template matching approach by Fischler and Elschlager has been

extended by the recent work of Yuille et al. [108, 109]. Their strategy is based

on “deformable templates”, which are parameterized models of features and sets of

features with given spatial relations. Figure 2-1(b) shows a deformable template for an

eye. The parameter values of these models are set to initial defaults, corresponding

to a generic face or perhaps the expected face, and are dynamically updated by

interactions with the image through a gradient descent method. Shackleton and

Welsh [89] use this method for finding facial features.

2.5.2 Connectionist approaches

Connectionist, or neural network, approaches to face identification seek to capture

the holistic or gestalt-like nature of the task, using the physical systems model of pro-

cessing and memory rather than the standard information processing model common

to much vision research. Kohonen et al. [55, 56] demonstrated a linear associative

network with a simple learning algorithm which can classify input patterns and recall
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Figure 2-1: (a) Kanade’s fiducial points and the corresponding face pattern
vector. (From Kanade [50], reprinted with permission). (b) A deformable
template of an eye. (From Yuille [109], reprinted with permission).
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a pattern from an incomplete or noisy version input to the network. Human faces

were used to demonstrate the associative recall. These ideas are further investigated

by O’Toole and Adbi [1, 69].

A number of researchers (e.g. [65, 49]) have used faces or face features as input and

training patterns to networks with a hidden layer, trained using backpropagation, but

on small data sets. Fleming and Cottrell [36] extend these ideas using nonlinear units,

training the system by back propagation. The system accurately evaluated “faceness”,

identity, and, to a lesser degree, gender, and reported a degree of robustness to

partial input and brightness variations. Cottrell and Metcalfe [24] build on this work,

reporting identity, gender, and facial expression evaluations by the network.

The WISARD system [94] is a general-purpose binary pattern recognition device

based on neural net principles. It has been applied with some success to face images,

recognizing both identity and expression.

2.5.3 Range-based approaches

Range data has the advantage of being free from many of the imaging artifacts of

intensity images. Surface curvature, which is invariant with respect to viewing angle,

may be quite a useful property in shape matching and object recognition. Lapresté

et al. [58] present an analysis of curvature properties of range images of faces, and

propose a pattern vector comprised of distances between characteristic points. Sclaroff

and Pentland [87] report preliminary recognition results based on range data of heads.

Lee and Milios [60] explored matching range images of faces represented as ex-

tended gaussian images. They claim that meaningful features correspond to convex

regions and are therefore easier to identify than in intensity images. Gordon [42] repre-

sents face features based on principal curvatures, calculating minimum and maximum

curvature maps which are used for segmentation and feature detection.

The major drawback of these approaches is the dependency on accurate, dense

range data, which is currently not available using passive imaging systems and very

cumbersome and expensive using active systems. In addition, it is not clear that

range information alone is sufficient for reliable recognition [15].
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2.5.4 Other approaches

A number of computational approaches to face recognition do not fit comfortably un-

der any of the above labels. Baron [5] described a correlation-based approach which

used template-matching to locate the eyes and subsequently to recognize and verify

the face. The face recognition work by Burt et al. uses a “smart sensing” approach

[16, 17, 18] based on multiresolution template matching. This coarse-to-fine search

strategy uses a representation of the face called a pattern tree, where distinctive

patterns are represented represented in more detail than the complete head. It is im-

plemented on a special-purpose computer built to calculate multiresolution pyramid

images quickly, and has been demonstrated identifying people in near real-time. The

face models are built by hand from single face images.

Sakaguchi sl et al. [84] propose face identification using isodensity (or isointen-

sity) images, in which people are identified by comparing the shape of isodensity

lines. Isodensity lines are related to local orientation, as the orientation at any image

position is orthogonal to the isodensity line passing through that point. Bichsel [8]

has developed a face recognition system based on matching feature templates of lo-

cal orientation. Local orientation should be more reliable than intensity information

because of its relative invariance to contrast.

Some recent systems attempt to locate, but not identify, faces in images based

on simple models of skin color [86], face outlines [43], or feature and shape “experts”

[97].

2.6 Observations

All of the face recognition systems or approaches mentioned in this chapter (and

others not mentioned) have one thing in common: they do not perform general, un-

constrained, interactive-time recognition of faces. All are limited in their ability to

perform under varying condition of lighting, scale, and viewpoint, and with facial

changes due to expression, aging, and facial hair. Although recognition rates of up

to 99.2% are reported, the numbers are only marginally meaningful without under-

standing the relative limitations of the techniques.

This is not meant to be a disparaging remark, but rather an occasion for thinking

about appropriate directions of investigation in the field. It seems that the short

31



history of research in computational face recognition is one of poking around in the

“space of possible approaches”, and occasionally finding promising areas to pursue.

The surging of interest in this research area in recent years raises the question, dis-

cussed in Chapter 1, of whether we should direct efforts toward developing modules of

increasing generality (a functional decomposition) or developing systems which work

in limited domains (a behavior-based approach). My approach presented in the next

chapter is both an example of continued poking — What new functions need to be

explored? — and an attempt to put together some useful ideas gleaned from disparate

approaches into a working system, within the behavior-based (or “visual behavior”)

framework.

Although studies of face recognition in physiology, neurology, and psychology pro-

vide little practical guidance for computer vision systems at this point, they nonethe-

less provide insight into the problem. While the approach taken in this thesis is not

an attempt to model human strategies or biological solutions to face recognition and

identification, many of its components were motivated by the human vision literature.

These will be discussed further in Chapter 6.
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Chapter 3

Recognition Using Eigenfaces

Have you ever watched your friend asleep — to discover what he looked

like? Yet your friend’s face is something else beside. It is your own face,

in a rough and imperfect mirror.

Friedrich Nietzsche, Thus Spoke Zarathustra

3.1 Introduction

Consonant with the goals of interactive-time vision discussed in Chapter 1, the ob-

jectives of this approach to face recognition include:

• Speed — the online processing must be fast, i.e. reasonably simple mechanisms.

• Accuracy — recognition performance must be high, as compared with other

approaches, and possibly tunable for the intended application.

• The system should be robust with respect to noise, variations in imaging con-

ditions, occlusions.

• Learning — There should be some capacity to learn new faces in an unsupervised

manner.

• The tasks of finding faces and identifying them should be separately achievable

goals.

Much of the previous work on automated face recognition has ignored the issue

of just what aspects of the face stimulus are important for identification, by either
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Figure 3-1: A feature-based recognition approach may be difficulty dealing
with situations such as these: noisy data (resulting in missing or bad edge
information) or sunglasses occluding the eyes.

treating the face as a uniform pattern or assuming that the positions of features are

an adequate representation. It is not evident, however, that such representations

are sufficient to support robust face recognition. Depending too much on features,

for example, causes problems when the image is degraded by noise or features are

occluded (e.g. by sunglasses — see Figure 3-1). We would like to somehow allow for

a system to decide what is important to encode for recognition purposes, rather than

specifying that initially.

This suggested that an information theory approach of coding and decoding face

images may give insight into the information content of face images, emphasizing the

significant local and global “features”. Such features may or may not be directly

related to our intuitive notion of face features such as the eyes, nose, lips, and ears.

This may even have important implications for the use of construction tools such as

Identikit and Photofit [14], which treat faces as “jigsaws” of independent parts.

Such a system motivated by information theory would seek to extract the relevant

information in a face image, encode it as efficiently as possible, and compare one face

encoding with a database of models encoded similarly. One approach to extracting

the information contained in an image of a face is to somehow capture the variation

in a collection of face images, independent of any judgement of features, and use this
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information to encode and compare individual face images.

3.2 Eigenfaces

In mathematical terms, this is equivalent to finding the principal components of the

distribution of faces, or the eigenvectors of the covariance matrix of the set of face

images, treating an image as a point (or vector) in a very high dimensional space. The

eigenvectors are ordered, each one accounting for a different amount of the variation

among the face images.

These eigenvectors can be thought of as a set of features which together charac-

terize the variation among face images. Each image contributes some amount to each

eigenvector, so that each eigenvector formed from an ensemble of face images appears

as a sort of ghostly face image, referred to as an eigenface. Examples of these faces

are shown in Figure 3-5. Each eigenface deviates from uniform grey where some facial

feature differs among the set of training faces; collectively, they map of the variations

between faces.

Each individual face image can be represented exactly in terms of a linear combi-

nation of the eigenfaces. Each face can also be approximated using only the “best”

eigenfaces — those that have the largest eigenvalues, and which therefore account

for the most variation within the set of face images. The best M eigenfaces span an

M-dimensional subspace — “face space” — of the space of all possible images.

Because eigenfaces will be an orthonormal vector set, the projection of a face

image into “face space” is analogous to the well-known Fourier transform. In the

FT, an image or signal is projected onto an orthonormal basis set of sinusoids at

varying frequencies and phase, as depicted in Figure 3-2(a). Each location of the

transformed signal represents the projection onto a particular sinusoid. The original

signal or image can be reconstructed exactly by a linear combination of the basis set

of signals, weighted by the corresponding component of the transformed signal. If

the components of the transform are modified, the reconstruction will be approximate

and will correspond to linearly filtering the original signal.

Figure 3-2(b) shows the analogy to the “Eigenface transform”. This transform

is non-invertible, in the sense that the basis set is small and can reconstruct only a
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Figure 3-2: Transformation and reconstruction of images with (a) the Fourier
transform, and (b) the Eigenface transform.
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limited range of images1. The transformation will be adequate for recognition to the

degree that the “face space” spanned by the eigenfaces can account for a sufficient

range of faces.

Principal-component analysis has been applied to pattern recognition tasks for

quite some time (e.g. see [54, 57, 21, 103]). Kumar et al. [57] proposed a PCA-based

filter as optimal for a statistical correlator. Appendix A discusses this work and the

relationship between matched filter correlation and recognition using eigenfaces. The

idea of using eigenfaces was partially motivated by the work of Sirovich and Kirby

[92, 53] for efficiently representing pictures of faces using principal component analysis.

Starting with an ensemble of original face images, they calculated a best coordinate

system for image compression, where each coordinate is actually an image which they

termed an eigenpicture. They argued that, at least in principle, any collection of face

images can be approximately reconstructed by storing a small collection of weights

for each face and a small set of standard pictures (the eigenpictures). The weights

describing each face are found by projecting the face image onto each eigenpicture.

Although intended for application to image coding of faces, the eigenpictures do

not appear to be sufficient to represent the gamut of facial expressions and viewpoints

for the highly accurate reconstruction required in many image coding applications.

Sirovich and Kirby’s work seemed best suited for applications such as teleconferencing

where the accuracy requirements are not as strict and the identity of the speaker is

of primary importance.

Face recognition, on the other hand, should not require a precise, low mean-

squared-error reconstruction. If a multitude of face images can be reconstructed by

weighted sums of a small collection of characteristic features or eigenpictures [92],

perhaps an efficient way to learn and recognize faces would be this: build up the

characteristic features (eigenfaces) by experience over time and recognize particular

faces by comparing the feature weights needed to (approximately) reconstruct them

with the weights associated with known individuals. Each individual, therefore, would

be characterized by the small set of feature or eigenpicture weights needed to describe

and reconstruct them — an extremely compact representation when compared with

the images themselves.

Basing face recognition on this scheme involves an initialization phase where the

1For general NxN images, M eigenfaces will span an M -dimensional subspace (“face space”) of
the huge N2-dimensional space of all images.
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eigenfaces are constructed from face images, and a continuous processing loop where

the eigenfaces are used as a basis for recognition. The one-time initialization opera-

tions are:

1. Acquire an initial set of face images (the training set).

2. Calculate the eigenfaces from the training set, keeping only the M eigenfaces

which correspond to the highest eigenvalues. These M images define the face

space.

3. Calculate the corresponding location or distribution in M-dimensional weight

space for each known individual, by projecting their face images (from the

training set) onto the “face space”.

These operations can also be performed occasionally to update or recalculate the

eigenfaces as new faces are encountered.

Having initialized the system, the following steps are then used to recognize new

face images:

1. Calculate a set of weights based on the input image and the M eigenfaces by

projecting the input image onto each of the eigenfaces.

2. Determine if the image is a face at all (whether known or unknown) by checking

to see if the image is sufficiently close to “face space” — i.e. determining the

ability of the eigenfaces to reconstruct the image.

3. If it is a face, classify the weight pattern as either a known person or as unknown.

4. (Optional) Update the eigenfaces and/or weight patterns.

5. (Optional) If the same unknown face is seen several times, calculate its charac-

teristic weight pattern and incorporate into the known faces, a simple learning

mechanism.

The following sections will describe the process in more detail.

3.3 Calculating eigenfaces

Let a face image I(x, y) be a two-dimensional N by N array of (8-bit) intensity values.

Such an image may also be considered as a vector of dimension N2, so that a typical
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image of size 128 by 128 becomes a vector of dimension 16, 384, or, equivalently, a

point in 16, 384-dimensional space2. An ensemble of images maps to a collection of

points in this huge space.

Images of faces, being similar in overall configuration, will not be randomly dis-

tributed in this huge image space and thus can be described by a relatively low dimen-

sional subspace. The main idea of the principal component analysis (or Karhunen-

Loeve expansion) is to find the vectors which best account for the distribution of

face images within the entire image space. These vectors define the subspace of face

images called “face space”. Each vector is of length N2, describes an N by N image,

and is a linear combination of the original face images. Because these vectors are the

eigenvectors of the covariance matrix corresponding to the original face images, and

because they are face-like in appearance, they are referred to as “eigenfaces.”

As a simple example of this analysis, consider “images” of only three pixels. All

possible 1x3 images fill a three-dimensional space3. An image of this type is fully

specified by three numbers, its coordinates in the 3-D space in Figure 3-3(a). If a

collection of these images occupy a two-dimensional subspace as in Figure 3-3(b), they

can be exactly specified by just two numbers, the projections onto the vectors u1 and

u2 which describe the plane (span the subspace). These vectors are the significant

eigenvectors of the covariance matrix of the images. Because they are vectors in the

3-D space, they can also be “displayed” as three-pixel images. A new image which

lies near the 2D plane can now be approximately represented by its projection into

the plane (or equivalently its projection onto the eigenvectors).

This example is directly analogous to the construction and use of eigenfaces. With

real images, the original space has dimension much greater than three, e.g. 16,384-

dimensional for 128 by 128 images. The important assumption (supported by [92])

is that a collection of face images spans some low-dimensional subspace, similar to

the plane of points in the example. The eigenvectors (eigenfaces in this case) are

16,384-dimensional, and may be viewed as images. As we will see in later sections,

there are two important measurements when evaluating a new image: (1) its distance

away from the subspace (face space) spanned by the eigenfaces, and (2) the position

of its projection into the face space relative to known faces.

2The analysis is equivalent for non-square images.
3We will for now ignore the quantization and limited range of the space determined by the limited

precision discrete pixel values.
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Figure 3-3: Simple example of principal component analysis. (a) Images
with three pixels are described as points in three-space. (b) The subspace
defined by a planar collection of these images is spanned by two vectors. One
choice for this pair of vectors is the eigenvectors of the covariance matrix of
the ensemble, u1 and u2. (c) Two coordinates are now sufficient to describe
the points, or images: their projections onto the eigenvectors, (ω1, ω2).
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Let the training set of face images be φ1, φ2, φ3, ...φM . The average face of the

set is defined by Ψ = 1
M

∑M
n=1 φn. Each face differs from the average by the vector

Φi = φi−Ψ. An example training set is shown in Figure 3-4(a), with the average face

Ψ shown in Figure 3-4(b)4. This set of very large vectors is then subject to principal

component analysis, which seeks a set of (M-1) orthonormal vectors, un, which best

describes the distribution of the data. The kth vector, uk, is chosen such that

λk =
1

M

M∑
n=1

(ut
kΦn)2 (3.1)

is a maximum, subject to

ut
luk = δlk =




1, if l = k

0, otherwise
(3.2)

for l < k, which constrains the vectors to be orthogonal.

The vectors uk and scalars λk are the significant M eigenvectors and eigenvalues,

respectively, of the covariance matrix

C = 1
M

∑M
n=1 ΦnΦt

n

= AAt
(3.3)

where the matrix A = [ Φ1 Φ2 ... ΦM ]. The matrix C, however, is N2 by N2, and

determining the N2 eigenvectors and eigenvalues is an intractable task for typical

image sizes. We need a computationally feasible method to find these eigenvectors ui

of C:

AAtui = λiui (3.4)

If the number of data points in the image space is less than the dimension of the

space (M < N2), there will be only M − 1, rather than N2, meaningful eigenvectors.

(The remaining eigenvectors will have associated eigenvalues of zero.) Fortunately

we can solve for the N2-dimensional eigenvectors in this case by first solving for the

eigenvectors of an M by M matrix — e.g. solving a 16x16 matrix rather than a

16,384 by 16,384 matrix — and then taking appropriate linear combinations of the

4Elimination of the background will be discussed later, but for now the face and background are
not distinguished.
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face images Φi. Consider the eigenvectors vi of AtA such that

AtAvi = µivi. (3.5)

Premultiplying both sides by A, we have [93]

AAtAvi = µiAvi (3.6)

or

AAt(Avi) = µi(Avi) (3.7)

and comparing with Equation 3.4 we see that Avi are the eigenvectors of C = AAt.

Following this analysis, we construct the M by M matrix L = AtA, where

Lmn = Φt
mΦn, and find the M eigenvectors, vl, of L. These vectors determine linear

combinations of the M training set face images to form the eigenfaces ul:

ul = Avi (3.8)

With this analysis the calculations are greatly reduced, from the order of the

number of pixels in the images (N2) to the order of the number of images in the

training set (M). In practice, the training set of face images will be relatively small

(M � N2), and the calculations become quite manageable. The associated eigenval-

ues allow us to rank the eigenvectors according to their usefulness in characterizing

the variation among the images, and therefore to choose a significant subset to keep.

Figure 3-5 shows the top seven eigenfaces derived from the input images of Figure

3-4.

The issue of choosing how many eigenfaces to keep for recognition involves a

tradeoff between recognition accuracy and processing time. Each additional eigenface

adds to the computation involved in classifying and locating a face. This is not vital

for small databases, but as the size of the database increases it becomes relevant. In

the examples of this chapter and the experiments described in the next chapter, a

heuristic evaluation chose seven or eight eigenfaces to use from a database of sixteen

face images.
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(a)

(b)

Figure 3-4: (a) Face images used as the training set, including the back-
ground. (b) The average face Ψ.
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Figure 3-5: Seven of the eigenfaces calculated from the input images of
Figure 3-4, without the background removed. (See Section 3.6.1 regarding the
background.).

44



3.4 Using eigenfaces to classify a face image

The eigenface images calculated from the eigenvectors of the matrix L span a basis

set with which to describe face images. Sirovich and Kirby [92] evaluated a limited

version of this framework on an ensemble of M = 115 images of caucasian males,

digitized in a controlled manner, and found that about 40 eigenfaces were sufficient

for a very good description of the set of face images. Using M ′ = 40 eigenfaces, RMS

pixel-by-pixel errors in representing cropped versions of face images were about 2%.

Since eigenfaces seem adequate for describing face images under very controlled

conditions, it was decided to investigate their usefulness as a tool for face identifica-

tion. In practice, a smaller M ′ is sufficient for identification, since accurate recon-

struction of the image is not a requirement. In this framework, identification becomes

a pattern recognition task. The eigenfaces span an M ′-dimensional subspace of the

original N2 image space. The M ′ significant eigenvectors of the L matrix are chosen

as those with the largest associated eigenvalues. As previously mentioned, in many

of these test cases, M ′ = 7 eigenfaces were used from M = 16 face images.

A new face image (φ) is transformed into its eigenface components ωi (projected

into “face space”) by a simple operation,

ωk = ut
k(φ − Ψ), (3.9)

for k = 1, . . . , M ′. The average face Ψ is subtracted and the remainder is projected

onto the eigenfaces uk. This describes a set of point-by-point image multiplications

and summations, operations performed at approximately frame rate on current image

processing hardware. Figure 3-6 shows an image and its projection into the (in this

case) seven-dimensional face space.

The weights form a vector Ωt = [ω1 ω2 . . . ωM ′] that describes the contribution

of each eigenface in representing the input face image, treating the eigenfaces as a

basis set for face images. The vector is then used in a standard pattern recognition

algorithm to find which of a number of pre-defined face classes, if any, best describes

the face. The simplest method for determining which face class provides the best

description of an input face image is to find the face class k that minimizes the

Euclidian distance

εk = ‖(Ω − Ωk)‖2, (3.10)
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Figure 3-6: An original face image and its projection onto the face space
defined by the eigenfaces of Figure 3-5.

where Ωk is a vector describing the kth face class. The face classes Ωi are calculated

by averaging the results of the eigenface representation over a small number of face

images (as few as one) of each individual. A face is classified as belonging to class k

when the minimum εk is below some threshold θε. Otherwise the face is classified as

“unknown”, and optionally used to create a new face class.

The nearest-neighbor classification assumes a uniform gaussian distribution in face

space of an individual’s feature vectors Ωi. Since there is no a priori reason to assume

such a distribution, we want to characterize it rather than assume it is gaussian. The

class distribution can be obtained over a short time by continuously projecting the

images of an individual onto the eigenfaces, keeping track of the projection values

while allowing for variations in the subject’s expression, the lighting, etc. The data

is then fit to a non-uniform multidimensional gaussian which describes an individ-

ual’s distribution in face space. This has been tested but not yet implemented into

the working recognition system. Non-linear networks such as described by Fleming

and Cottrell [36] appear to be a promising way to learn more complex face space

distributions by example.

Because creating the vector of weights is equivalent to projecting the original face

image onto the low-dimensional face space, many images (most of them looking noth-

ing like a face) will project onto a given pattern vector. In many pattern recognition

schemes this will be a false positive, incorrectly identified as a match. This is not a

problem for the system, however, since the distance ε between the image and the face

space gives a direct measure of the “faceness”, or how well the eigenfaces describe the
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image. This is simply the squared distance between the mean-adjusted input image

Φ = φ − Ψ and Φf =
∑i=M ′

i=1 ωkuk, its projection onto face space:

ε2 = ‖Φ − Φf‖2 (3.11)

If this distance ε — the distance from face space — is large, the image is not well

described by the eigenfaces and therefore is not considered a face. A face image, on

the other hand, should lie near the face space, and so produce a small ε. We choose

a threshold βε to represent the minimum acceptable distance from face space.

Thus there are four possibilities for an input image and its pattern vector: (1)

near face space and near a face class; (2) near face space but not near a known face

class; (3) distant from face space and near a face class; and (4) distant from face

space and not near a known face class. “Near” and “distant” are defined relative to

the threshold values βε and θε.

Figure 3-7 shows a simple example of these cases, with two eigenfaces (u1 and

u2) and three known individuals (face classes Ω1, Ω2, and Ω3). In the first case,

an individual is recognized and identified as person 1 because it is very close to the

corresponding face class Ω1). In the second case, an unknown individual is present,

since the image is “face-like” (near face space), but not close to any of the known

face classes. The last two cases indicate that the image is not of a face. Case three

typically shows up as a false positive in most recognition systems; in our framework,

however, the false recognition may be detected because of the significant distance

from face space (large ε). Figure 3-8 shows some images and their projections into

face space and gives a measure of distance from the face space for each.

3.5 Using eigenfaces to detect and locate faces

The analysis in the preceding sections assumes we have a centered face image. We

need some way, then, to locate and center a face in a scene in order to do the recogni-

tion. The idea of projecting an image into face space (equivalent to reconstructing the

image using the eigenfaces) and finding the distance ε between the original and the

reconstruction is useful here, as it gives a measure of “faceness” for every subimage

in a larger scene.

As seen in Figure 3-8, images of faces do not change radically when projected
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Recognized
as Ω 1

Who are
you?

?False
positive?

No face

1          near                     near

2          near                      far

3           far                      near

4           far                       far

Face space Known face class Result

Figure 3-7: A simplified version of face space to illustrate the four results of
projecting an image into face space. In this case, there are two eigenfaces (u1

and u2) and three known individuals (Ω1, Ω2, and Ω3).
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(a)

(b)

(c)

Figure 3-8: Three images and their projections onto the face space defined
by the eigenfaces of Figure 3-5. The relative measures of distance from face
space (ε) are: (a) 29.8 (b) 58.5 (c) 5217.4. Images (a) and (b) are in the
original training set.
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into the face space, while the projection of non-face images appear quite different.

This basic idea is used to detect the presence of faces in a scene: at every location

in the image, calculate the distance ε between the local subimage and its face space

projection. This distance from face space is used as a measure of “faceness”, so the

result of calculating the distance from face space at every point in the image is a “face

map” ε(x, y). Figure 3-9 shows an image and its face map — low values (the dark

area) indicate the presence of a face. Local minima in the face map indicate possible

faces; if the value of ε(x, y) at any minima is below a threshold, a face is detected. In

Figure 3-9(b), the distinct minimum is correctly located in the center of the face.

Unfortunately, direct application of Equation 3.11 at every pixel is rather expen-

sive. By manipulating the equation and implementing part of the computation via

the fast fourier transform, we can produce an efficient method of calculating the face

map ε(x, y) in the following manner.

To calculate the face map at every pixel of an image I(x, y), we need to project

the subimage centered at that pixel onto face space, then subtract the projection

from the original. To project a subimage φ onto face space, we must first subtract

the mean image, resulting in Φ = φ−Ψ. With Φf being the projection of Φ onto face

space, the distance measure at a given image location is then:

ε2 = ||Φ − Φf ||2
= (Φ − Φf )

t(Φ − Φf )

= ΦtΦ − ΦtΦf − Φt
f(Φ − Φf)

= ΦtΦ − ΦtΦf

(3.12)

since Φf ⊥ (Φ − Φf ) and

ε2 = ΦtΦ − Φt
fΦf (3.13)

since ΦtΦf = Φt
fΦf . Because Φf is a linear combination of the eigenfaces (Φf =

∑M
i=1 ωiui) and the eigenfaces are orthonormal vectors, we have

Φt
fΦf = (ω1u1 + ω2u2 + . . .)t(ω1u1 + ω2u2 + . . .)

= (ω1u
t
1ω1u1 + ω1u

t
1ω2u2 + . . . + ω2u

t
2ω2u2 + . . .)

=
∑M

i=1 ω2
i

(3.14)
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(a)

(b)

Figure 3-9: (a) Original image. (b) Face map, where low values (dark areas)
indicate the presence of a face.
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Therefore

ε2 = ΦtΦ −
M∑
i=1

ω2
i (3.15)

at every pixel location in the image, or

ε2(x, y) = Φt(x, y)Φ(x, y) −
M∑
i=1

ω2
i (x, y) (3.16)

where ε(x, y) and ωi(x, y) are scalar functions of image location, and Φ(x, y) is a

vector function of image location.

The second term of Equation 3.16 is calculated in practice by a correlation with

the L eigenfaces:

∑M
i=1 ω2

i (x, y) =
∑M

i=1 Φt(x, y)ui

=
∑M

i=1(φ(x, y) − Ψ)tui

=
∑M

i=1(φ
t(x, y)ui − Ψtui)

=
∑M

i=1(I(x, y) ⊗ ui − Ψtui)

(3.17)

where ⊗ is the correlation operator and I(x, y) is the original image. The first term

of Equation 3.16 becomes

Φt(x, y)Φ(x, y) = (φ(x, y) − Ψ)t(φ(x, y) − Ψ)

= φt(x, y)φ(x, y)− 2φt(x, y)Ψ + ΨtΨ

= φt(x, y)φ(x, y)− 2I(x, y) ⊗ Ψ + ΨtΨ

(3.18)

so that
ε2(x, y) = φt(x, y)φ(x, y)− 2I(x, y) ⊗ Ψ + ΨtΨ

−∑M
i=1(I(x, y) ⊗ ui − Ψtui)

(3.19)

Since the average face Ψ and the eigenfaces ui are fixed, Equation 3.19 becomes

ε2(x, y) = φt(x, y)φ(x, y)− 2I(x, y) ⊗ Ψ −
M∑
i=1

I(x, y) ⊗ ui + C (3.20)

where the constant C = ΨtΨ +
∑M

i=1 Ψtui may be computed only once before the

recognition process begins.
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Thus the computation of the face map involves only M + 1 correlations over the

input image and the computation of the first term φt(x, y)φ(x, y). This is computed

by squaring the input image I(x, y) and, at each image location, summing the squared

values of the local subimage by convolving the result with a mask of all 1’s. (The

effect of the background is eliminated by modifying this mask to be 1 in the face area

and 0 elsewhere — this is the binary mask described in Section 3.6.1).

The correlations are implemented in the face recognition system as a series of

FFTs, while the remaining operations are simple addition and point operations. Tim-

ing is discussed in Chapter 5. As discussed in Chapter 6, these computations can be

implemented by a simple neural network.

3.6 Recognition issues

The preceding sections describe the basic eigenfaces formulation. A number of other

issues must be addressed to achieve a robust working system. In this section I discuss

some of these issues and indicate current or proposed solutions.

3.6.1 Eliminating the background

In the preceding analysis we have ignored the effect of the background. In practice, the

background can significantly affect the recognition performance, since the eigenface

analysis as described above does not distinguish the face from the rest of the image.

In the experiments described in Chapter 4, it was necessary to reduce or eliminate

the background from the database of face images.

I have used two methods in order to handle this problem without having to solve

other difficult vision problems such as robust segmentation of the head. The first con-

sists of multiplying the input face image by a two-dimensional non-uniform gaussian

window centered on the face, as in Figure 3-10(b), thus diminishing the background

and accentuating the middle of the face. Experiments in human strategies of face

recognition [48] cite the importance of the internal facial features for recognition of

familiar faces. De-emphasizing the outside of the face is also a practical consideration

since changing hairstyles may otherwise negatively affect the recognition. This tech-

nique was moderately effective in reducing background effects, but at the expense of

complicating the “distance from face space” measurement.
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(a) (b)

(c) (d)

Figure 3-10: Two methods to reduce or eliminate the effect of background.
(a) An original face image. (b) Multiplied by a gaussian window, emphasizing
the center of the face. (c) The binary face mask outlined by the operator
(while gathering the training set). (d) The resulting database entry.

54



A more useful and efficient technique is to remove the background from the very

beginning, when grabbing the training set of face images. This is done simply by the

operator outlining the head or face of the first training set image, using a mouse or

digitizing tablet. From this outline, a binary mask is made defining the face region for

all subsequent processing, and each face image in the training set is multiplied by this

face mask, as shown in Figure 3-10(b) and (c). The background of the training set

images is therefore consistently zero. Because the eigenfaces are made from a training

set with the background masked out of each image, they will also have values of zero

at these image locations.

Because the background is zero in the eigenfaces it does not contribute at all to

the projection of a new image into face space or to the subsequent classification. The

“distance from face space” measurement is modified only by changing a mask of all

ones to be zero in the background as mentioned in the previous Section. The compu-

tation is not increased at all. This method has proven quite effective in eliminating

background problems.

3.6.2 Scale (head size) and orientation invariance

The experiments of Chapter 4 will show that recognition performance decreases

quickly as the head size, or scale, is misjudged. The head size in the input im-

age must be close to that of the eigenfaces for the system to work well. The motion

analysis which will be discussed in Chapter 5 can give an estimate of head width, from

which the face image is rescaled to match the eigenface size. However the current

system is limited to one moving person with no camera motion.

Another approach to the scale problem, which may be separate from or in addition

to the motion estimate, is to use multiscale eigenfaces, in which an input face image

is compared with eigenfaces initially at a number of scales. In this case the image will

appear to be near the face space of only the closest scale eigenfaces. Equivalently, we

can scale the input image to multiple sizes and choose the scale which results in the

smallest distance measure to face space using a single set of eigenfaces. A two-pass

strategy is to first look for the best match (the smallest ε(x, y)) with eigenfaces spaced

an octave apart, and then refine the search around the best octave using eigenfaces

of different scale within an octave.

Although the eigenfaces approach is not extremely sensitive to 2-D head orienta-
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tion (i.e. sideways tilt of the head), a non-upright view will cause some performance

degradation. An accurate estimate of the head tilt will certainly benefit the recog-

nition. Two simple methods have been considered and tested for estimating head

orientation. The first is to calculate the orientation of the motion blob of the head.

This is less reliable as the shape tends toward a circle, however. Using the fact that

faces are reasonably symmetric patterns, at least for frontal views, I have tested simple

symmetry operators to estimate head orientation. Once the orientation is estimated,

the image can be rotated to align the head with the eigenfaces. A more sophisticated

symmetry operator, demonstrated in real time on faces, is described by Reisfeld et

al. [78].

3.6.3 Multiple views

For most applications, a face recognition system needs to deal with the range of fa-

cial views from frontal to profile. This range can be incorporated into the eigenface

approach by defining a limited number of face classes for each known person corre-

sponding to characteristic views. For example, an individual may be represented by

face classes corresponding to a frontal face view, oblique views at ± 45◦, and right

and left profile views. In many interactive viewing situations a small number of views

will be sufficient to recognize a face. This is partly because people are likely to move

into a position close to one of these characteristic views, and partly because of the

associative memory nature of the approach — each set of eigenfaces can deal with a

small range of viewpoints rather than one exact view.

To represent multiple face classes, we need multiple sets of eigenfaces, one set for

each view. The first step of recognition is to calculate the distance to each separate

face space (or “view space”), resulting in a number of distance maps εk(x, y). Next

we select the view with the minimum ε(x, y), and proceed with the recognition within

the chosen view.

A more efficient method is to lump images from all the views into one set of

eigenfaces. This has the advantage of using fewer than 3M eigenfaces, since there

will be at least some correlation among the images of different views. (The more

highly correlated the training set of images, the fewer eigenfaces are needed.) So it

can be faster and simpler to set up. A potential disadvantage is that many images

will appear to be close to the face space which are not normal face images — e.g.
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linear combinations of different views. Because these are unlikely to appear in real

situations, however, this is not a significant problem. Another complication is that

of solving an order 3M eigenvalue problem rather than 3 such problems of order M .

For reasonably small databases this is also not a significant problem. However the

background is harder to eliminate, since the common mask described in Section 3.6.1

must be large enough to include disparate views.

Tests of the system using three views are promising. Figure 3-11 shows a simple

example of the recognition of three views of two people. Testing with multiple views

of many people is underway.

3.6.4 Learning to recognize new faces

The idea of projecting into face space creates the ability to learn and subsequently

recognize new faces in an unsupervised manner. When an image is sufficiently close

to face space but is not classified as one of the familiar faces (case 2 in Figure 3-7), it

is initially labeled as “unknown”. The system stores the pattern vector and possibly

the corresponding unclassified image. If a collection of “unknown” pattern vectors

cluster together in the pattern space, the presence of a new but unidentified face is

postulated.

Depending on the application, the system may then alert the user (e.g. a security

guard) that an unknown person is present, or continue on to learn the new face

for subsequent recognition. The images corresponding to the pattern vectors in the

cluster are then checked for similarity by requiring that the distance from each image

to the mean of the images is less than a predefined threshold. If the images pass

the similarity test, the average of the feature vectors is added to the face classes as

a new person. Also, the supposed face image closest to the mean image is added to

the database of known faces. Occasionally, the eigenfaces may be recalculated using

these stored images as part of the new training set. When this is done, the system

has effectively learned the new face.

Figure 3-12 illustrates learning a new face. A training set of faces (front views

only) gives rise to the eigenfaces of Figure 3-12(a). A new person, not in the database,

enters the scene, and the motion processing (described in Chapter 5 and the distance

from face space measure locate the face as shown in Figure 3-12(b) and (c). Because

this is reasonably close to face space but not close to any of the known classes, the
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(a)

(b) (c)

Figure 3-11: A simple multiple-view recognition example: two people, three
views. (a) The training set. (b) Image correctly recognized as the left view of
person 2. (c) Image correctly recognized as the right view of person 1.
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face is considered as a new person and added to the database.

3.7 Summary of the recognition procedure

To summarize, the eigenfaces approach to face recognition involves the following steps:

1. Collect a set of characteristic face images of the known individuals. This set

should include a number of images for each person, with some variation in

expression and in the lighting. (Say four images of ten people, so M = 40.)

2. Calculate the (40x40) matrix L, find its eigenvectors and eigenvalues, and choose

the M ′ eigenvectors with the highest associated eigenvalues. (Let M ′ = 10 in

this example.)

3. Combine the normalized training set of images according to Equation 3.8 to

produce the (M ′ = 10) eigenfaces uk.

4. For each known individual, calculate the class vector Ωk by averaging the eigen-

face pattern vectors Ω (from Equation 3.10) calculated from the original (four)

images of the individual. Choose a threshold θε which defines the maximum

allowable distance from any face class, and a threshold βε which defines the

maximum allowable distance from face space (according to Equation 3.11).

5. For each new face image to be identified, calculate its pattern vector Ω, the

distances εi to each known class, and the distance ε to face space. If the min-

imum distance εk < θε and the distance ε < βε, classify the input face as the

individual associated with class vector Ωk. If the minimum distance εk > θε but

distance ε < βε, then the image may be classified as “unknown”, and optionally

used to begin a new face class.

6. If the new image is classified as a known individual, this image may be added to

the original set of familiar face images, and the eigenfaces may be recalculated

(steps 1 – 4). This gives the opportunity to modify the face space as the system

encounters more instances of known faces.
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(a)

(b) (c)

(d)

Figure 3-12: An example of learning a new face. (a) The training set of
3 people. (b) An unknown face in the scene, located coursely via motion
processing. (c) Distance from face space map ε(x, y) for the scene. (d) The
new face, located at the minimum ε(x, y). This face image was close enough to
face space to be considered possibly a face, but did not project near a known
class in face space.
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Chapter 4

Experiments

Hofstadter’s Law: It always takes longer than you expect, even when you

take into account Hofstadter’s Law.

Douglas Hofstadter, Gödel, Escher, Bach

4.1 Introduction

The performance of recognition algorithms are typically analyzed by one (or more)

of three methods: (1) worst-case analysis, (2) probabilistic analysis, or (3) empirical

testing. For most schemes based on well-defined features, such as corners of polyhedral

objects, or those limited to well-defined object models — in CAD-based vision, for

example — methods (1) and (2) are both possible and desirable. For complex object

recognition tasks such as face recognition, however, analyzing performance is less

straightforward. Because it is impossible to exhaustively catalog the range of objects

expected, and because there is no clearly defined lowest-level feature set to work from

(besides the actual pixel intensity values), analysis methods (1) and (2) are limited

to particular data sets. These methods of performance analysis have little meaning

on limited sets, so empirical testing becomes the dominant mode of performance

analysis for complex object recognition. This chapter and the next focus on learning

about the usefulness, limitations, and performance of the “eigenfaces” approach to

face recognition from two approaches to empirical testing.

To initially assess the viability of this approach to face recognition described in

Chapter 3 and particularly the objectives of accuracy and robustness, recognition
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experiments were performed on a set of stored face images, collected under a range

of imaging conditions. Using this database I ran several experiments to evaluate the

performance under known variations of lighting, scale, and head orientation. The

results of these experiments are reported in this chapter.

4.2 Image database

The images from Figure 3-4(a) were taken from a database of over 2500 face images

digitized under controlled conditions.1 Sixteen subjects were digitized at all com-

binations of three head orientations, three head sizes or scales, and three lighting

conditions. A six level gaussian pyramid was constructed for each image, resulting

in image resolution from 512x512 pixels down to 16x16 pixels.2 Figure 4-1 shows the

images from one pyramid level for one individual. The subjects were allowed to move

in between images, and were approximately but not exactly centered in the image.

No attempt was made to precisely calibrate the imaging conditions beyond the gross

distinctions in scale, lighting, and orientation.

To reduce the effect of the background on the calculation of the eigenfaces and

the classification, the images were multiplied by a fixed gaussian window centered on

the face, as shown earlier in Figure 3-10(b). The gaussian window emphasizes the

center of the face and de-emphasizes the head outline, hair, and scene background.

4.3 Recognition experiments

In the first experiment the effects of varying lighting, size, and head orientation were

investigated using the complete database of 2592 images of the sixteen individuals

shown in Figure 3-4(a). Various groups of sixteen images were selected and used

as the training set. Within each training set there was one image of each person,

all taken under identical conditions of lighting, image size, and head orientation, all

at the same scale. The top eight eigenfaces calculated from each training set were

used in the classification process. Other face images from the database were then

1A subset of these images is available via ftp from “victoria.media.mit.edu” (net address
18.85.0.121), in the file pub/images/faceimages.tar.Z.

2So 16x3x3x3=432 images are unique, and the rest are filtered, subsampled versions of those.
Altogether there are 432x6=2592 images.
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Figure 4-1: Variation of face images for one individual: three head sizes,
three lighting conditions, and three head orientations.
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classified as being one of these sixteen individuals — the one closest in face space

using the euclidian distance metric — or else as “unknown”. Statistics were collected

measuring the mean recognition accuracy as the training conditions and the test

conditions varied. The independent variables were difference in illumination, imaged

head size, head orientation, and combinations of illumination, size, and orientation.

Figures 4-2 and 4-3 show results of these experiments. The graphs indicate the

percentage of correct classifications for varying conditions of lighting, size, and head

orientation, and combinations thereof, averaged over the number of experiments. The

results are plotted as a function of the rejection rate, the percentage of faces rejected

as unknown, which is controlled by the threshold parameter θε (see Section 3.4). A

rejection rate of zero is effected by an infinite threshold θε. In this case where every

face image is classified as known, the system achieved approximately 88% correct

classification averaged over lighting variation, 65% correct averaged over orientation

variation, and 55% correct averaged over size variation. Note that for the database

size of sixteen, random chance should produce a 6% correct classification rate.

At low values of θε (i.e. higher rejection rates), only images which project very

closely to the known face classes will be recognized, so that there will be few errors

but many of the images will be rejected as unknown. At high values of θε most

images will be classified, but there will be more errors. Adjusting θε to achieve 98%

accurate recognition boosted the unknown rates to 42% while varying lighting, 56%

for orientation, and 59% for size. For varied lighting, a 93% recognition accuracy was

reached with just a 14% unknown rate.

As can be seen from these graphs, changing lighting conditions causes relatively

few errors, while performance drops dramatically with size change. This is not sur-

prising, since under lighting changes alone the neighborhood pixel correlation remains

high, but under size changes the correlation from one image to another is largely lost.

It is clear that scale must be taken into consideration. The head size must be esti-

mated, using either motion processing or a multiscale approach, as was discussed in

Section 3.6.2, so that faces of a given size are compared with one another.

These experiments show an increase of performance accuracy as the threshold

decreases. This can be tuned to achieve very accurate recognition as the threshold

tends to zero, but at the cost of many face images being rejected as unknown. The

tradeoff between rejection rate and recognition accuracy will be different for each of

the various face recognition applications. However it is most desirable to have a way
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Figure 4-2: Results of experiments measuring recognition performance using
eigenfaces, plotted as a function of the rejection rate. The averaged recognition
performance as the lighting varied, as the head orientation varied, and as the
head size (scale) varied.
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Figure 4-3: Results of experiments measuring recognition performance using
eigenfaces, plotted as a function of the rejection rate. Recognition performance
as combinations of the factors are varied.
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of setting the threshold high, so that few known face images are rejected as unknown,

while at the same time detecting the incorrect classifications. That is, we would like

to increase the discriminability (the d′) of the recognition process.

The “distance from face space” metric (ε) introduced in Section 3.4 accomplishes

this, allowing the rejection of false positives. Because the projection onto the eigenface

vectors is a many-to-one mapping, there are a potentially unlimited number of images

that can project onto the eigenfaces in the same manner, i.e., produce the same

weights. Many of these will look nothing like a face, as shown in Figure 3-8(c).

Although the experiments described in this section did not use this measure since

they were all known to be faces, the recognition accuracy would certainly improve

taking ε into account via the additional threshold βε (minimum distance from face

space) — at the expense of an increased rejection rate.

4.4 Effects of artificial noise and the number of

eigenfaces

Informal testing on face images with structured and unstructured (random) noise

added in show that the system is reasonably robust to degraded input. (See Appendix

A for a discussion of modeling noise in statistical pattern recognition tasks.) To be

robust in the face of the types of image degradations depicted in Figure 3-1, a noisy

image or partially occluded face should cause recognition performance to degrade

gracefully, rather than abruptly. Because the eigenfaces essentially implement an

autoassociative memory for the known faces (as described in [56]) local degradations

are in a sense distributed throughout the image, as a local error will affect each

eigenface projection a small amount. An example of this is shown in the occluded

face image and face space projection of Figures 4-4 and 4-5. The face space projection

effectively distributes the local error (the occlusion of the eyes) globally and recovers

the missing information. The result of the occlusion is a larger distance from face

space measure ε and an increased distance from the proper face class εk, but not an

abrupt loss in the ability to recognize the face.

As mentioned in Chapter 3, the number of eigenfaces to use from a given training

set is a choice that involves a tradeoff between recognition speed and accuracy. The

heuristic rule which has worked well for the system is to choose the eigenfaces whose
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(a) (b)

(c) (d)

Figure 4-4: (a) Partially occluded face image from the test set and (b) its
projection onto face space. The occluded information is encoded in the eigen-
faces. (c) Noisy face image and (d) its face space projection. (All images are
recognized correctly.)
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(a)

(b)

(c)

(d)

Figure 4-5: (a) A training set of three faces. (b) The corresponding eigen-
faces. (c) Occluded images. (d) Their projections onto face space.
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Figure 4-6: Recognition performance depends on the number of eigenfaces
used. The graph shows the recognition accuracy over lighting changes for a
training set of sixteen faces.

eigenvalues are within an order of magnitude of the largest. Figure 4-6 shows a graph

of on test of recognition accuracy over a set of lighting changes as a function of the

number of eigenfaces used. For this training set of sixteen faces, the performance

drops below 90% at about five eigenfaces.

4.5 Lessons

Though somewhat impressive, the recognition results reported in this chapter should

be taken as qualitative, not quantitative, performance measures of the approach.

Many factors that were not controlled for precisely contributed to the results. Ini-

tially the background was not taken out for the experiments, so the whole image was

being “recognized”. This had both positive and negative effects, since although the

background remained similar for the images of any one individual — which should

make recognition easier — the background also affected the calculation of the eigen-
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faces which made recognition more difficult. The gaussian mask was chosen to reduce

the background because of its simplicity and its deemphasis of the hair.

In addition, the subjects were allowed to move in between images, and some

moved much more than others. Although the faces were approximately centered in

the digitized images, the centering was done only by eye (mine, that is), so many of

the images were off-center by a number of pixels. With the face location technique

of Section 3.5, the faces would be much better localized, and recognition should be

more accurate.

Another consideration is that because there was only one image grabbed under

each condition, in every experiment one of the sets being tested was the training set

itself. There would have been more room for error if for every training set there was

another set of sixteen images digitized under the same conditions. However, informal

tests indicate that there would have been little difference with training sets of this

size.

The primary lessons from these experiments are:

1. The recognition approach is viable.

2. The system is accurate, comparable with published results of other systems.

3. Tradeoffs can be made between accuracy and rejection rate which will depend

on the application.

4. A good estimation of scale is important for accurate recognition.

5. The background must be reduced or eliminated.

6. The system can handle reasonable amounts of occlusion and noise.
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Chapter 5

Interactive-Time System

FACE RECOGNITION: No one has yet been able to build vision machines

that approach our human ability to distinguish faces from other objects —

or even to distinguish dogs from cats. This remains a problem for research.

Marvin Minsky, The Society of Mind

5.1 Introduction

To further test the performance of the approach to face recognition presented in

this thesis — and to accomplish the goals of the work itself — it was important to

implement the recognition in an interactive-time system. The main tasks of the face

recognition system are to (1) determine that a face is present, (2) locate the face, and

(3) identify the face. The recognition procedure based described in Chapter 3 uses the

“face map” ε(x, y) to perform the first two, and the “face space” classification to do

the identification. However the face map from Section 3.5 is rather computationally

expensive (especially when scale is unknown) and may currently be most practical in

limited regions of the image, when the approximate location of the face is known, as

well as in an initial bootstrap mode to initially find potential face locations. Therefore

a faster, simpler technique for finding the location of faces is desirable.

Using the techniques described in Chapter 3 together with a simple motion de-

tection and tracking algorithm, I built a system which quickly locates and recognizes

faces in a reasonably unstructured, dynamic environment. Figure 5-1 shows a block

diagram of the complete system. A fixed camera, monitoring part of a room, is con-
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Figure 5-1: System diagram of the face recognition system.

nected to an Analogic frame grabber, which is attached to a Sun Sparcstation through

the SCSI port. A Skystation, an i860-based application accelerator, is connected to

the Sun and performs all the number crunching. The frame grabber digitizes and

subsamples a sequence of video images at frame rate (30 frames/sec), and ships a

subset of these 120x128 images to the Sun/Skystation for motion processing. If a

head is located, a portion of the full frame (480x512) image is requested from the

frame grabber to be used in the recognition.

The motion detection and analysis program looks for a moving object against a

stationary background by tracking the motion and applying simple rules to determine

if it is tracking a head.1 When a head is found, a subimage, centered on the head,

is sent to the Sun/Skystation. When the “face space map routine” is activated, the

subimage is 256x256 pixels and the ε(x, y) map is calculated to determine the exact

location of the face. Otherwise, the face subimage determined from motion alone is

shipped from the frame grabber. Using the distance from face space measure, the

proposed face subimage is either rejected as not a face, recognized as one of a group

1Because of hardware limitations, the current system looks for motion only occasionally, whereas
the first system, which used Datacube image processing hardware, tracked almost continuously. The
current hardware was chosen for its simplicity, cost, and compactness, and is not best suited for the
implementation.

73



t

Spatiotemporal
filteringI(x,y,t)

Thresholding
Motion
Analysis

Head
Location

(x,y)

Figure 5-2: The head tracking and locating system.

of familiar faces, or determined to be an unknown face.

5.2 Motion detection and head tracking

Because people are constantly moving — even while sitting, we fidget and adjust

our body position, nod our heads, look around, and such — motion can be a useful

cue in estimating head position. In the case of a single person moving in a static

environment, the motion detection and tracking algorithm depicted in Figure 5-2 will

locate and track the position of the head. Simple spatio-temporal filtering (filtering,

subsampling, and frame differencing) accentuates image locations which change with

time, so a moving person “lights up” in the filtered image. If a significant portion of

the motion map is above threshold, motion is detected and the presence of a person

is postulated. (A similar motion detection algorithm which can deal with multiple

objects and a moving camera has recently been demonstrated by Nelson [67].)

After thresholding the filtered image, the “motion blobs” of the binary motion

map are analyzed to decide if the motion is caused by a person and if so to determine

the head position. A few simple rules are applied, such as:
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1. Small, isolated motion blobs are removed.

2. Too much motion in the image indicates that the threshold was set too low

or there were many moving objects or perhaps camera motion. In this case,

processing is aborted.

3. Head motion must be realistically slow and contiguous, since heads aren’t ex-

pected to jump around the image erratically. This is implemented by filtering

the path of head motion.

4. The head is assumed to be the upper motion blob, or the upper part of the

large blob. (Headstands are not allowed!)

5. If no significant motion is detected, assume the head has not moved since it was

last detected.

Figure 5-3 shows an image with the head located, along with a trace of the supposed

path of the head in the preceding sequence of frames.

The motion map also allows for an estimate of scale. The size of the blob that

is assumed to be the moving head determines the scale at which recognition is at-

tempted. The motion map is expected to capture either the complete head or an

outline including the sides of the head, both shown in 5-4. In both cases an estimate

of head width — and therefore scale — is simple.

5.3 System considerations

Designing a practical system for face recognition within this framework requires as-

sessing the tradeoffs between generality, required accuracy, and speed. If the face

recognition task is restricted to a medium or small set of people (such as the mem-

bers of a family or a small company), a small set of eigenfaces is adequate to represent

the faces of interest. If the system is to reliably learn new faces or recognize many

people, a larger basis set of eigenfaces will be required. The results of Sirovich and

Kirby [92, 53] for coding of face images gives some evidence that even for large seg-

ments of the population, the number of eigenfaces needed is still relatively small.

An intuitive explanation for this is that, as the number of faces in the training set

grows, the rate of novel features or configurations seen (e.g. different kinds of noses,
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Figure 5-3: The head has been located — the image in the box is sent to
the face recognition process. Also shown is the path of the head tracked over
several previous frames. (The subject entered the scene from the right, walked
over and sat down.)

(a) (b)

Figure 5-4: Motion map of the head region for (a) little movement or high
threshold, and (b) significant movement or low threshold. Estimating the scale
involves measuring the distance between right and left sides of the head.
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chin structure) decreases. So the first ten faces in the database may require six (for

example) eigenfaces to capture their variation, while the last ten faces may require

only one additional eigenface. Figure 5-5 shows graphs of reconstruction accuracy

versus the number of eigenfaces used for (a) face images and (b) images of various

unrelated objects. Clearly when the images share a common overall configuration, as

do faces, there is a high degree of correlation among the images and fewer eigenfaces

are needed to represent the class of images to a given error tolerance.

Even with a large number of eigenfaces, however, processing time may be speeded

up by clever implementations of the calculations. For example, Equation 3.20 may be

implemented so that after each image correlation with an eigenface ui the temporary

result is compared with the distance threshold βε, so that obviously non-face areas

or images may be aborted long before all the eigenfaces are used.

As in the experiments of Chapter 4, the threshold θε, which describes the maximum

acceptable distance from the best face class, may be adjusted, as well as βε, the

minimum acceptable distance from face space. These allow control over the accuracy

rate and the false positive rate, respectively. A small θε indicates that only very

certain identifications should be made, those which fall quite close to a known face

class, thus resulting in a higher rejection rate. A small βε means that only images very

well accounted for by the eigenfaces will be considered for identification, resulting in

few false positives but a higher sensitivity to noise or small changes in the face image.

The speed of the system depends on the options set, and is limited with the current

hardware by the number of data and status transfers necessary over the SCSI port.

Recognition occurs in this system at rates of up to a few times per second when the

face map ε(x, y) calculation is not performed and the face is found by motion analysis

alone. Calculating ε(x, y) currently slows it down to a rate of once every few seconds.

Until motion is detected, or as long as the image is not perceived to be a face, there

is no output. If motion is no longer detected, it is assumed that the individual is still

and the face is expected to be in the same area as previously.

Using the system involves a short setup procedure, where the operator executes

a few keyboard commands to digitize the people in the training set (or read the

images from files), and uses the mouse to outline the head region for one image or

else to locate the center of each face for multiplication by a gaussian window (e.g.

see Figure 3-10). The calculation of eigenfaces is done offline as part of the training,

and takes about fifteen seconds for a training set of sixteen people. After the training
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set is collected, the system calculates the eigenfaces, defines the face classes (Ωk),

and begins the motion processing to look for potential face locations. When a face is

recognized, the name of the identified individual is displayed on the video monitor.
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Chapter 6

Biological Implications

Those who work in the field of artificial intelligence (AI) cannot design a

machine that begins to rival the brain at carrying out such special tasks as

processing the written word, driving a car along a road, or distinguishing

faces.

David H. Hubel, Eye, Brain, and Vision

6.1 Biological motivations

High-level recognition tasks are typically modeled as requiring many stages of pro-

cessing, e.g., the Marr paradigm [64] of progressing from images to surfaces to three-

dimensional models to matched models. However the early development 1 and the

rapidness of face recognition, along with the performance and selective nature of

the neurological dysfunction prosopagnosia and the physiological studies discussed in

Chapter 2, make it appear likely that there is also a recognition mechanism based

on some fast, low-level, two-dimensional pattern recognition. Whether exclusively

specific to faces or not, such a face recognition mechanism is plausible because of the

nature of the visual stimulus (faces are typically seen in a limited range of views and

orientations) and the social importance of face processing.

The approach and algorithms developed for face recognition in the previous chap-

ters, then, are at least superficially relevant to biological vision. Without claim-

ing that biological systems store eigenfaces or process faces in the same way as the

1A number of studies confirm that infants have a preference for face-like patterns. [41]
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eigenface approach, we can note a number of qualitative similarities between our ap-

proach and both human performance and current understanding of the physiology.

For example, the interrace effect — in which performance on face recognition tasks

is demonstrably worse for faces of people who are of a different race than the subject

— may be explained by the relative inadequacy of a face space constructed from

experience with primarily one race or face type. In general, the system approach of

motion processing to detect the presence of a face, calculating the face map to locate

its precise location, and using eigenfaces to classify the face is similar to the typical

human scheme of motion detection, foveation, and recognition.

Furthermore, as in human performance, relatively small changes cause the recog-

nition system to degrade gracefully, so that partially occluded faces can be recognized.

Gradual changes over time (e.g. due to aging) are easily handled by the occasional re-

calculation of the eigenfaces, so that the system is quite tolerant to even large changes

as long as they occur over a long period of time. Similarly, human face recognition

ability is invariant to gradual changes in appearance. If, however, a large change

occurs quickly — e.g., addition of a disguise or shaving a beard — then the eigen-

faces approach may be fooled, as are people in conditions of casual observation. The

application of facial makeup, which should not affect feature-based approaches since

makeup does not change the positions or relationships between features, will effect

small changes in the eigenface representation — just as it causes subtle changes in

perceiving a face.

If we consider the projection of an image onto a given eigenface analogous to the

output of an “eigenface cell”, the performance of that cell and of collections of such

cells would be similar to many of the properties of face neurons in monkey cortex.

For example, most face neurons respond differently to different faces, but respond

to some degree independent of identity. Most are view-dependent. Most respond

despite some occlusion, and respond more to the whole face rather than to any one

part. These are also properties of eigenfaces.

There are a number of differences as well, which serve to highlight the fact that

“eigenface cells” cannot account for the variety of documented face cells. Compare

Table 6.1, which lists properties of “eigenface cells” with Table 2.1, listing properties

of monkey face cells, to note particular similarities and differences.
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Property Results
color gray-scale only, sensitive to luminance
orientation not very sensitive to small orientation changes (approx.

±10◦(rotation in the viewing plane)
position dependent on centered face
size very dependent on size of face
contrast relatively invariant to small contrast changes (lighting)
identity any given eigenface may respond the same or differently to dif-

ferent faces — depends on the current set
identity is encoded not in individual eigenfaces but in the collection of

their responses
expression not very sensitive to small changes in expression
face view view-dependent, but relatively insensitive to a small range about

a given viewpoint
face view discrete characteristic views
occlusion respond degrades gracefully with occlusion
features respond more to the whole face than to any one part
features rather insensitive to the presence of a particular facial feature

only
features scrambling the configuration of features changes eliminates the

response

Table 6.1: Properties of hypothetical “eigenface cells”, which respond ac-
cording to the projection of the image onto the eigenface
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Figure 6-1: Three-layer linear network for eigenface calculation. The sym-
metric weights ui are the eigenfaces, and the hidden units reveal the projection
of the input image Φ onto the eigenfaces. The output Φf is the face space pro-
jection of the input image.

6.2 Neural networks

The hypothetical “eigenface cells”, while not necessarily biologically plausible, may be

learned by linear or non-linear units of a neural network trained using backpropagation

[36]. Although I have presented the eigenfaces approach to face recognition as an

information-processing model, it may be implemented using simple parallel computing

elements, as in a connectionist system or artificial neural network. Figure 6-1 depicts a

three-layer, fully-connected symmetric linear network which implements a significant

part of the recognition system. The input layer receives the input (centered and

normalized) face image, with one element per image pixel, or N elements. The

weights from the input layer to the hidden layer correspond to the eigenfaces, so

that the response of each hidden unit is the dot product of the input image and

the corresponding eigenface: ωi = ΦT ui. The hidden unit responses, then, form the

pattern vector ΩT = [ ω1 ω2 . . . ωL ]. These units correspond the the “eigenface

cells” discussed above.

If the output weights are symmetric with those of the input, the output layer

produces the face space projection of the input image. This network implements
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an auto-associative memory, as described by Kohonen [55, 56], who offered a simple

learning rule to modify the initially random connection weights. This network can

recall noisy or partially occluded versions of the training set, identical to the behavior

of the eigenfaces as shown in Figures 4-4 and 4-5.

The network by itself cannot perform recognition, but only produce output images

from the input. The hidden layer of eigenface units must be fed into another network

which can classify their outputs, and the output image — the eigenface reconstruction

of the input — must also be fed to a network to determine the distance from face

space, ε.

Adding two non-linear components we construct Figure 6-2, which produces the

pattern class Ω, face space projection Φf , distance measure ε (between the image

and its face space projection), and a classification vector. The classification vector is

comprised of a unit for each known face defining the pattern space distances εi. The

unit with the smallest value, if below the specified threshold θε, reveals the identity

of the input face image.

This network is used as a spotlight onto the scene — any patch which falls on

its input image will be evaluated for “faceness” and identity. It therefore performs

foveal face recognition. Together with a mechanism for drawing attention to possible

face locations, perhaps via motion detection, the network could be implemented in

hardware as a very fast face recognition system.

84



Input image

Ave. face image

Projected image

Distance measure

ui ui

Identity

Γ

Ψ

Φ

Ω

Φf

Φ Φf-
ε

Σ

Figure 6-2: Collection of networks to implement computation of the pat-
tern vector, projection into face space, distance from face space measure, and
identification.
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Chapter 7

Visual Behaviors for Looking at

People

If one can get a team or committee of relatively ignorant, narrow-minded,

blind homunculi to produce the intelligent behavior of the whole, this is

progress. ....Eventually this . . . lands you with homunculi so stupid . . . that

they can be, as one says, “replaced by a machine.” One discharges fancy

homunculi from one’s scheme by organizing armies of such idiots to do

the work.

Daniel Dennett, Brainstorms

7.1 Introduction

Face recognition is of course not the only example of an interactive-time vision task

devoted to human-computer interface. There are many useful tasks that may be

approached through fast, reasonably simple visual “behaviors”. An important factor

in deciding what can be accomplished with this kind of system is to look at the

tasks at hand and ask what pertinent information is available. Behaviors can then

be constructed to take advantage of the nature of the task, to exploit a particular

ecological niche.

In the particular area of human-computer interface, there are a number of visual

behaviors that may be useful for machines to more intelligently and naturally interact

with people. In addition to identity, people use many different visual cues in normal
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conversation to convey (or perhaps betray) information. In this chapter I will briefly

describe a few of these which have been implemented to various degrees as visual

behaviors. They are primarily for the purpose of demonstration, as they have not

been extensively tested.

7.2 Feature detectors and direction of gaze

Knowledge of the presence or location of individual features, although probably not

sufficient for the purposes of recognition, may be useful in other contexts or as com-

ponents of a recognition strategy. The theory behind the eigenface analysis can be

applied more specifically to individual features, creating eigenpictures for each feature

of interest. As discussed in Appendix A, when looking for one class of object (e.g.

eyes) in an image the analysis is similar to a matched filter when just one eigenpic-

ture is used. Using multiple eigenpictures for the detection of a feature improves the

performance. Figure 7.2 shows the top few eigenpictures for eyes, an original face

image, and the “eye map” corresponding to the distance measure ε(x, y). The dark

spots indicate the eye positions. The eye detector is analogous to face recognition

with just one known face class Ω.

Another useful visual behavior which has biological significance would be a “di-

rection of gaze” detector. (Physiological studies [73] show many face cells in monkey

cortex are highly sensitive to the direction of gaze of the observed face, some pre-

ferring eye contact, others preferring averted gaze.) Simpler than an eye tracker,

which must output accurate direction information, a gaze detector should produce

qualitative information concerning the viewing direction. The gaze detector knows

three classes: left, right, and center. It is therefore a more general case of the above

eye detector. Figure 7.2 shows an example of gaze detection. Both the eye detector

and gaze detector can be implemented as interactive-time systems similar to that of

Chapter 5.

7.3 Blink detection

Imagine a tiger crouching motionless along the jungle path, silently waiting for his

prey to approach, preparing to pounce. Suddenly the prey notices in its periphery a
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(a)

(b) (c)

Figure 7-1: (a) Top four eigenpictures from a training set of eye images. (b)
Face image. (c) Eye map ε(x, y). The minima correspond to the eye positions.
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(a)

(b) (c)

Figure 7-2: (a) Top four eigenpictures from a training set of eye images with
direction of gaze to the left, right, and center. (b) Face image. (c) Eye map
ε(x, y). The minima correspond to the eye positions. At these positions, the
subimages are correctly classified as gazing to the left of camera.
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Figure 7-3: The blink detection algorithm.

small, brief, parallel movement and quickly darts off the path, escaping the imminent

danger and frustrating the waiting predator. It may be stretching things to claim a

biological need for mechanisms which detect eyes blinking, but because the informa-

tion is available and well structured, it is relatively simple to build a visual behavior

for blink detection.

Detecting eye blinks could be quite useful in the context of face recognition, help-

ing to determine head location and orientation, scale, which image(s) from a sequence

to use for identification (i.e. not to use an image with the eyes closed or closing), and

possibly higher-level aspects of face processing such as identifying moods (e.g. people

blink more often when they are nervous or embarrassed). Since blinking is performed

consistently by (awake) people, detecting blinks may be a reliable and important tool

for human-computer interface.

I have developed a simple technique for detecting eye blinks which has been tested

on short motion sequences. The algorithm depends on intensity variations over a lim-

ited spatial and temporal region. The idea is depicted in Figure 7-3. Intensity variance

over time is calculated on a pixel-by-pixel basis in a sequence of images, producing

a “variance image” σ(x, y). Pixels which have significant temporal variation, due to

any of a number of factors — e.g. lighting changes, image noise, object motion, or

moving shadows — will have a relatively large variance.
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After each new image in the sequence, the variance image is checked for the

number of pixels above a threshold θσ. If there are a sufficient number of “motion

pixels”, a connected components routine is applied to the thresholded variance image

to find connected regions, and simple statistics are calculated for each region: the

area in pixels, the centroid, and the minimum and maximum extent of the region.

The regions are then analyzed by a simple rule-based routine to check for the presence

of eye-blink pairs — pairs of regions which satisfy the following criteria:

1. Regions which are too large or small in area are discounted.

2. Regions which are far from circular are discounted.

3. Eye pairs must be approximately horizontal.

4. They must be within a certain range of horizontal spacing.

If there is general head motion, the routine will fail to find an adequate region pair

and start over again, clearing the variance image.

Figure 7-4(a) shows selected images from a one second (30 frames) sequence of

a person blinking, with very little other head movement. Figure 7-4(b) shows the

variance image for a subset of the frames. Figure 7-4(c) shows the connected com-

ponents of the thresholded variance image, and 7-4(d) the only candidate eye-blink

pair. Obviously in this example the selected regions correspond to the eyes in the

original image sequence.

This technique is quite simple and can be fooled by any small, parallel motion.

Blinking during a movement of the head will not be detected, although compensating

for this is reasonably straightforward using motion pyramids (see Nelson [67] and Burt

[17] for fast techniques to detect small movements in the context of larger motion).

However in brief periods of time when the head is still and there the eyes blink, the

algorithm will “light up” the eyes as in Figure 7-4(e). Because in a great amount

of communication and human-computer interaction people tend to limit their head

motion, and because blinks are typically of a fixed duration in time, this simple

approach is an effective visual behavior, well suited to its ecological niche.
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(a)

(b) (c) (d)

Figure 7-4: (a) Selected frames from a sequence of 30 images. (b) Variance
image. (c) Connected components of the image from (b) after thresholding.
(d) The single candidate eye-blink pair after the selection step.

7.4 Expression analysis

The eigenface approach may be useful for not only identification and detection, but

for analyzing expression as well, particularly for a given individual. A training set

was captured consisting of images of one person with a range of expressions. Classes

were defined for the specific expressions of smiling and frowning. The system reliably

distinguished between the two and exhibited the typical accuracy rate vs. rejection

rate tradeoffs as in the case of face recognition. Figure 7-5 shows an example of the

behavior.

It is evident from viewing the eigenfaces in this example that the moustache

and eyebrows were significant. For some people, it may be that the teeth are more

important indicators of expression. The eigenfaces let the system decide what to

encode. Working in concert with the recognition system, the expression analysis can

pull out the appropriate expression eigenfaces for the previously recognized individual.
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(a)

(b) (c)

Figure 7-5: Detecting expression. (a) Eigenpictures from various expressions.
(b) New face image classified as smiling. (c) New face image classified as
frowning.
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Chapter 8

Summary and Discussion

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where—” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

“—so long as I get somewhere,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

Lewis Carroll, Alice’s Adventures in Wonderland

8.1 Interactive-time vision and visual behaviors

The previous chapters have described visual behaviors intended for applications of

“looking at people”: face recognition, feature detectors, blink detection, and expres-

sion analysis. Visual behaviors are interactive-time vision systems which implement

special-purpose skills in a vertically layered fashion (as depicted in Figure 1-1). Face

recognition is treated in depth, and is a particularly interesting visual behavior at

this time because of the commercial interest1, the feasibility in terms of speed and

price of available hardware (both computers and optics), and the increased interest

in biological face recognition and therefore computational models of recognition.

Interactive-time vision is a superset of active (or animate) vision, which is mainly

directed towards behaviors relating perception to action by a robot. Along with the

1Many industries are very interested in face recognition systems for such applications as security
systems, teleconferencing, picture processing, and people meters for TV ratings.
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domain of active vision, interactive-time vision includes tasks in which a human com-

pletes the perception-action loop, and those which may only affect a robot’s behavior

occasionally rather than continuously. Thus the distinction between interactive-time

and “real-time” is not just in the processing time, but in the manner in which the

output of the system is used. To further clarify the distinction, a real-time stereo

system which produces a depth map many times a second is an example of neither

interactive-time vision nor active vision, since there is no goal achieved which would

directly enable action. If that map is output to a display system which highlights all

objects outside a safety area twice per second, the combination is an interactive-time

system. If the highlighted objects are separately located to enable a machine to move

them at a significant rate, the complete system is an example of active vision.

An important aspect of a visual behavior is the ability to report some measure of

confidence along with its answer. Because a special-purpose system will not neces-

sarily be operating in the ecological niche it is best suited for at all times, its output

should often be suspect. In fact, such systems are designed to be wrong most of the

time, and right only in special cases. Some indication of the validity of its answer —

or the lack of an answer when the situation is not appropriate — is vital for these

behaviors to be useful. In the case of face recognition, for example, the “distance from

face space” measure ε gives an indication of whether a face is present at all, and the

“distance from the nearest face class” measure εk indicates the identity confidence.

Rather than merely requiring these values to be under some set thresholds, the val-

ues themselves should be output along with location and identity of the face(s). This

allows for other behaviors to either supersede or defer to each other, depending on

the relative confidences.

8.2 Face recognition via eigenfaces

The approach to face recognition described in this thesis meets the objectives stated

in Chapter 3 of speed, accuracy, robustness, a limited ability to learn, and the ability

to both locate and identify faces. From both experiments with a stored database of

face images and experience with a working system, empirical results are promising

and the system can recognize faces in a moderately limited domain. The following

aspects of the system have not been fully implemented:

95



• Scale estimation — The thresholded motion map usually produces a clear silhou-

ette of the head or the outline of the head. From this map the head width, and

therefore the approximate scale of the face image, may be estimated. However

because the motion is detected in a low resolution (120x128 pixels) subsampled

image sequence in the current system, the head width measurement is likely to

be up to a few pixels off. Since this measurement is used to rescale the higher

resolution head subimage, any error in estimation at low resolution may be

magnified. Motion analysis at high resolution is not feasible with the current

hardware.

• Non-euclidian metric — The distribution in face space of a single face class is

not necessarily uniform gaussian, which is assumed by the euclidian metric used

for identification. Characterizing the distribution and using a non-euclidian

classification scheme should improve the identification performance.

• Characteristic views — The system currently treats multiple, characteristic

views of a single person as separate people, combining the views into one set of

eigenfaces. There should instead be multiple sets of eigenfaces, one per view-

point. Memory limitations of the Skystation application accelerator currently

prohibit multiple eigenface sets.

Another aspect of the approach which has not been fully explored is its scalability,

the performance as the face database increases in size. With the current system I have

tested only databases up to twenty faces; however for various applications, databases

of hundreds or even thousands of faces may be desirable. The main questions are:

1. How many eigenfaces are needed as the database size increases?

2. How does database size affect the reliable detection of faces?

3. How does database size affect the accuracy of face identification?

The first question is important since it affects the processing speed and memory

requirements. As mentioned in Section 5.3, the image coding results of Sirovich and

Kirby imply that as the database size grows, the number of eigenfaces needed to

represent to ensemble of faces grows at a much smaller rate.
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Of course the first question is related to the others, since the number of eigenfaces

will affect recognition performance. The fewer eigenfaces used, the more the recogni-

tion performance deteriorates. Too few eigenfaces results in an inability to recognize

a wide variety of faces as faces, since the distance from face space ε may be large even

for those in the database. And the fewer eigenfaces there are, the fewer face space

dimensions there will be, reducing the discriminability of identification.

The intuition gleaned from using the system indicates that the limiting factor will

be the ability to discriminate face classes as the database grows very large. This can

be viewed optimistically, however, as a “feature” rather than a “bug”, in the following

sense. For large databases such as an FBI collection of thousands of mug shots, the

most useful application for a face recognition may be to use a photograph or artist’s

rendering to limit the number of likely suspects to manageable number, e.g. a page

of mug shots. Because identification using the eigenfaces gives a distance measure

to every face in the database, these can be ranked and the best N matches can be

displayed for further inspection.

An alternative approach for very large databases is to do an initial screening as

described above, and then calculate a new, temporary set of eigenfaces from the best

N matches. The discrimination ability in this smaller set should be improved, and

accurate identification should be much improved.

8.3 Extensions and other applications of eigenfaces

The approach to recognition using eigenfaces has no inherent knowledge about faces

beyond masking out the background to only use the face region of the images. The

technique should not be limited to faces; it should also be applicable to categories

of objects which share the same overall configuration (as do faces) and are typically

seen in a limited range of views. It has been suggested to use eigenfaces2 to recognize

or classify frontal views of cars or tanks, trees and bushes, and cursive writing, to

name a few.

Additionally, the concept can be used more specifically within the context of face

processing. Shackleton and Welsh [89] have begun to apply the eigenface analysis

to individual facial features such as eyes, after first using deformable templates to

2Or in these cases, “eigencars”, “eigentrees”, etc.
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find and normalize the features. This is effectively combining the work of Yuille et

al. [108] with the work reported in this thesis. The approach is promising since it

merges the holistic eigenface approach with the feature-based template approach to

face recognition. Craw [26] also reports on face recognition work using face space,

and propose to model the time-dependence of learning the faces using probabilistic

techniques for calculating eigenvectors.

Choi et al. [23] report using the eigenface technique for both 3-D shape (by appro-

priately adjusting a wireframe model) and for recognition. Current face recognition

research by Akamatsu [2] is strongly motivated as well by previous reports of this

eigenface approach [99, 100, 101]. Other groups are also beginning to investigate the

use of eigenface analysis to determine other categorical judgements besides identity,

such as the subject’s gender and facial expressions.

8.4 Suggestions for future research

There are many possible research directions and challenging problems involved in

further improving the approach to face recognition introduced in this thesis. One

such area is improving the invariance of the system to changes in lighting. The

symmetry of the face gives the opportunity for adaptive filtering which will take

away some of the effects of an uneven illumination source. Facial symmetry also gives

a straightforward clue as to the head orientation, and I have briefly experimented

with simple orientation operators to give an estimate of orientation (deviation from

vertical).

Distinctions other than identity may be made based on eigenfaces, such as sex,

race, age, and expression. As is the case in recent work of Cottrell and Metcalfe [24],

it may be that a certain subset of the eigenfaces are most useful for any one of these

evaluations. It is unlikely however that for large databases the eigenfaces which are

best for discriminating identity will also be most useful for discriminating expression,

since the former task seeks to map all the expressions of a given person into a single

class. From the limited experiments of this thesis it seems that expression may best

be analyzed by a separate set of “eigenexpressions” for each individual.

Computer graphics techniques may be used to artificially age the database and

thus predict face classes or construct eigenfaces which are relevant to individuals

who were seen years before. Similarly, patterns of facial hair may be predicted and
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rendered, merging imaging and graphics in the database so that most likely appear-

ances of an individual are accounted for directly. For most of these tasks, the feature

locations will need to be known precisely.

The examples of Figures 4-4 and 4-5 indicate that recognition may fare well when

part of the face is occluded, or when there is significant image noise. These cases

may be handled even better, improving the recognition accuracy, by using a two-step

procedure: (1) project into face space, comparing the face image with the projection,

and (2) throw away those pixels which are very dissimilar to the projection and

classify the rest of the image. Scaled correctly, this should provide a more accurate

identification, although research to determine its limitations is necessary.

Further work should be done on the application to very large databases, looking

into how the problem scales with size and at what size individual identification be-

comes unreliable. This is important for at least two very significant applications of

this work, locating faces in general scenes (e.g. for querying an image database) and

reducing a victim’s search in criminal identification.

In addition, the motion processing which precedes recognition should be extended

to more general motion cases such as multiple moving objects and camera motion.

Sophisticated motion processing can be vitally interconnected with the recognition

scheme. For example, accurate head location reduces overall computation by reducing

the image area of the “distance from face space” calculation.
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Chapter 9

Conclusion

Of making many books there is no end, and much study wearies the body.

Now all has been heard; here is the conclusion of the matter.

Ecclesiates 12:12,13 (NIV)

The early attempts at making computers recognize faces were limited by the use of

impoverished face models and feature descriptions (e.g. locating features from an edge

image and matching simple distances and ratios), assuming that a face is no more than

the sum of its parts, the individual features. Recent attempts using parameterized

feature models and multiscale matching look more promising, but still face severe

problems before they are generally applicable. Current connectionist approaches tend

to hide much of the pertinent information in the weights which makes it difficult to

modify and evaluate parts of the approach.

The eigenface approach to face recognition was motivated by information theory,

leading to the idea of basing face recognition on a small set of image features that best

approximate the set of known face images, without requiring that they correspond to

our intuitive notions of facial parts and features. Although not intended as a solution

to the general object recognition problem, the eigenface approach does provide a

practical solution that is well fitted to the task of face recognition. It is fast, relatively

simple, and has been shown to work well in a somewhat constrained environment.

Such a system implements a so-called “visual behavior”, analogous to Brooks’

vertically-layered robot behaviors or Minsky’s cognitive agents. A visual behavior

is an interactive-time system which solves a real recognition task in a particular

ecological niche. Other simple examples of visual behaviors have been presented in
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the thesis, e.g. blink detection, feature detectors, and smile detectors.

It is important to note that many applications of face recognition do not require

perfect identification, although most require a low false positive rate. In applications

such as security systems or human-computer interaction, for example, the system will

normally be able to “view” the subject for a few seconds or minutes, and thus will

have a number of chances to recognize the person. For the task of searching a large

database of faces it may be preferable — or at least more practical — to find a small

set of likely matches to present to the user, rather than choosing just one face as the

correct match. Our experiments show that the eigenface technique can be made to

perform at very high accuracy, although with a substantial “unknown” rejection rate,

and thus is potentially well suited to these applications.

The main technical contribution of this thesis is the development and implementa-

tion of a new approach to face recognition: using eigenfaces as a substrate for recogni-

tion, combining with simple motion processing to locate potential known or unknown

faces, providing a capability to identify individuals or a group of likely candidates

and to learn to recognize new faces in an unsupervised manner. The interactive-time

nature of the system enables rapid experimentation and allows for a variety of useful

tradeoffs such as recognition accuracy versus rejection rate. The experiments with a

large database of face images under varying imaging conditions, as well as the ongo-

ing experience with a working interactive-time system, lend significant experimental

support to the approach.
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Appendix A

Matched Filtering and Eigenfaces

Correlation techniques have been used for object recognition since the early years of

computer vision research. These techniques work well in locating features ranging

from simple edges and corners to complex shaded patterns [91], but typically only

if the imaging conditions are well controlled and the features are well described by

two-dimensional image patches. This appendix briefly discusses correlation as used

in recognition, and its relationship to the eigenface-based recognition.

A.1 Correlation and matched filters

The task of object recognition is fundamentally one of comparison — comparing the

available image data with some stored representation, however complex or simple, of

known objects. One of the most basic and well-understood methods of object detec-

tion in image processing is template matching, where image intensities are compared

directly. An image template k(i, j) may be compared in a least mean squared sense

by the distance measure

d2(x, y) =
N−1∑
i=0

M−1∑
j=0

(I(x + i, y + j) − k(i, j))2 (A.1)

If a portion of the image I(x, y) exactly matches the template the distance measure

will be zero at the location of the match; otherwise it will be greater than zero,

d(x, y) ≥ 0. A match occurs when d(x, y) is below some predetermined threshold, or

alternatively a match is defined at the location of the minimum d(x, y).
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f(x,y)

n(x,y)

g(x,y)
h(x,y)+ c(0,0)

Figure A-1: Object recognition as a signal processing task. h(x, y) is the
appropriate linear filter, and c(0, 0) is the filter output, or correlation of h(x, y)
with g(x, y).

In vector notation, Equation A.1 becomes

d2
x = (Ix − k)t(Ix − k)

= Ix
tIx − 2Ix

tk + ktk
(A.2)

where Ix is the local N by M subimage whose upper right-hand corner is located at

I(x, y), and dx is d(x, y). The third term of this equation is a constant for a given

template k and may be ignored. If we can assume that local image energy is approxi-

mately constant in the scene, then Ix
tIx can also be ignored as a constant. Minimizing

dx then becomes equivalent to maximizing Ix
tk, which is the cross-correlation of the

image and the template. This is equivalent to an inner product, or a projection of

the subimage Ix onto the template k.

This enables object recognition to be posed as a linear signal processing problem

where the task is to detect a reference image patch in the presence of noise using a

linear filter, as in Figure A-1. The filtering operation is implemented as a correlation1

to detect the reference object, using the filter h(x, y) as the template. Typically the

template is chosen to be an image of the object (or feature) to be recognized. This is

called a “matched spatial filter” (MSF), and is well known to be the optimal filter in

the case of additive white Gaussian noise [77].

Correlation with an MSF is more convenient as a comparison technique than the

1Actually a convolution, but since the correlation filter of h(x, y) is equivalent to the convolution
of h(−x,−y), I will omit the distinction.
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direct distance measure because it is faster to implement and it is simpler to analyze

since it is a linear filter. Because correlation in the spatial domain is equivalent to

multiplication in the frequency domain, a large-kernel correlation is much faster when

implemented using the Fast Fourier Transform.

A.2 Comparison with eigenfaces

The eigenfaces are used in the recognition system in a manner similar to a set of

matched filters. The first step of the distance from face space measure is a set of

correlations with the input image using the eigenfaces as the correlation kernels. The

outputs of these correlation operations are used to determine the face map ε(x, y) and

the identity by finding the nearest face class Ωk. Why not just use matched filters

directly, where an image of each individual is correlated with the input image, looking

for the best match? Is there an advantage to using the eigenfaces?

Consider a face recognition system using M matched filters corresponding to face

images of each of the M known people. To recognize a face from this database,

there must be M separate correlations performed on the incoming image, resulting

in M individual “face maps”. Although the filter templates themselves will be highly

correlated, the M answers must be treated as unrelated since the correlation among

the templates is unknown. Only one template is relevant to the question “Is Joe’s

face in this image?”, and that is Joe’s template.

Because the eigenfaces are uncorrelated (they are an orthonormal set), the projec-

tion onto each template is meaningful. Rather than looking for the largest output, as

in direct convolution, the known relationship among the templates allows for classifi-

cation based on the ensemble of responses. Joe’s presence or absence is indicated by

the output of all the filters. Furthermore, the high degree of correlation among the

face templates allows fewer than M filters to adequately represent the known faces.

As the number of faces increases, relatively fewer new filter kernels are necessary to

account for the variation among the face images.

So the eigenfaces in essence implement a “generalized correlation” scheme which

is more useful for face classification than straightforward correlation. It is also more

efficient, because it can take advantage of the high degree of correlation among the

known face images by using only the eigenfaces which have the most discriminating

power. In addition, the eigenfaces also allow for a measure of the “faceness” of an
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image — its distance from face space spanned by the filters — which cannot be done

with highly correlated face templates.

A.3 The noise model

The effectiveness of correlation as an approach to object recognition depends on the

accuracy and descriptive power of the noise model n(x, y) in Figure A-1. To be useful

in general recognition tasks, the noise model must account for all factors which affect

the image intensity values captured from a given scene, in particular geometry, surface

reflectances, scene illumination, and viewpoint. These factors and their relationships

are impossible to model in a linear fashion, and therefore template matching via

correlation has a number of shortcomings which make it impractical as a general

object recognition scheme. An huge number of templates would have to be created

and matched against the image to account for general variations in object appearance.

Normalized correlation [77, 91] solves a small part of the problem because of its

insensitivity to amplitude scaling and constant offsets. With normalized correlation

the subimage Ix produces the same correlation output as aIx + b, where a and b

are scalar and vector constants, respectively. The output of normalized correlation is

unity when the subimage exactly matches the kernel, and less than one otherwise.

Kumar et al. [57, 22] extended the deterministic correlator model of Figure A-1

to the case of a stochastic process f(x, y) to determine the best filter for detecting

the object in a noisy version of a distorted image. The distortions were defined by a

training set of images, and could include transformations such as scale, orientation,

changes in illumination, etc. The optimal filter in this case was found to be the

principal-component, or first eigenimage. This filter was found to perform much

better than conventional matched spatial filters.

The straightforward extension to this approach for face recognition would be to

create a filter for each individual, by taking a number of face images of that person

under varying conditions and calculating the principal-component of the set. This

data set could account for one of the most significant sources of variation in face im-

ages, changes in expression. This would still result in a filter kernel per known face,

however, and encounter the problems mentioned earlier with this approach. The gen-

eration of eigenfaces in its current state is a compromise between the discrimination

ability of individual faces from each other and of faces from other classes of objects.
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Even with both a simple noise model and the statistical filters based on ensembles

of training images described by Kumar et al., correlation techniques are not powerful

enough to perform general object recognition. Most computer vision research in the

past decade has been devoted to early vision as characterized by Marr [64]:

The purpose of early visual processing is to sort out which changes are

due to what factors and hence to create representations in which the four

factors are separated.

As I argue in Chapter 1, however, “visual behaviors” such as face recognition may

be to some degree exempt from such an extensive process. Because face recognition

is characterized by a limited range of expected views and transformations, represen-

tations based on eigenfaces or statistical filters may be sufficient for a useful level of

recognition proficiency. A recent correlation-based technique to recognize faces by

Burt et al. [16, 17, 18] has been demonstrated to work in a limited environment. The

performance of the system presented in this thesis, as well as other special-purpose

face recognition approaches (e.g. see [8]) support the idea of useful visual behaviors

coexisting with more general purpose vision.
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