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Abstract

We have developed a real-time, view-based gesture
recognition system. Optical flow is estimated and seg-
mented into motion blobs. Gestures are recognized using
a rule-based technique based on characteristics of the mo-
tion blobs such as relative motion and size. Parameters of
the gesture (e.g., frequency) are then estimated using con-
text specific techniques. The system has been applied to
create an interactive environment for children.

1 Introduction

For many applications, the use of hand and body gestures
is an attractive alternative to the cumbersome interface de-
vices for human-computer interaction. This is especially
true for interacting in virtual reality environments, where
the user is no longer confined to the desktop and should be
able to move around freely. While special devices can be
worn to achieve these goals, these can be expensive and un-
wieldy. There has been a recent surge in computer vision
research to provide a solution that doesn’t use such devices.

This paper describes a real-time vision-based gesture
recognition system. Taking a bottom-up, view-based ap-
proach, rather than reconstruct the body, we use optical flow
to segment the dominant moving body parts (e.g., hands,
arms) into “motion blobs.” Given the motion blobs and their
general characteristics as input, actions are recognized us-
ing a rule-based approach. Once an action is detected, pa-
rameters of that action (e.g., frequency) are estimated until
that action stops.

1.1 Application

Personal computers are widely used as educational tools
in grades K-12 and higher. However, for children under
the age of five, the keyboard and mouse can be an obstacle
for interacting with the computer. We applied our gesture
recognition system to create an environment that allows the

Figure 1. System

child to interact with the computer using hand and body ges-
tures. These gestures are used in the following activities:

� Playing “Simon Says”

– Wave arms like a bird
– Spin to your left/right
– Touch your toes; reach for the sky
– Jump up and down

� Conducting music

– Clapping, waving to create sounds
– Waving to set a tempo to conduct music

� Walking, running, and flying through a virtual world

Figure 1 shows the system. A standard 266 MHz Pen-
tium II PC is used with a Sony DS-250 digital video cam-
era.

2 Related Work

Research in motion-based recognition has greatly in-
creased in recent years (see [9] for a recent survey). We
will describe the most relevant work below.

Becker [6] developed a real-time system to recognize
five basic T’ai Chi gestures. The hands and face are tracked
using a stereo camera system that tracks skin blobs [3].



The 3D velocity of the hands are used as input to a Hid-
den Markov Model (HMM) based system. While users can
perform each gesture with a different total duration, the ve-
locity of hands are assumed to be approximately the same
across users.

Davis and Bobick [10] use a view-based bottom-up ap-
proach to gesture recognition. They construct a binary
motion-energy image (MEI) which represents where mo-
tion has occurred in an image sequence. They also construct
a motion-history image (MHI) which is a scalar-valued im-
age where intensity is a function of recency of motion.
These view-specific templates are matched against stored
models of views of known actions (using moments to pro-
vide invariance to scale and translation). Actions are recog-
nized in real-time, but are only invariant to linear changes
in speed. This system has been applied to an interactive
play-space for children (KidsSpace).

Polana and Nelson [16] recognize periodic motions in an
image sequence by first aligning the frames with respect to
the centroid of an object so that the object remains station-
ary in time. Periodic motion is extracted from the graylevel
signals using Fourier analysis. A normalization procedure
is used to produce a spatio-temporal solid that is invariant
to spatial scale, translation, and temporal scale (i.e. fre-
quency). Motion model feature vectors are defined using
information from this spatio-temporal solid. The classifica-
tion is performed using a nearest centroid algorithm.

Black and Yacoob [7] use a rule-based reasoning sys-
tem to recognize facial expressions of people. The input to
the reasoning system are actions such as “inward lowing of
brows” and “mouth contracting.” These inputs are deter-
mined by tracking patches on the eyes, brows, and mouth.

Wilson and Bobick [19] address the problem of recog-
nizing gestures that exhibit meaningful variations. For ex-
ample, a pointing gesture requires not only the gesture to be
recognized, but the estimated direction of pointing as well.
They extend the standard HMM by including a global para-
metric variation in the output probabilities of the states of
the HMM. EM is used to train the parametric HMM.

3 Optical Flow Estimation

An optical flow algorithm estimates the 2D flow field
from image intensities. While many techniques have been
developed, accurate and dense estimates are difficult to
achieve (see [5] for a recent survey). There are four gen-
eral categories for optical flow algorithms: differential (gra-
dient), region-based matching, energy-based, and phased-
based. Differential techniques compute velocity from spa-
tiotemporal derivatives (or filtered version of the image).
Region-based techniques compare patches of the image (or
filtered image) at different disparities to determine the flow.
Energy and phase-based methods apply velocity-tuned fil-

ters on the image sequence and extract the velocities from
the filters’ output. In a comparison of these four techniques,
Barron et. al [4] found the phase-based approach of Fleet
and Jepson [12] to be the most accurate; unfortunately, it is
also the slowest [15].

For view-based gesture recognition, our requirements for
an optical flow algorithm are as follows:

� produce dense flow
� accuracy: direction within25�, magnitude within 50%
� able the work on large disparities (e.g., 15 pixels)
� tolerant to noise
� usable on interlaced and decimated images
� efficient; parallizable; real-time (30 Hz) on 160x120

images
� functional in low-contrast environments

Dense flow is desirable since it has redundancy in data
that allows for better performance and robustness. Note that
the required accuracy is not great. This is mainly a tradeoff
for speed, but we have found that these requirements are
sufficient for our segmentation algorithm and recognition
analysis.

We make the following assumptions about our environ-
ment:

� relatively static background
� illumination changes slowly

As noted in [4], region-based matching techniques (e.g.,
correlation-based) are more robust to noise than differential
techniques. In addition, region-based techniques work well
even when the input is interlaced or decimated. Camus [8]
notes that correlation-based techniques are also less sensi-
tive to illumination changes between frames than differen-
tial based techniques.

Computing optical flow in real-time has traditionally
been done using expensive hardware (e.g., DSPs or field-
programmable gate arrays). However, general purpose
CPUs are now becoming available with Single-Instruction,
Multiple Data (SIMD) instructions (e.g., Intel Pentium II,
Sun UltraSparc). For this system, we used a 266 MHz Intel
Pentium II PC. Our MMX implementation of the algorithm
flow algorithm produced a 400% increase in speed (com-
pared to non-MMX optimized code), which was critical in
making the system real-time.

We choose to use a correlation-based algorithm to esti-
mate the optical flow, using the sum of absolute differences
(SAD) instead of correlation for efficiency reasons. A major
drawback to correlation-based algorithms is that they can be
computationally expensive. Consider an image of sizeI�I ,
a patch radius ofP , and a search radius ofR. We define a
similarity metricD on the imagesI1 andI2 for the pixel
(x; y) and disparity(dx; dy) as:
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D(x; y; dx; dy) =
PX

i=�P

PX
j=�P

E

where

E =j I1(x+ i; y + j)� I2(x+ i+ dx; y + j + dy) j

To determine the flow between imagesI1 and I2 at a
point (x; y) we minimizeD(x; y; dx; dy) for (dx; dy) 2
f[�R;R] � [�R;R]g. A straightforward implementation
of this algorithm would requireO(I2P 2R2) pixel compar-
isons. However, there are redundant comparisons in this
technique, and by storing intermediate results we can re-
duce the complexity toO(I2R2) [11]. Note that although
we have reduced the computational complexity, we have in-
creased the required memory bandwidth, as intermediate re-
sults must be stored in memory. For this technique to give
an overall time savings, we must have a fast memory sys-
tem. Unfortunately the currently available Pentium II sys-
tems do not have sufficient memory bandwidth to make this
technique feasible. That is, the memory bottleneck is so
severe that it overrides the reduction in complexity, and so
we instead implement the more computationally expensive
algorithm.

In order to satisfy the requirement that our flow algo-
rithm work well in low contrast conditions, we use color (in
YUV1.) to define our similarity metric:

D0(x; y; dx; dy) =

PX
i=�P

PX
j=�P

EY +EU +EV

where

EC =j I1C(x+ i; y + j)� I2C(x+ i+ dx; y + j + dy) j

We found that using YUV color in this way gave signifi-
cantly better flow estimates than simply using the grayscale
image data. In particular, color helps to distinguish the hand
in front of the face, even though both objects have similar
grayscale values.

3.1 Motion Detection

If we assume that the background is relatively static, then
we can reduce optical flow computation time by only com-
puting the flow for pixels that satisfy a motion detection
criterion. Specifically, we compute the temporal derivative
of a Gaussian smoothed imageI�t and threshold it by the
valueK�, where� is the average standard deviation of the

1The YUV color space was used since the Sony DS-250 camera outputs
YUV:422 data. The RGB color space was found to give similar results.

(a)

(c)

(b)

Figure 2. Mask applied to a hand moving left to
right. Let A,B, and C be the hand at time t�1,
t, and t+1, respectively. (a)M(x; y; t�1) = A_
B); (b) M(x; y; t) = B _ C ; (c) M 0(x; y; t) = B

white noise in the video system for the YUV color channels
(measured off-line), andK is a constant (typically 4). We
compute the flow at pixel (x,y) only ifM(x; y) = 1, where

M(x; y; t) =

�
1 if E�

Y +E�
U +E�

V > K�

0 otherwise

where

E�
C =j I�1C(x; y)� I�2C(x; y) j

The Gaussian smoothing serves two purposes: first, it re-
duces the noise inherent in the images. Second, it gives a
support patch from which we compare the change in mo-
tion from (that is, we are comparing the motion for a patch
instead of a single pixel).
M(x; y; t) can be improved by using three sequential im-

ages instead of two in the following way:

M 0(x; y; t) =M(x; y; t� 1) ^M(x; y; t)

WhileM(x; y; t) = 1 if pixel (x; y) is moving in image
It or It+1, M 0(x; y; t) = 1 only if (x; y) is moving inIt
(see Figure 2). This further reduces the number of pixels
to compute the flow on. Moreover, it also eliminates the
problem of computing the flow of a pixel(x; y) in It which
is occluded inIt+1 (e.g.,(x; y) is on on the leading edge of
a moving object).

Note thatM 0(x; y; t) (and M(x; y; t)) will filter out
moving regions that have little texture. This is very de-
sirable, as these regions will produce inaccurate flow es-
timates.

3.2 Flow Estimate Con�dence Measures

There are many ways to estimate the confidence in the
flow estimate. For example, Anandan [1] fits a cubic surface
to the SSD values and defines a confidence measure based
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Figure 3. Search pattern

on the curvatures of this surface. Another way to verify that
the flow is correct is to use the left-right check [11]; that
is, compute the flow for imageIt with respect toIt+1, then
repeat forIt+1 with respect toIt. Only the flow estimates
that are the same (or nearly so) should be used.

While both of these techniques give good results, they
are also are computationally expensive. Instead, we sim-
ply rely on the motion maskM 0(x; y; t) to eliminate the
two most common flow estimate errors, namely occlusion
boundaries and low texture areas. We find this technique to
give a sufficiently good flow estimate for our later analysis.

3.3 Search Pattern

To determine the flow between imagesI1 and I2 at a
point (x; y) we minimizeD0(x; y; dx; dy) for (dx; dy) 2
[�R;R] � [�R;R]. However, Ancona and Poggio [2]
shows that the 1D search pattern(dx; dy) 2 [�R;R] �
f0g [ f0g � [�R;R] gives a reasonable approximation to
the full 2D search pattern. The advantage to the 1D search
space is it is much less computationally expensive. We uti-
lize this in our algorithm, adding the diagonals to the search
pattern (see Figure 3). Our tests show that this 1D search
pattern gives good results with our data sets for disparities
D � 15.

4 Optical Flow Segmentation

In order to analyze the optical flow at a higher level, we
first segment it into “motion blobs.” There are many ways
to segment optical flow (e.g., [14], [18], [17]). However,
we are constrained in choosing a technique that works with
inaccurate flow and will run in real-time. We use the K-
means algorithm [13] to segment the flow, using a feature
vectorv = (x; y; �), where� is the direction of the flow
vector(u; v) at pixel(x; y). The distance metric used in the
K-means algorithm is:

S(x; y; �) =
j x� �x j

j�xj+jxj
2

+ �x
+

j y � �y j
j�yj+jyj

2
+ �y

+
j � � �� j

j��j+j�j
2

+ ��

where (�x; �y; ��) is the cluster’s centroid and�x; �y; ��
are on the order of the error estimates ofx; y; �, respec-

(a)

(b)

Figure 4. (a) Flapping action; (b) Flapping 
ow
and segmented motion blobs

tively. We are using a constant flow direction model. The
magnitude is not used as it will change for rotational mo-
tions. While an affine flow model would handle rotational
motions, it is currently too computationally expensive. The
constant flow direction model is sufficient for out current
gestures and environment assumptions.

The blobs are modeled as a best fitting ellipse for the flow
vector locations(x; y) in each cluster; the flow direction or
magnitude is not used to compute the best fitting ellipse.

The K-means algorithm assumes we already know the
number of clusters. As we will see in the next section, our
actions can be modeled with only one or two motion blobs
(clusters), so we run our segmentation algorithm for both
number of blobs and input the results to the gesture recog-
nition system.

See Figure 4 and Figure 5 for examples of the segmented
flow.

5 Gesture Recognition and Parameter Esti-
mation

Our view-based approach to gesture recognition uses a
rule-based technique to identify an action based on a set
of conditions. The following information about the motion
blobs are used as input to the action predicates: the num-
ber of blobs; the motion of blobs (horizontal, vertical, or
rotational); the relative motion between blobs (opposing or
same direction); whether the motion is periodic; and the
relative size of the blob(s) (the blob’s major axis length di-
vided by the user’s height (in pixels)). The conditions for
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(a)

(b)

Figure 5. (a) Clapping action; (b) Clapping 
ow
and segmented motion blobs

# of
Action Blobs Motion Relation Cyclic Size

spinning 1 horiz. NA no 0.8
waving 1 rot. NA yes 0.2
jumping 1 vert. NA yes 0.8
clapping 2 horiz. oppose yes 0.2
drumming 2 vert. oppose yes 0.4
flapping 2 rot. same yes 0.8
marching 2 vert. oppose yes 0.4

Table 1. Action conditions

the seven actions in our interactive environment are given
in Table 1. These conditions must be satisfied overN con-
secutive frames, whereN is typically about 10. The cyclic
condition is determined by Fourier analysis of the motion
blob’s centroid and major-axis direction. Figure 6 shows
the ideal motion blobs for these actions.

Once an action is recognized, the system will go into
a mode specific to that action, estimating that action’s pa-
rameters until the action ceases. For example, the waving
action, which consists of the user waving his hand (as in
conducting music), estimates the frequency of movement
(i.e. the tempo). The frequency is determined by detect-
ing the zero-crossings of the average flow magnitude for
the motion blob, which is shown in Figure 7. These zero-
crossings correspond to the left- and right-most movements
in the waving action, and are labeled as the left and right
beat. The time intervals between the left and right beat are
averaged over several intervals and inverted to obtain the

(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Action motion blobs: (a) spinning, (b)
waving, (c) jumping, (d) marching, (e) clap-
ping, (f) drumming, (g) 
apping
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Figure 7. Waving average 
ow magnitude

frequency. This frequency, along with the left and right beat
and the maximum average flow can be used as input to con-
trol an interactive environment. The events and parameters
for the other actions (see Table 2) are computed in a similar
fashion.

6 Results

In order to test our gesture recognition system, we have
developed an interactive environment for children. The
opening screen for this system displays seven animated
characters performing the seven actions in Table 1. If the
child wants to conduct music, he or she mimics the ani-

Action Events Parameters

spinning NA direction, velocity
jumping up/down height, velocity
waving left/right beat frequency, velocity
clapping contact frequency, velocity
drumming left/right beat frequency, velocity
flapping up/down frequency, velocity
marching L/R foot up/down frequency, velocity

Table 2. Action events and parameters
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Figure 8. Conducting mode

mated character that is conducting music. Once the action is
recognized, the system goes into a conducting mode, shown
in Figure 8. In this mode, the user can set the tempo of a
song by the frequency of the hand; the left and right beats
can be used to progress (incrementally) through the notes
in a song. After the user stops waving, the starting screen
returns to offer more activities from which to choose.

We have informally tested this system with both children
and adults. Participants have found it to be fun, intuitive,
and compelling. The immediate feedback of the musical
sounds and animated characters is engaging, especially for
children. (After using it at the lab, the young son of one
of the authors couldn’t understand why his home computer
wouldn’t do the same thing for him!) Some people tended
to prefer certain actions, while others enjoyed switching
among all of them. Because the recognition is based on
optical flow estimation, there are few constraints regarding
clothing, the background scene, etc.; people can move the
camera, change the lighting conditions, move around some-
what while gesturing, and allow others to be in the scene (if
they’re not moving much).

7 Conclusions

We have used real-time optical flow to segment a user’s
dominant motions. Using a rule-based technique and gen-
eral characteristics of the motion blobs, we can recognize
among a set of gestures. The parameters for each gesture
are estimated in a context specific manner. The system has
been successfully applied to an interactive system for chil-
dren. Future work for this system includes: adding more
gestures (e.g., pointing) and allowing simultaneous gestures
(e.g., clapping while marching); using fuzzy logic for the
reasoning system to make the gesture recognition more ro-
bust; enhancing the motion segmentation to allow intersect-
ing motion blobs; and adding the ability to handle multiple
users in the field of view, with associated gestures for inter-
action (e.g., shaking hands).
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