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Abstract

Typically, biometric systems authenticate the user at
a particular moment in time, granting or denying ac-
cess to resources for the complete session. This model
of authentication does not appropriately address envi-
ronments where a different individual may take over a
system from the original user (either willingly or other-
wise). We propose a multimodal system that performs
authenticationcontinuouslyby integrating information
temporally as well as across modalities. Such continu-
ous authentication provides ongoing (rather than one-
time) verification and can easily be coupled with an-
other system for dynamically adjusting access to privi-
leges accordingly.

We present an initial approach for temporal inte-
gration based on uncertainty propagation over time
for estimating channel output distribution from recent
history, and classification with uncertainty. Our method
operates continuously by computing expected values
as a function of time differences. Our preliminary
experiments show that temporal information improves
authentication accuracy. These empirical results are
promising and justify further investigation.

1. Introduction
Biometric user authentication is typically formulated

as a “one-shot” process, providing verification of the
user when a resource is requested (e.g., logging in to a
computer system or accessing an ATM machine). Once
the user’s identity has been verified, the system re-
sources are available for a fixed period of time or, more
typically, until the user logs out or exits the session.
While perhaps appropriate for short sessions or low-
security environments, this model for authentication is
flawed, as it is based on two strong assumptions: (1) a
single verification is sufficient, and (2) the identity of
the user is constant during the complete session. If the
user leaves the work area for a while, or is forcibly re-

moved in a hostile environment, the system continues to
provide access to the resources that should be protected.
Continuous biometrics attempts to improve on this situ-
ation by addressing these assumptions and making user
authentication an ongoing process, rather than a one-
time, point-of-access occurrence.

One way to approximate continuous biometrics is
to require active user authentication on a regular basis,
e.g., requesting a password or thumbprint verification
every few minutes or so. In most environments, this is
not an acceptable requirement. Passive verification, via
modalities such as face recognition, can be used to au-
thenticate at a much higher rate, perhaps several times
per second, without requiring active user participation.
This raises other questions that affect usability: What if,
due to a lighting change, noise, or any of several other
conditions, the verification fails momentarily? What if
the modality in use cannot provide any authentication
report for a time?

To be truly useful, continuous biometrics requires
temporal integration. In general, a continuous biomet-
ric authentication system should be able to provide a
meaningful estimate of authentication certainty at any
time. This requires analyzing the temporal characteris-
tics of biometric modalities and user behavior to pro-
vide a model of user identity that is a continuous func-
tion of time (or a discrete function with a reasonably
small update rate). Intuitively, the certainty of an au-
thentication result should be relatively high at the mo-
ment the score is reported (depending on the character-
istics of the modality), and then decrease monotonically
over time, until a new report is received.

Temporal integration is particularly relevant and use-
ful in the case of multimodal biometrics. When mul-
tiple modalities are used in concert to provide user au-
thentication, there is usually an implicit temporal model
— even though the different modalities may report at
slightly different times, the results are treated as if they
had arrived simultaneously. This is equivalent to as-
suming a constant user model during this short period.
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The most interesting and potentially useful case is when
there are multiple modalities in use, where the char-
acteristics of the various modalities may differ signif-
icantly.

For example, consider a high-security workstation
situation where the biometric modalities are fingerprint,
face, voice, and keyboard (keystroke pattern), repre-
senting a range of temporal characteristics (frequency
and regularity of reports) and accuracies. Keystroke
pattern recognition is likely to be the least reliable as
an authentication technique, but at times it will give al-
most continuous output, while the other modalities may
have nothing to report. Fingerprint recognition may be
quite accurate, but will only be available occasionally.
In this situation, we envision a system that monitors all
the modalities and makes the best possible decision at
any given point in time — even if there has been no in-
formation in the recent past. With this model of contin-
uous authentication, a system can constantly commu-
nicate the degree of belief in a user’s identity, and a
monitoring system can implement an appropriate pro-
gram of action for the particular security environment.
A slight decline in authentication certainty may cause
certain sensitive areas to be made inaccessible to the
user (in many cases not at all disturbing the benign ac-
tivity of the user), while a large decline may result in
the system shutting down access.

Integrating biometric modalities into decision-
making has produced successful results in terms of ac-
curacy and robustness [1, 5, 8]. Still, this model of au-
thentication fails to address the temporal nature of the
problem. The main goal of this work is to present a tem-
poral integration method to investigate potential bene-
fits of time information for the realization of a contin-
uous authentication system. As such, the system could
generate continuous results in terms of confidence in the
identity of the user, which would enable adjusting the
security level accordingly in real time. In relation with
behavioral traits, which are under investigation as ad-
missible biometrics [7], temporal integration would be
useful for detecting gradual or abrupt changes or varia-
tions in fitness to perform a task.

2. Multimodal Biometrics

There has been a good deal of research in recent
years on integrating multiple modalities to identify or
authenticate a user. In such a multimodal biometric sys-
tem, the method of integration is very important, as the
accuracy of a strong biometric could suffer when inte-
grated with a weaker biometric [3, 6]. To our knowl-
edge, there has been no published research in the bio-
metrics community to date that focuses on temporal in-

Figure 1: A static multimodal system (top) vs. one
with temporal integration ( bottom). Normalized
scores from three channels are shown, with the inte-
grated authentication score below. The multimodal
system at top can not integrate information from all
channels. For most of the time froma to b, the static
multimodal system cannot perform authentication.

tegration as formulated here.
Figure 1 shows a qualitative comparison between

a multimodal system that performs integration across
modalities (without integration over time) and one
which does temporal integration as well. The first sys-
tem would be ineffective when there is no channel re-
porting — e.g., for most of the time betweena andb.
Through the entire sequence, the system would have to
make decisions based on only partial observations, ex-
cept where all channels are reporting an opinion (as in-
dicated by arrows in Figure 1). In reality, due to the
nature of biometric modalities involving lengthy com-
putations or sample collection times, this should not be
expected to happen frequently.

Interestingly, most accurate biometrics (iris scan, fin-
gerprint, DNA matching and the like) are either lengthy
procedures in collection or verification, or they are in-
trusive and cannot be performed frequently. A static
multimodal system can only use such accurate indica-
tors once they are observed.
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2.1. Channel Integration

A multimodal biometric system can integrate modal-
ity information (“vertical” integration) atfeature, score,
andfigurethreelevels [1, 11, 5, 9]. In general, the most
information is available at the feature level; integrat-
ing at this level is considered to be “early” integration.
However, training at this level can be very complex and
require an inordinate amount of data; later (higher) lev-
els of integration are easier to build and often yield
higher degrees of robustness. For decision level inte-
gration, it can be shown analytically that a strong bio-
metric can achieve better accuracy alone than combined
with a weaker biometric if both are operating at their
cross-over points [6]. Unless the cross-over point of the
weaker biometric is shifted, integration at the decision
level would not be more accurate. Incorporating tempo-
ral information could change this limitation by shifting
the cross-over point of weaker biometrics.

Since modality integration can be handled indepen-
dent of temporal integration, it is possible to use vari-
ous channel integration methods to improve overall ac-
curacy of the system. In this work, channel integra-
tion is not our primary goal, so we chose a simple
naive Bayes classifier to handle channel integration as a
binary classification problem incorporating uncertainty
measures. Similarity scores from individual biometric
channels are normalized to the interval[0, 1] ∈ < and
integrated using the Bayes classifier. Our temporal inte-
gration method generates an expected score distribution
and an estimated related uncertainty about this distri-
bution. We weight class priors by the associated un-
certainty before classification. It should be noted that
weighting class priors would not scale well with larger
data sets [4] presenting a potential limitation, especially
since we are concerned with real-time operation.

2.2. Temporal Integration

There are several challenges for temporal (“horizon-
tal”) integration of a multimodal authentication system.
First, as mentioned in the introduction, individual bio-
metric channels cannot always provide simultaneous
observations. One channel might provide information
at a much higher frequency than another channel. Sec-
ond, some channels might only provide sporadic obser-
vations over time. For example, we could not expect the
user to provide a fingerprint at certain times. Third, for
sporadic channels alone, temporal integration could be
useless or statistically meaningless, if not impossible, to
formulate, since there might be unexpectedly long inter-
vals between observations. Fourth, the system should
provide a way of making decisions during time inter-
vals even if none of the individual channels provide any

observations in that instant. For example, if we made
observationsδ milliseconds ago, then the system should
be able to make decisions based on recent observations
as we would not expect the user to be away in such a
short interval. Our method addresses all of these chal-
lenges.

Logically, we have the choice of first integrating
temporally or over channels (horizontally or vertically).
If we first integrate over channels, then the problem is
equivalent to temporal integration using a single bio-
metric channel. On the other hand, integrating tempo-
rally first enables us to work with asynchronous biomet-
ric channels, since within some neighborhood in time of
an observation we will have very good estimates from
that observation. For making decisions in the absence
of observations at a given point in time, we use expected
values of observations from channels with varying de-
gree of uncertainty. Perhaps the best approach, but also
the most complex to formulate, is to integrate in both
directions (across channels and across time) simultane-
ously, rather than sequentially.

3. Method

Just as in integrating channels, for temporal inte-
gration we can choose to integrate information at level
of features, scores, or decisions. Our method works
in continuous time by computing expected values of
scores as a function of time difference between the last
observation and current time. The main idea is based on
the assumption that an authentication score is still valid
for some amount of time,δt. As time passes, we should
be less and less certain about this value. To formulate
this idea as a function of time we estimate an uncer-
tainty measure of scores per channel from the recent
past, until a new observation is recorded. The joint pos-
terior distribution of a score is approximated and then
propagated over time until we obtain a new score from
that channel. Due to the propagation of the score dis-
tribution over time, we use a degeneracy model for the
uncertainty measure of each score.

The most important reason in favor of working with
scores, rather than at the feature or decision level, is the
way of modeling uncertainty of channel opinions. In
lower levels, uncertainty has a related physical mean-
ing. For example, at the physical measurement level,
uncertainty is related to signal noise, which might not
necessarily map well into an uncertainty about the deci-
sion. Treating scores as random variables is in fact this
mapping, statistically backed by the Central Limit The-
orem. Another reason to work with scores, aside from
the underlying mathematical difficulty of using many
features, is the fact that feature selection is still as much
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art as it is science. Naturally, we would prefer our in-
tegration method to be as general as possible. On the
other hand, the later the integration, the more informa-
tion is discarded, so early integration may achieve bet-
ter results, using an appropriate set of features. After
establishing promising results with scores, we plan to
continue investigating such directions in the future.

Each channel is assumed to provide a normalized
similarity scores, and an expected varianceσch as a
characteristic parameter of the channel. Ifσch is not
provided, it is computed for each channel offline. This
measure is equivalent to inherent uncertainty in a chan-
nel’s decisions. This variance is only used as the default
variance of the channel if computing the channel vari-
ance is not possible from recent past. For example,σch

is needed for initial few scores or for channels which
provide scores at longer intervals. One might ask that if
the uncertainty is known, why compute it from the past
again? The reason is that theσch measure itself varies
over time. For example, if lighting conditions were the
underlying reason for the face recognition channel to re-
port highly variable scores over the past5 seconds, this
variability should be corrected in par with the lighting
conditions.

We normalize channel scores to[0, 1] ∈ <, where1
indicates perfect similarity to the user model and0 indi-
cates an unknown person. For channels with higher fre-
quency, we compute the uncertaintyσp from past scores
within a τch time period. Note that this duration is the
crucial part of our method and it has a different value
for each channel.

We model each channel with a GaussianÑ(µ, σch)
or Ñ(µ, σp), whereµ is the reported score for the chan-
nel, as discussed above. (We will refer toσch andσp as
σ from now on.) Consequently, scores are random vari-
ables withs ∼ Ñ(µ, σ). This distribution is propagated
over time with increasing uncertainty in the score value
as a function of time.

Figure 2 shows conceptually how a scores is treated.
The darker lines over the Gaussian show the change in
shape of Gaussian over time.

When a score is recorded, a timestampt is generated
and the uncertaintyσ is computed over the pastt− τ , if
applicable, otherwiseσ = σch. The idea is that we will
be less and less certain about this score and probabilities
of all possible scores will increase as time passes by.

The increase of uncertainty over time is computed
as a function of time from the last score. We used an
exponential degeneracy functionφ(τ) to estimate the
mode ( 1

σ
√

2π
) of theÑ(µ, σ) at t + τ . The degeneracy

functionφ(τ) = k expατ depends only onα which we
take as the mean variability over the lastτch time period.

Once an estimate of score distributioñN(µ, σ) att+

Figure 2: Propagation of scores and associated un-
certainties over time. As time passes,σ increases
from a recently computedσp.

τ is obtained, we compute the expected value of a score
at t + τ from this distribution by evaluating

EÑpast
{Nnow(s)} =

∫ ∞

−∞
Ñnow(s)Ñpast(s)ds

Note that the limits of the integral we are interested
in are not−∞ and∞, but0 and1. Hence the distribu-
tion at t + τ is not a proper Gaussian anymore. How-
ever, the error resulting from ignoring the tails of this
distribution is insignificant. Although we could opt for
a proper distribution, such as a triangular distribution,
this would introduce a larger modeling error. Alterna-
tively, this Gaussian can easily be scaled to cover unit
area, which would not change the expected value of the
score. To evaluate the expected value we use the fol-
lowing approximation.

SupposeX = {X1, X2, ..., Xn} is the set of random
variables that characterize the model, with values
x1, x2, ..., xn. The expectation,E(a), of a function
a(X1, X2, ..., Xn) can be approximated by

∑
x1

...
∑
xn

a(x1, ..., xn)P (X1 = x1, ..., Xn = xn)

≈ 1
N

N−1∑

k=0

a(xk
1 , ..., xk

n)

wherexk
i are the values for pointk in a sample of size

N .
It should be noted that we want to minimize the fil-

tering effect of our method, where occasional false pos-
itives and false negatives arecorrectedby subsequent
scores. Therefore a predictor-corrector style modeling,
such as a Kalman Filter, is not a model of choice. Also,
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the choice of the exponential function was based on life-
time modeling studies, which could be better modeled
with (1 − tanh(x)) or a similar function. The crucial
heuristic of our method is the length of considered past,
and how many correct scores it includes. Clearly, the
degeneracy model leaves room for refinement. Incor-
porating contextual information successfully into the
model and learning appropriate parameters from data
are possible refinements.

4. Experiments

We chose face, voice, and fingerprint as individual
biometric modes for simulating channels with different
temporal characteristics. The lack of a suitable multi-
modal corpus with face recognition, voice verification,
and fingerprints of individuals forced us to simulate in-
dividuals by matching independently collected data into
virtual identities for24 individuals. Scores from each
channel are obtained as detailed below. Our goal is to
achieve continuous multimodal authentication which is
more accurate than the component channels and gives
meaningful results at any point in time. A second set
of experiments was run with different lengths of past
scores in consideration.

4.1. Face Recognition

This is the channel with the highest reporting fre-
quency. Face scores are obtained from a face recognizer
based on Eigenfaces [12]. Images are obtained using a
face detector built on [13] from 20fps video. For each
individual, there is a2 min video containing∼80 frames
at (near) frontal pose.20 images from frontal images
were used for training. The data does not have frontal
pose throughout the entire video sequence, hence the
recognition does not provide good scores every50ms.

4.2. Voice Verification

A subset of the TIMIT database [10] was used. The
subset contains LPC cepstrum feature vectors. The
energy in all recordings was normalized to compen-
sate for possible differences in loudness. After pre-
emphasis,16th-order LPC-cepstra were calculated for
32ms frames centered at16ms intervals. The feature
vectors are the rows of the resultant matrix. Each frame
is used as an independent sample drawn from the dis-
tribution of that speaker. Each speaker is modeled as
a Gaussian. In total just under15s of training data per
speaker are available. Log-likelihoods are the scores for
voice verification.

Table 1: Recognition rates of individual channels vs
temporal multimodal integration.

Integrated 304 47.50%
Face 210 32.81%
Integrated 173 97.74%
Voice 171 96.61%

Table 2: Correct recognition at variable history
lengths.

History length (secs) 0.5 1.0 2.0 5.0
Correct recognition 304 310 318 301
Recognition rate (%) 47.5 48.4 49.7 47.0

4.3. Fingerprint
A subset of fingerprint data was obtained from the

FVC2002 fingerprint verification competition. A demo
version of fingerprint identification/verification soft-
ware [14] was used to obtain similarity scores between
fingerprints. The software extracts minutiae-based fea-
tures. It handles rotation and intensity variations. For
successful operation it requires a minimum of 10 fea-
tures for each fingerprint.

4.4. Results
We expect that temporal integration would be useful

by enabling continuous authentication and by improv-
ing accuracy of a multimodal biometric system. Figure
3 shows decisions made by our method over a period of
32 seconds (each tick = 1 frame). The simulated user
is the authentic (virtual) identity over the entire period,
so that a1 indicates a correct authentication, and a0
marks where the system fails to authenticate the iden-
tity correctly. The varying face recognition scores are
due to face motion, where it becomes frontal 6 times
during the 32 second period. Better recognition scores
are obtained when the face became full frontal in view.

The top three graphs show individual channel scores.
The bottom graph shows the decisions obtained by our
method with a history length of0.5 second for all chan-
nels. The first few points are not affected by temporal
integration due to insufficient history. In the case of a
non-temporal multimodal system, all (if any) decisions
would have to be based on what is observed at that point
in time, regardless of what happened in the instant be-
fore. We can poll our system at any time for an authen-
tication.
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Figure 3: Temporal integration over a period of 32
seconds. Individual channels report scores in real
time as they become available; note the single finger-
print score in frame 141. The bottom graph shows
binary verification decisions made at every frame, a
1 being valid authentication.

To verify that integrated results are actually com-
parable to individual channel rates, we compared the
correct recognition counts of integrated and individual
channels. Table 1 shows this comparison over the peri-
ods when each individual channel is active.

Table 2 shows the effect of history length on recog-
nition. The history length is applied to all channels.
Our results suggest that there is a cross-over point for
the length of relevant history, although more extensive
study is necessary.

Figure 4 shows an enlarged sequence between
frames 205 and 220 (0.75 seconds). Vertical lines show
the variances of propagated distributions around the
means since the last score. Fingerprint channel is omit-
ted from both Figure 4 and Figure 5 since the only score
lies beyond the relevant history of 0.5 seconds. An au-
thentication result was requested 10 times within each
frame. Our method is only limited by the underlying
hardware in terms of temporal resolution, and an au-
thentication score can be obtained given any point in
time.

Figure 5 shows the same enlargement for a system
that only integrates channels. Authentication is only
possible when at least of the channels report an opinion.
Note that in Figure 4 and Figure 5 the authentication is
based only on face recognition scores for the first half
of the sequence as no previous data was recorded from
other channels within the last 0.5 seconds. Depending
on the length of relevant history, our system can evalu-

Figure 4: An enlarged version of Figure 3 between
frames 205 and 220. Each frame is polled 10 times
within the frame. Vertical lines show the variances
of propagated distributions around the means since
the last score. Fingerprint channel is not shown since
the only score is beyond the history window of 0.5
seconds. Circles show actual scores from Figure 3.

ate what has been seen within the lastn seconds even if
there were no scores reported from any channel, which
would be impossible without temporal integration.

5. Conclusion
We have introduced a new model for temporal in-

tegration in biometric user authentication and devel-
oped an initial method for a continuous authentication
system. Our temporal integration method depends on
the availability of past observations, which makes the
length of relevant history an important heuristic. An-
other important design choice is the degeneracy func-
tion. The existence of a cross-over point in the history
suggests further investigation of the degeneracy.

We have shown on simulated data that our prelimi-
nary system can provide continuous authentication re-
sults which are consistently better than individual com-
ponents of the system. Clearly, gathering a true multi-
modal database is very important for continued work in
this field.

When the history length is set to0, the system ig-
nores temporal integration and degenerates into a mul-
timodal system. Although our approach attempts to
minimize the filtering effect of false positives and false
negatives, our temporal integration method would suf-
fer from this smoothing behavior to some degree as it
stands. The net effect of this behavior is integration of
positive decisions, as well as negative ones, as expected.
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Figure 5: An enlarged version of Figure 3 between
frames 205 and 220. Channel integration only, no
temporal integration was performed. The system
can perform authentication only when a score was
reported by at least one channel.
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