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Abstract

In this paper, we consider the problem of rendering novel
views of a live unprepared scene from video input, impor-
tant to many application scenarios (such as telepresence
and remote collaboration). We present an optimization ap-
proach to improving incomplete scene reconstructions cap-
tured in real time with a single moving monocular camera.
We take semi-dense depth maps and convert them into a
dense scene model, suitable for rendering plausible novel
views of the scene using conventional image-based render-
ing. Our implementation densifies depth maps at the rate
they are generated, and enables us to generate novel views
of live scenes with no pre-capture or preprocessing. In eval-
uations comparing with other approaches, our method per-
forms well even on difficult scenes, and results in higher-
quality novel views.

1. Introduction
In recent years there has been significant progress in the

field of monocular scene reconstruction, resulting in effi-

cient real-time algorithms able to run on mobile hardware.

However, most reconstruction algorithms are not able to

produce fully dense accurate scene models. Instead, the

current state-of-the-art approaches typically create semi-

dense (or sparse) models. That is, they reconstruct the

high-texture areas while leaving large gaps in low-texture

regions. Some algorithms can produce dense models, but

at the cost of efficiency and scalability, and often still fail

at untextured areas. While semi-dense models are sufficient

for some applications (e.g., pose tracking), there are many

use cases that require complete models (e.g., novel view

generation). Given the efficiency of semi-dense reconstruc-

tion, a question arises if it is possible to turn semi-dense

models into dense reconstructions in a live, online fashion.

In this paper, we present a method for improving scene

reconstructions captured in real time. Specifically, we pro-

pose an optimization approach to creating a dense scene

model from a collection of semi-dense depth maps. We

assume a scenario with a moving monocular camera from

which keyframes are periodically captured. In addition

to the keyframe images, we assume that keyframes have

known relative poses and semi-dense depth maps. This is

consistent with what can be achieved using current state-of-

the-art SLAM, with no pre-capture or preprocessing. From

the output of such a system, we generate a dense scene

model suitable for creating plausible novel views of the

scene using conventional image-based rendering methods.

Our focus is on application scenarios that require the

ability to generate a novel view of a live scene, where it is

not desirable (or possible) to capture and process the scene

beforehand. Some examples of these are telepresence [18],

remote collaboration using Augmented Reality [31], and

user-perspective views [3]. In these cases, the scene mod-

elling needs to be efficient but still provide a good base for

the image-based rendering. Addressing such scenarios are

the motivation behind our densification method. We take

semi-dense keyframes and densify them sufficiently fast to

keep up with the rate that new keyframes are added, en-

abling real-time novel view generation.

2. Related Work

Densifying incomplete scene geometry into dense mod-

els has been previously demonstrated. Hawe et al. [15]

showed that it is possible to reconstruct an accurate dense

disparity map from only 5% of the disparity measurements,

using compressive sensing. The approach depends on hav-

ing accurate measurements for particular areas, but these ar-

eas are mostly near edges where reconstruction algorithms

perform best. Shan et al. [29] used an energy minimiza-

tion approach to densify individual semi-dense depth maps

as part of their method for improving multi-view stereo re-

constructions. These depth maps were then fed back to an

approach that computed the scene model using a variation

of PMVS [12] and Poisson surface reconstruction, an offline

process not suitable for real-time applications.

Many real-time methods have been proposed that cap-

ture sparse or semi-dense scene geometry; primarily aimed
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at tracking, visual odometry, and SLAM. Engel et al. [10]

proposed a visual odometry approach based on semi-dense

stereo, which was later extended into a SLAM system

(LSD-SLAM) [9]. LSD-SLAM models the scene as a col-

lection of keyframes with semi-dense depth maps. These

maps are fairly noisy, and the different keyframes do not

necessarily fully agree on a consistent scene model (due to

noise, error, and occlusion). However, the approach is very

efficient and has been shown to work on a mobile phone.

Real-time dense reconstruction with a single moving

camera was presented in [22]. The approach was based on

using PTAM [20] for tracking and the initial scene model;

the scene is then reconstructed by deforming a dense 3D

mesh while satisfying image correspondences. In DTAM

[24] the tracking uses whole image alignment, while the

scene is modeled as per-keyframe depth maps computed by

building and optimizing cost volumes. MonoFusion [26]

is based on KinectFusion [19, 23] but works with standard

color cameras, instead of a depth sensor. The depth data is

fused into a volumetric model that defines the implicit sur-

face of the scene. It uses stereo matching with the live frame

and selected keyframes to compute the depth maps used in

the fusion. As these method rely on satisfying photometric

constraints, they can be sensitive to difficult image condi-

tions. Also, these methods typically need to integrate infor-

mation from every frame in the input video. By contrast,

our approach is primarily focused on satisfying geometric

constraints and works with sparse collections of frames.

There is a distinction between IBR methods that work

directly and solely with the input images, and those that use

some form of scene geometry. The work presented in this

paper belongs to the latter category. Most IBR novel view

generation methods rely on some form of geometric con-

straint: an explicit 3D model, depth maps, some kind of

geometric proxy, image correspondences, etc. One of the

earliest works in this area is by Chen and Williams [7], who

introduced a view interpolation method that depends on pre-

computed image correspondences derived from range data.

The Lumigraph by Gortler et al. [14] is another highly in-

fluential work. It used approximate geometry, a visual hull

computed from the silhouettes of the object, with the sil-

houettes extracted using a blue-screen technique. Buehler

et al. [4] extended this concept, generalized a number of

IBR methods and defined a set of desirable properties for

IBR. Among the key features of the approach is that the in-

put images can be from arbitrary viewpoints.

Schirmacher et al. [27] presented a depth map based ver-

sion of the lumigraph approach, and a system that used

stereo with a camera array to render novel views of a dy-

namic scene. Hofsetz et al. [16] presented a IBR method

that is based on pre-reconstructed depth maps, but also con-

siders the uncertainty of the per-pixel depth estimates; the

novel views are generated by splatting Gaussian kernels.

Zitnick and Kang [34] developed a stereo algorithm in-

tended specifically for IBR, noting that accurate depth maps

are not necessary as long as the final image was plausible.

Eisemann et al. [8] addressed the ghosting/blurring render-

ing artifacts in IBR caused by inaccurate geometry.

Recently, IBR methods have been proposed that rely on

multi-view stereo [28] or structure-from-motion to build a

model of the scene. However, MVS and SfM are computa-

tionally expensive so these IBR methods require substantial

preprocessing, and are not suitable for live scenes. Goesele

et al. [13] presented a method for generating transitions be-

tween images in a photo collection of a landmark (similar to

[30]). Chaurasia et al. [6] presented a method that attempts

to minimize distortions that can occur in interpolated im-

ages by considering object silhouettes at depth discontinu-

ities. In follow-up work [5], instead of segmenting objects

and warping the entire image, the inputs are oversegmented

into superpixels and then the superpixels are locally warped.

3. Approach
Our goal is to densify semi-dense scene geometry and

produce a dense scene reconstruction suitable for novel

view generation using image-based rendering with a single

monocular moving camera. From this camera, keyframes

are captured periodically. Each keyframe has a known rel-

ative pose to other keyframes (at least to the preceding

keyframe) and a semi-dense depth map with reasonably ac-

curate depth information along the most prominent edges.

Figure 1. Visualization of input keyframes showing camera po-

sitions (orange frusta) and point cloud created from semi-dense

depth maps. The blue regions are background (no captured points).

3.1. Optimization framework

At a high level, we treat the task of densifying the input

semi-dense model as an optimization problem. We define

an energy function whose minimum represents our desired

solution, a dense model of the scene.

Our input consists of a set of keyframes, which we note

as K. Each keyframe k ∈ K is defined by an input image

ik, an input semi-dense depth map sk, and a set of known

poses Mki of other keyframes i �= k relative to k.

Our objective is to compute a dense scene model. We

define this model as a set of dense depth maps, with a dense
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depth map computed for each input keyframe. We note this

set as D, and the dense depth map for keyframe k as dk.

We formalize the desired properties of the final scene model

with an energy function F (D). This function is defined so

that a ground truth model would be at or near the global

minimum. It is a weighted sum of three basic terms: per-

keyframe input deviation (E), per-keyframe smoothnesses

(G2), and mutual consistency between keyframes (R):

F (D) = α · E(D) + β2 ·G2(D) + γ ·R(D) (1)

All three terms are functions of D (and only D). For the

purposes of minimizing F , only D and terms that are func-

tions ofD (or depth maps inD) are variable; all other terms

below are considered constant. The parameters α, β2, and

γ control the relative influence of each term. While these

can be adjusted, they are constants for the optimization.

In the notation below, although images and depth maps

are 2D arrays, they are noted as vectors. Their derivatives

are computed with consideration of their 2D nature, but are

also noted as vectors. We use “·” to denote both scalar mul-

tiplication and the element-wise product of two vectors.

From the input images ik, we define σk and τ k – per-

pixel weights computed from the partial derivatives of ik.

From sk, we derive per-pixel weights εk (see below). For

completeness and generality, we also define per-keyframe

weights wk and pair-wise weights wij that control the influ-

ence of each keyframe or keyframe pair (currently just kept

set to 1). All these weights assume values in the range [0, 1].

3.1.1 Input deviation

The deviation term E represents the weighted sum of the

input deviations from all the keyframes in the scene model.

The deviation for each keyframe is the difference between

the final scene model and the input depth data. The dif-

ference is a sum of weighted per-pixel differences, with

the weight derived from the input depth data (e.g., 1 if the

pixel is in the semi-dense area, 0 otherwise). (We note the

weighted sum as the L2 norm of the element-wise product

of the vector of weights and the vector of differences.)

E(D) =
∑

k∈K
wk · ‖εk · (dk − sk)‖ (2)

This term is responsible for enforcing the known depth

data. That is, it ensures that the final scene model remains

mostly consistent with the input depths and does not drift

too far from them. For the case of perfect input depths and

ground truth final solution, this term would be exactly zero.

3.1.2 Smoothness

The smoothness term G2 represents the desired property of

biasing the scene model toward smooth surfaces, in order to

suppress noisiness. Since most real-world scenes are piece-

wise smooth, this should provide a better overall reconstruc-

tion. As with the error term, this term is also the weighted

sum of per-keyframe values. The per-keyframe smoothness

is the sum of per-pixel values, computed from the partial

derivatives of the depth map, with separate weights for the

horizontal and vertical component. These weights are com-

puted from the input keyframe image.

G2(D) =
∑

k∈K
wk ·

(∥∥σk · ∂2
xdk

∥∥+
∥∥τ k · ∂2

ydk

∥∥) (3)

σk(x, y) = e−
|∂xik(x,y)|

2 , τ k(x, y) = e−
|∂yik(x,y)|

2 (4)

In general, the value of this term will not be exactly zero

for a ground truth scene model, because a real scene can

have non-smooth surfaces. Nevertheless, this term should

be small for good reconstructions and large for bad ones.

3.1.3 Dense consistency

The final term R is the mutual consistency between the

depth maps of the individual keyframes. Without this term,

it is possible for each keyframe to have an optimal solution

for its own depth map (satisfying the other two terms), while

conflicting with the solution of another keyframe. This can

happen because each keyframe has a different view of the

overall scene, but these views cover overlapping areas. In

any reasonable scene model, if two keyframes see the same

point in space, they should agree on where that point is.

Otherwise, the reconstruction is inconsistent and therefore

incorrect. This term helps enforce the consistency of the re-

construction. Ideally, the value of this term should be zero,

as there should be no inconsistencies.

To compute the consistency term R we consider the pro-

jections of each keyframe’s depth map into all the other

keyframes. That is, for a keyframe i there is a dense depth

map di that defines that keyframe’s model of the scene.

This model can be projected into the point-of-view of an-

other keyframe k, since the relative pose Mki between the

two keyframes is known from the view-graph. We note the

general projection function as P(d,M), and a specific in-

stance as Pki(di) ≡ P(di,Mki). The projected depth map

is noted as pki, and the area of keyframe k that keyframe i
projects to is noted as Πki. If the two keyframes are mutu-

ally consistent, then the difference between the depth map

of keyframe k and the projection pki within the area Πki

should be small.

The full consistency term is the weighted sum of all

the pair-wise consistencies. Each pair-wise term is com-

puted as the weighted per-pixel difference between the tar-

get keyframe’s depth map dk and the projected depth map

pki. The per-pixel weights πki are derived from the projec-

tion Pki of keyframe i to keyframe k, (e.g., 1 if the pixel is

844



in Πki, 0 otherwise). This is notably different from the per-

pixel weights in the other terms; those are constant values

derived from the input data. Here, the per-pixel weights are

themselves functions of the scene model D. However, they

can be considered constant with respect to dk, as they are

not dependent on it.

R(D) =
∑

i,j∈K
i�=j

wij · rij(di,dj) (5)

rij(di,dj) =
∥∥πij ·

(
di − pij

)∥∥ (6)

{πij ,pij} = Pij(dj) (7)

Ideally, if two keyframes are mutually consistent, then

rki will be zero. In practice, due to occlusion issues and

ambiguities with defining the projection function P (e.g.,

how to handle depth discontinuities), this difference will

be non-zero. However the value will be small for consis-

tent keyframes and large for inconsistent ones. It should be

noted that this difference is asymmetric; that is: rki �= rik.

This is primarily because there is no one-to-one mapping

between Πki and Πik. Indeed it is possible for one area

to be completely empty, while the other is completely full.

This is because one keyframe may observe an occluder that

hides parts of the scene that the other keyframe sees.

3.2. Additional terms

In principle, the above energy function is sufficient for

finding a solution and creating a dense scene model. How-

ever, in practice some additional considerations need to be

made in order to get good results with real world data.

These include better handling of noisy input data and ini-

tializing the depth maps before the optimization.

3.2.1 Input consistency

The input deviation term described above is necessary to

enforce that the densified model fits the input data. How-

ever, if the input semi-dense depth map is noisy it can make

the densified model noisy as well. Furthermore, the dense

consistency term will spread the noise between keyframes.

Since real algorithms (e.g., LSD-SLAM) are quite noisy, we

need to address this issue.

Fortunately, this noise can be reduced by considering

other keyframes’ semi-dense input. Instead of just consider-

ing deviation from the keyframe’s own input depth, we can

consider the deviation from all the other keyframes’ input

as well. Each densified depth map should be constrained by

all the input depth data, not just the data from one keyframe.

This would provide more than one depth sample per pixel

and allow for a better estimate of the true depth, reduc-

ing the impact of the noisiness in the input. Note that this

is different from the dense consistency, as that constraint

is only concerned with mutual consistency between dense

depth maps and does not consider the input data at all.

We therefore define an input consistency term. It is simi-

lar in structure to the dense consistency term, but has a very

different purpose and effect, and is meant to replace the in-

put deviation term. As with dense consistency, we project

depth data from one keyframe to another. However, we

only project the semi-dense input depth map, not the current

dense depth map. We define a projection function S(s,M),
with a specific instance noted as Ski(si) ≡ S(si,Mki).
The projected semi-dense depth map is noted as ski, and

the per-pixel weights as ρij . Note that unlike their dense

consistency counterparts, both ski and ρij are constant val-

ues, derived from the input data.

Eg(D) =
∑

i,j∈K
wij ·

∥∥ρij · (di − sij)
∥∥ (8)

{ρij , sij} = Sij(sj) (9)

3.2.2 Flatness

The smoothness term is the key to turning semi-dense in-

puts into dense depth maps. Its purpose is to fit a piecewise

smooth surface to the semi-dense input data, and it is the

term responsible for filling in the gaps of the depth map. As

described above, it is based on the second-order derivative

of the individual dense depth maps. Although the second-

order is the appropriate choice when creating a global dense

model consistent across multiple keyframes, it can cause

issues when densifying a single keyframe (e.g., for initial-

ization). This is because the only constraints to the shape

of the surface are the keyframe’s semi-dense input depths

and the smoothness requirement. There are hard constraints

in the regions with depth data, but the surface has a lot of

freedom regarding its shape in the gap regions (areas where

there is no input depth data) as there is no constraint on the

surface area or orientation. Since the smoothness term dis-

courages discontinuities, it is possible to get a surface that

is very smooth and closely conforms to the semi-dense in-

put regions, but has abnormally large curved shapes in the

gap regions. Since the overall optimization also includes

the dense consistency term, this is not an issue when den-

sifying multiple keyframes together into a consistent scene

model, as the dense consistency creates constraints in the

gap regions. However, the problem with abnormal surfaces

happens when densifying a single keyframe, as there are no

consistency constraints in that case.

Since it is sometimes necessary to densify a single

keyframe, we need another constraint that will also fill the

gaps but not have the same problem. In order to enable

reasonable densification of individual keyframes, we define

a “flatness” term, based on the first-order depth derivative.

The use of a first-order derivative mitigates the problems
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with the smoothness term. The first-order derivative encour-

ages surfaces that are not just generally smooth, but also

planar and facing the camera. This results in better initial

depth maps, with the gap regions filled in with smaller and

flatter surfaces.

G1(D) =
∑

k∈K
wk · (‖σk · ∂xdk‖+ ‖τ k · ∂ydk‖) (10)

Note that while encouraging front-facing surfaces helps

with densifiying a single depth map, it cannot be used

for the mutually consistent global model, because each

keyframe would pull the surface towards itself.

3.3. Energy minimization

The key to our approach is in defining energy terms

whose minima correspond to the dense scene model that

we want to obtain. The objective is to find the minimum of

the energy function, and thus the dense scene model. These

energy terms are over very high-dimensional spaces, and

also feature some non-linearities. In order to find a solution

efficiently we need to address these issues.

The first issue is with the dense consistency term. This

term includes the use of projected depth maps pij produced

by a projection function P . This function depends on the

current scene model, features non-linearities, and is best im-

plemented as a rendering step. This makes it very difficult

to use directly to solve for the scene modelD. However, for

each keyframe k the projected depth maps pki are constant

with respect to dk. Therefore each depth map dk can be

directly optimized separately. The overall scene model D
can then be optimized iteratively.

Next, we note that each of the energy function terms de-

scribed now fall into one of two categories: they either min-

imize the difference to some constant value, or they mini-

mize a derivative defined as a simple linear equation over

two or three neighbouring pixels. Therefore, we can rede-

fine this problem as a large overdetermined system of linear

equations for which we want a least-squares solution. Fur-

thermore, this is a very sparse system. This type of system

of equations can be very efficiently solved.

3.4. Densification process

Here, we outline the steps necessary to turn a collection

of input semi-dense depth maps into a dense scene model.

The first step in the process of densifying a new keyframe

is the initialization. This produces an initial dense depth

map for the keyframe, created by only considering the data

from the new input keyframe. The objective for the initial-

ization is to get a dense depth map that contains the input

semi-dense data, but fills in the missing information with a

reasonable guess, by fitting a piecewise smooth surface. We

accomplish this by defining a simple energy function over

the keyframe’s depth map, and finding its minimum. The

energy function we optimize consists of only two terms: the

semi-dense input deviation term and the flatness term.

The next step in the process is to generate the projected

semi-dense depth maps needed by the input consistency

term. For each source keyframe we create a semi-dense

mesh from their input depth map and project it to the tar-

get keyframe. However, we do not simply project the semi-

dense regions, as this can result in projecting geometry that

would not be visible by the target keyframe because it is

occluded by surfaces that should exist in the target’s gap re-

gions. Instead, we allow for the surfaces belonging to the

gap regions to exclude the surfaces from the input regions

that they would occlude.

Finally, we optimize for the main energy function. This

function uses the projected semi-dense input consistency

term, the smoothness term, and the dense consistency term:

F (D) = αg · Eg(D) + β2 ·G2(D) + γ ·R(D) (11)

The optimization is iterated. During an iteration, all the

keyframe depth maps are considered static, while updated

dense depth maps are being computed. The first step in each

iteration is to generate the projected depth maps. Next, the

individual depth maps are all optimized separately. At the

end of each iteration, the keyframes’ depth maps are up-

dated with the newly optimized depth maps, and then the

process is repeated. This keeps the process of optimizing a

keyframe simple, while allowing all the depth maps to con-

verge to a solution that is consistent between keyframes. In

practice, just two iterations seem to be sufficient.

4. Implementation
We implemented our live system using a modular ap-

proach, separating it into three main components: the semi-

dense source, the scene densifier, and the application. These

parts run as separate processes communicating over a net-

work connection. This design provides a great deal of flex-

ibility in choice of input data or target application, and in

how the processing is distributed. For example, the input

data can be coming from a mobile device or aerial drone,

the densification can be done on a server, while the target

application could be running on an end-user’s laptop.

The densifier implements the densification process and

runs the energy minimization. We use the gradient de-

scent method, which iteratively converges to the solution

that minimizes the energy function. Given the sparsity and

predictable pattern of the coefficients in the system, we can

define an expression for the energy function’s gradient that

allows us to compute the partial derivative for a pixel. Each

pixel is only dependent on itself and eight of its neighbours

(two in each cardinal direction), and the expression easily

scales with the number of keyframes as those constraints

simply sum together. This optimization approach is inher-
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ently parallel, and we exploit this by implementing a GPU-

based solver, using OpenGL compute shaders. The full

optimization problem scales quadratically with the num-

ber of keyframes, which is impractical. To maintain per-

formance, the optimization needs to only consider a fixed

number of keyframes at a time (e.g., only use the 5 latest

keyframes). The system can process a new keyframe in

about one second, which is sufficient to keep up with the

rate that keyframes are generated by the SLAM system, en-

abling real-time applications.

We use LSD-SLAM as the source of the input keyframes

with semi-dense depth maps. Those are received by the

densifier and the application, the densifier processes the

keyframes and sends densified depth maps to the applica-

tion. Our application takes the input keyframes and the

dense depth maps and uses them to render the scene, using

an approach similar to Unstructured Lumigraph Rendering

[4]. Each keyframe is converted into a per-keyframe mesh.

For a given desired camera view we select a number of

keyframes with the closest matching views. We render their

individual meshes, and blend them together to form the fi-

nal image. LSD-SLAM’s preferred resolution is 640× 480,

so we use the same for all depth maps and images.

5. Results
The densification method described above produces

dense depth maps that are good approximations of the scene

geometry. From these, we are able to render novel views

of the scene that are generally very convincing. Figure 2

shows example results of our densification and novel view

rendering for the Couch scene. We evaluate our method by

comparing our results with those of representative methods

from two other approaches.

Figure 2. Results for Couch scene. Top row: input depth map

(left), densified depth map (right). Bottom row: input point cloud

(left), rendered novel view (right).

5.1. Evaluation

We run all methods on a dataset consisting of six differ-

ent scenes (see left-most column in Figure 4) featuring dif-

ferent conditions. These include characteristics of indoor

scenes, outdoor scenes, strong lighting, thin geometry, sur-

face detail, textureless areas, and specular surfaces.

The first method for comparison is based on creating

meshes out of point cloud data. The methods in this cat-

egory (e.g., [17], [21],[33]) take as input a (sparse) point

cloud with camera poses from which the points have been

observed. The first step is to perform a Delaunay tetrahe-

dralization of the point cloud. After this, a two-label graph-

cut is used to label each tetrahedron as either being free

(empty space) or occupied (inside an solid object). A tri-

angle that is a shared face between tetrahedra with different

labels is considered to be a surface triangle. The collection

of these triangles represent the surface mesh of the recon-

structed scene. We implemented a version of this approach

based on the real-time method of Hoppe et al. [17], and used

this for our experiments. The output from LSD-SLAM was

used as the source of the point cloud data.

The other method we compare to is based on dense real-

time multi-view stereo. This approach takes as input a

video sequence, and then performs multi-view stereo be-

tween frames (typically a reference frame and the current

frame). For our experiments, we compare with REMODE

by Pizzoli et al. [25], using the authors’ implementation

[1]. This code uses SVO [11, 2] (a visual odometry method

from the same authors) for the pose estimation. However,

we found SVO to be unreliable when run on our datasets

(due to lack of texture), so we instead used LSD-SLAM to

provide the camera poses. We did not modify REMODE to

do this, since REMODE gets input from SVO via a node

in the ROS framework. As LSD-SLAM also uses ROS, we

simply modified LSD-SLAM to provide the same node in

order to mimic SVO. This provided much more stable cam-

era tracking and allowed REMODE to work on our dataset.

Note that the semi-dense depth-maps from LSD-SLAM are

not used by REMODE; only the camera poses are used.

Figure 3 shows a comparison of the reconstructions for

the Couch and Desk scenes. For each scene we show: the

ground truth reconstruction captured with a depth sensor,

a mesh representing a dense depth map produced by our

method, the mesh produced by Hoppe et al., and a mesh

representing a depth map produced by REMODE. As can be

seen, our results are considerably better than the results of

the other methods. We produce reasonably accurate smooth

results, capture important detail, and handle untextured ar-

eas well. The tetraherdalization and mesh extraction ap-

proach results in coarse low-polygon reconstructions, and

is sensitive to noise and outliers in the input point cloud.

The dense multi-view stereo approach produces generally

noisy results, and fails at low-texture areas.
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In Figure 4 we show a comparison of novel views ren-

dered using the reconstruction results of the different meth-

ods, against a ground truth reference. We use the same

rendering approach for all methods, based on the unstruc-

tured lumigraph approach. When generating an image, we

select eight keyframes as sources for the lumigraph render-

ing. Normally, we select the keyframes closest to the de-

sired novel view. Here, in order to more faithfully represent

the results obtained for novel views not in the camera path,

we exclude frames that are in the immediate neighborhood

of the reference frame (but still select eight frames total).

As can be seen in Figure 4, the novel view renderings based

on our method are generally of higher quality than the ren-

derings based on the other methods.

We further compare the novel view rendering with a

quantitative evaluation. For each of the scenes in our dataset

we generate novel views from fifteen different camera poses

and compute the Structural Similarity (SSIM) score [32] for

each of the poses. Figure 5 shows the average SSIM scores

across all the views per scene. Again, the results show our

method outperforming the other two.

5.2. Limitations

Our approach has some limitations. It requires semi-

dense inputs that are of reasonable quality. While it is capa-

ble of handling noise, large outliers can be problematic. If

the input has extreme outliers that cannot be detected, then

the densified models will suffer. We also assume that the in-

puts have fairly accurate pose estimates; large errors in the

pose can results in distorted models. Our densified mod-

els can have inaccuracies in homogenous regions, due to

the semi-dense input not providing any constraints in those

areas. Fortunately, the homogeneity also means that the er-

rors are generally not very objectionable when rendering,

but they can become a greater issue when the homogenous

area has a significant surface edge. Often, these regions

correspond to planar areas, so it may be possible to remove

these errors with a plane-fitting post-processing step.

6. Conclusion

We have presented an optimization approach to creat-

ing a dense scene model from a semi-dense reconstruction

captured in real-time. Our approach is to densify the semi-

dense depth maps produced by a state-of-the-art SLAM sys-

tem, producing dense depth maps that are good approxima-

tions of the scene geometry. Our implementation can den-

sify a semi-dense depth map fast enough to keep up with the

source reconstruction, thus enabling real-time use. We use

the produced dense scene model to create convincing novel

views of the scene using image-based rendering. With this,

we enable application scenarios that require the ability to

show novel views of a live scene.

Figure 3. Comparison of reconstructions for Couch (left) and Desk

(right) scenes. Top-to-bottom: ground truth, our method, Hoppe

et al., REMODE.

Figure 5. Average SSIM scores of novel views rendered using

scene models produced by the different methods.
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Ground truth Our method Hoppe et al. REMODE

SSIM: 1.00 SSIM: 0.95 SSIM: 0.90 SSIM: 0.83

SSIM: 1.00 SSIM: 0.94 SSIM: 0.86 SSIM: 0.85

SSIM: 1.00 SSIM: 0.83 SSIM: 0.65 SSIM: 0.71

SSIM: 1.00 SSIM: 0.80 SSIM: 0.74 SSIM: 0.43

SSIM: 1.00 SSIM: 0.87 SSIM: 0.70 SSIM: 0.67

SSIM: 1.00 SSIM: 0.88 SSIM: 0.62 SSIM: 0.73

Figure 4. Comparison of rendered novel views using models from different methods (columns) for the six scene conditions (rows). Left-

to-right: ground truth, our method, Hoppe et al., REMODE.
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