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1. INTRODUCTION 

 

A primary goal of virtual environments (VEs) is to provide natural, efficient, powerful, and 

flexible interaction for users while navigating, exploring, and communicating. Providing 

gestural capabilities as an input modality, particularly in the context of multimodal interaction 

(Jaimes and Sebe 2005), can help meet these requirements. Human gestures are natural and 

flexible and may often be efficient and powerful, especially as compared with alternative 

interaction modes. This chapter will cover automatic gesture recognition, focusing 

particularly on computer vision based techniques that do not require the user to wear extra 

sensors, clothing, or equipment. 

The traditional two-dimensional (2-D), keyboard- and mouse-oriented graphical user 

interface (GUI) is not well suited for virtual environments. Synthetic environments provide 

the opportunity to utilize several different sensing modalities and technologies and to 

integrate them into the user experience; these may be alternative methods for utilizing mouse 

and/or keyboard-like interactions in VEs, or, more generally, natural interaction techniques 

that move beyond desktop interaction  paradigms. Devices that sense body position and 

orientation, direction of gaze, speech and sound, facial expression, galvanic skin response, 

and other aspects of human state or behavior can be used to mediate communication between 

the user and the environment. Combinations of communication modalities and sensing 

devices can produce a wide range of unimodal and multimodal interface techniques. The 

potential for these techniques to support natural and powerful interfaces for communication in 

VEs is compelling, and advances in the past decade are bringing this closer to being a 

commonplace reality. 

If interaction technologies are overly obtrusive, awkward, or constraining, the user’s 

experience with the synthetic environment is severely degraded. If the interaction itself draws 

attention to the technology rather than the experience or the task at hand, or if it imposes a 

high cognitive load on the user, it becomes a burden and an obstacle to a successful VE 

experience. It is therefore critical that gesture recognition technologies are unobtrusive and 

passive, supporting the immersive experience rather than detracting from it. 

To support gesture recognition, human position and movement must be tracked and 

interpreted in order to recognize semantically meaningful gestures. While tracking a user’s 

head position or hand configuration may be quite useful for directly controlling objects or 

inputting parameters, people naturally express communicative acts through higher level 

constructs, as shown schematically in Fig. 10.1. The output of position (and other) sensing 

must be interpreted to allow users to communicate more naturally and effortlessly through 

gesture. Gesture recognition, then, includes not only low-level, bottom-up processing of 

image data, but also top-down processing that brings context and semantics into the equation. 

Gesture has been used for control and navigation in CAVEs (Cave Automatic Virtual 

Environments; Pavlovic et al., 1996; see Chapter 11, this volume) and in other VEs, such as 

smart rooms, virtual work environments, and performance spaces. More recently, gesture 

recognition has become a popular consumer technology for use in gaming, driven largely by 

the introduction of the Microsoft Kinect in 2010 (Xbox, 2012), and in “smart televisions,” 

with recent commercial offerings by Samsung and others. Sensors providing depth images (or 

RGB plus depth) at frame rate have made these systems possible. 

In addition, gesture may be perceived by the environment in order to be transmitted 



elsewhere (e.g., as a compression technique to be reconstructed at the receiver). Gesture 

recognition may also influence—intentionally or unintentionally—a system’s model of the 

user’s state. For example, a look of frustration may cause a system to slow down its 

presentation of information, or the urgency of a gesture may cause the system to speed up. 

Gesture may also be used as a communication backchannel (i.e., a visual or verbal behavior 

such as nodding or saying, “uh-huh” to indicate “I’m with you, continue,” or raising a finger 

to indicate the desire to interrupt) to communicate agreement, participation, attention, 

conversation turn taking, and so forth. 

Given that the human body can express a huge variety of gestures, which are of interest 

for human-computer interaction, and what is appropriate to sense and recognize? Clearly the 

position and orientation of each body part—the parameters of an articulated body model—

would be useful, as well as features that are derived from those measurements, such as 

velocity and acceleration. Facial expressions are very expressive and meaningful to people. 

More subtle cues such as hand tension, overall muscle tension, locations of self-contact, and 

even pupil dilation may be useful in sensing a person’s intention or state. 

Chapter 8 (this volume) covers technologies to track the head, hands, and body. These 

include instrumented gloves, body suits, and marker-based optical tracking. Most of the 

gesture recognition work applied to VEs has used these tracking technologies as input. 

Chapter 9 (this volume) covers eye-tracking devices and discusses their limitations in tracking 

gaze direction. The current chapter covers the representation and interpretation of tracked data 

from such devices in order to recognize gestures. Additional attention is focused on passive 

sensing from image-based sensors using computer vision techniques. The chapter concludes 

with suggestions for gesture-recognition system design. 

 

*** Figure 10.1 goes around here *** 

 

 

2. THE NATURE OF GESTURE 

 

Gestures are expressive, meaningful body motions—i.e., physical movements of the fingers, 

hands, arms, head, face, or body with the intent to convey information or interact with the 

environment. Cadoz (1994) described three functional roles of human gesture: 

• Semiotic—to communicate meaningful information. 

• Ergotic—to manipulate the environment. 

• Epistemic—to discover the environment through tactile experience. 

In an HCI environment, gesture recognition is the process by which semiotic gestures 

made by the user are made known to the system. One could argue that in GUI-based systems, 

standard mouse and keyboard actions used for selecting items and issuing commands are 

gestures; however, we are interested in less trivial cases. While static position (also referred to 

as posture, configuration, or pose) is not technically considered gesture, it is included for the 

purposes of this chapter, as certain poses may be characteristic of the gestures that created 

them, and a gesture may be considered as a temporal sequence of poses. 

In virtual environments, users need to communicate in a variety of ways, to the system 

itself and also to other local or remote users. Communication tasks include specifying 

commands and/or parameters for tasks such as: 

• Navigating through a space 

• Specifying items of interest 

• Manipulating objects in the environment 

• Changing object values 

• Controlling virtual objects 

• Issuing task-specific commands 

In addition to user-initiated communication, a VE system may benefit from observing a user’s 

behavior for purposes such as: 

• Analyzing system usability 



• Analyzing user behavior 

• Monitoring changes in a user’s state 

• Better understanding a user’s intent or emphasis 

• Communicating user behavior to other users or environments 

Messages can be expressed through gesture in many ways. For example, an emotion such 

as sadness can be communicated through facial expression, a lowered head position, relaxed 

muscles, and lethargic movement. Similarly, a gesture to indicate “Stop!” can be simply a 

raised hand with the palm facing forward or an exaggerated waving of both hands above the 

head. In general, there exists a many-to-one mapping from concept to gesture (i.e., gestures 

are ambiguous); there is also a many-to-one mapping from gesture to concept (i.e., gestures 

are not completely specified). Like speech and handwriting, gestures vary among individuals, 

from instance to instance for a given individual, and are subject to the effects of 

coarticulation. So as with many recognition tasks, it is important to consider both within-class 

and between-class variations in the data. 

An interesting real-world example of the use of gestures in visual communications is a 

U.S. Army field manual (Anonymous, 1987) that serves as a reference and guide to 

commonly used visual signals, including hand and arm gestures for a variety of situations. 

The manual describes visual signals used to transmit standardized messages rapidly over short 

distances. In contrast is the training material for the Microsoft Kinect, where a small number 

of gestures are imprecisely defined and users are mostly learned by doing. 

Despite the richness and complexity of gestural communication, researchers have made 

progress in beginning to understand and describe the nature of gesture. Kendon (1972) 

described a “gesture continuum,” defining five different kinds of gestures: 

• Gesticulation—spontaneous movements of the hands and arms that accompany 

speech. 

• Languagelike gestures—gesticulation that is integrated into a spoken utterance, 

replacing a particular spoken word or phrase. 

• Pantomimes—gestures that depict objects or actions, with or without accompanying 

speech. 

• Emblems—familiar gestures such as “V for victory,” “thumbs up,” and assorted rude 

gestures (these are often culturally specific) 

• Sign languages—linguistic systems, such as American Sign Language (ASL), which 

are well defined. 

As the list progresses (moving from left to right in Fig. 10.2), the association with speech 

declines, language properties increase, spontaneity decreases, and social regulation increases. 

 

*** Figure 10.2 goes around here *** 

 

Within the first category—spontaneous, speech-associated gesture—McNeill (1992) 

defined four gesture types: 

• Iconic—representational gestures depicting some feature of the object, action, or 

event being described. 

• Metaphoric—gestures that represent a common metaphor, rather than the object or 

event directly. 

• Beat—small, formless gestures, often associated with word emphasis. 

• Deictic—pointing gestures that refer to people, objects, or events in space or time. 

Fig. 10.2 depicts the relationships among Cadoz’s functional roles of human gesture, 

Kendon’s gesture continuum, and McNeill’s gesture types. 

These types of gesture modify the content of accompanying speech and may often help to 

disambiguate speech, similar to the role of spoken intonation. Cassell et al. (1994) described a 

system that models the relationship between speech and gesture and generates interactive 

dialogs between three-dimensional (3-D) animated characters that gesture as they speak. 

These spontaneous gestures (gesticulation in Kendon’s continuum) are estimated to make 

up some 90% of human gestures (McNeill 2000). People even gesture when they are on the 

telephone, and blind people regularly gesture when speaking to one another. Across cultures, 



speech-associated gesture is natural and common. For human-computer interaction (HCI) to 

be truly natural, technology to understand both speech and gesture together must be 

developed. 

Despite the importance of this type of gesture in normal human-to-human interaction, 

most research to date in HCI, and most VE technology, focuses on the lower right side of Fig. 

10.2, where gestures tend to be less ambiguous, less spontaneous and natural, more learned, 

and more culture-specific. Emblematic gestures and gestural languages, although perhaps less 

spontaneous and natural, carry more clear semantic meaning and may be more appropriate for 

the kinds of command-and-control interaction that VEs tend to support. The main exception 

to this is work in recognizing and integrating deictic (mainly pointing) gestures, beginning 

with the well-known “Put That There” demonstration by Bolt at MIT in the context of the 

Media Room project (Bolt 1980). The remainder of this chapter will focus on symbolic 

gestures (which include emblematic gestures and predefined gesture languages) and deictic 

gestures, keeping our attention largely on the bottom-up approaches. 

 

 

3. REPRESENTATIONS OF POSTURE AND GESTURE 

 

Although most gesture recognition systems share some common approaches, there is no 

standard way to do gesture recognition—a variety of representations and classification 

schemes are used. The concept of gesture is not precisely defined, and the interpretation of 

gestures depends on the context of the interaction. Recognition of natural, continuous gestures 

requires temporally segmenting gestures, since gestures are fundamentally time-varying 

events. Automatically segmenting gestures is difficult and has often been finessed or ignored 

in systems by requiring a starting position in time and/or space, similar to “push to talk” 

speech recognition systems. Morency et al. (2007) proposed a solution to this problem using 

latent-dynamic discriminative models, which was also used by Song et al. (2012) based on 

extracted body and hand features for continuous gesture recognition. Alon et al. (2009) used 

spatiotemporal matching and offline learning to incorporate both top-down and bottom-up 

information flow in gesture segmentation. Similar to this is the problem of distinguishing 

intentional gestures from other “random” movements.  

Gestures can be static, where the user assumes a certain pose, posture, or configuration; or 

dynamic, defined by movement. McNeill (1992) defined three phases of a dynamic gesture: 

prestroke, stroke, and poststroke. Some gestures have both static and dynamic elements, 

where the pose is important in one or more of the gesture phases; this is particularly relevant 

in sign languages. When gestures are produced continuously, each gesture is affected by the 

gesture that preceded it, and possibly by the gesture that follows it. These coarticulations may 

be taken into account as a system is trained. 

There are several aspects of a gesture that may be relevant and therefore may need to be 

represented explicitly. Hummels and Stappers (1998) described four aspects of a gesture 

which may be important to its meaning: 

• Spatial information—where it occurs, locations a gesture refers to. 

• Pathic information—the path that a gesture takes. 

• Symbolic information—the sign that a gesture makes. 

• Affective information—the emotional quality of a gesture. 

In order to infer these aspects of gesture, human position, configuration, and movement must 

be sensed. This can be done directly with sensing devices such as magnetic field trackers, 

instrumented gloves, inertial sensors, and datasuits, which are attached to or held by the user, 

or indirectly using techniques such as electric field sensing (as in a theremin) or cameras and 

computer vision techniques. Each sensing technology differs along several dimensions, 

including accuracy, resolution, mobility, latency, range of motion, user comfort, and cost. The 

integration of multiple sensors in gesture recognition is a complex task, since each sensing 

technology varies along these dimensions. Although the output from these sensors can be 

used to directly control parameters such as navigation speed and direction or movement 

through a virtual space, our interest is primarily in the interpretation of sensor data to 



recognize gestural information. 

The output of initial sensor processing is a time-varying sequence of parameters typically 

describing positions, velocities, and angles of relevant body parts and features – ideally 3-D 

and view-independent, but in some cases 2-D, view-dependent features. These should (but 

often do not) include a representation of uncertainty that indicates limitations of the sensor 

and processing algorithms. Recognizing gestures from these parameters is a pattern 

recognition task that typically involves transforming input into the appropriate representation 

(feature space) and then classifying it from a database of predefined gesture representations, 

as shown in Fig. 10.3. The parameters produced by the sensors may be transformed into a 

global coordinate space, processed to produce sensor-independent features, or used directly in 

the classification step. 

Because gestures are highly variable, from one person to another (inter-person variations) 

and from one example to another within a single person (intra-person variation), it is essential 

to capture the essence of a gesture—its invariant properties—and use this to represent the 

gesture. Besides the choice of representation itself, a significant issue in building gesture 

recognition systems is how to create and update the database of known gestures. Hand-coding 

gestures only works for trivial systems; in general, a gesture recognition system needs to be 

trained through some kind of learning procedure. As with speech recognition systems, there is 

often a trade-off between accuracy and generality—the more accuracy desired, the more user-

specific training is required. In addition, systems may be fully trained when in use, or they 

may adapt over time to the current user. As should be apparent throughout this chapter, there 

is no one-size-fits-all solution to problems in gesture recognition. 

Static gesture, or pose, recognition can be accomplished by a straightforward 

implementation of Fig. 10.3, using template matching, geometric feature classification, neural 

networks, or other standard pattern recognition techniques to classify pose. Dynamic gesture 

recognition, however, requires consideration of temporal events. This is typically 

accomplished through the use of techniques such as time-compressing templates, finite state 

machines (Hong et al. 2000), dynamic time warping (Darrell and Pentland 1993, Reyes et al. 

2011), hidden Markov models (Wilson and Bobick 1999, Lee and Kim 1999), conditional 

random fields (Wang et al. 2006), and Bayesian networks (Suk et al. 2008). Elgammal et al. 

(2003) described learning dynamics for gestures, applied to sequences of body poses. 

 

*** Figure 10.3 goes around here *** 

 

4. APPROACHES FOR RECOGNIZING GESTURE 

 

Gesture recognition is useful in a wide range of application areas (Wachs et al. 2011), and 

approaches in most of these are applicable to the use of gesture in virtual environments. For 

example, gesture recognition has been used extensively in surface computing (Wobbrock et 

al. 2009), immersive environments (Kehl and Van Gool 2004), smart home control (Kühnel et 

al. 2011), interactive gaming (Kang et al. 2004, Bleiweiss et al. 2010), interactive music 

(Overholt et al. 2009), and artistic interfaces (Faste et al. 2008). These different scenarios may 

assume the use of various devices or sensing capabilities. 

 

4.1 Pen-based and Touch-based Gesture Recognition 
Recognizing gestures from a 2-D input device such as a pen or mouse has been considered for 

some time. The early Sketchpad system in 1963 (Johnson, 1963) used light-pen gestures, for 

example. Some commercial systems have used pen gestures since the 1970s. There are 

examples of gesture recognition for document editing, for air traffic control, and for design 

tasks such as editing splines. In the 1990s, systems such as the OGI QuickSet system (Cohen 

et al. 1997) demonstrated the utility of pen-based gesture recognition and speech recognition 

to control a virtual environment. QuickSet recognized 68 pen gestures, including map 

symbols, editing gestures, route indicators, area indicators, and taps. Oviatt (1996) 

demonstrated significant benefits of using speech and pen gestures together in certain tasks. 

Zeleznik, Herndon, and Hughes (1996) and Landay and Myers (1995) developed interfaces 



that recognize gestures from pen-based sketching. 

The introduction of inexpensive touch screens and multi-touch capabilities on mobile 

phones (with iOS, Android, Windows Phone, and other such devices) in recent years has 

made touch-based gesture a common experience for smart phone users, expanding the 

existing vocabulary of mouse- and pen-based gestures. A significant benefit of pen-based and 

touch-based gestural systems is that sensing and interpretation is relatively straightforward as 

compared with vision-based techniques. Early pen-based PDAs performed handwriting 

recognition and allowed users to invoke operations by various, albeit quite limited, pen 

gestures. Long, Landay, and Rowe (1998) survey problems and benefits of these gestural 

interfaces and provide insight for interface designers. A much wider range of more 

sophisticated gestures are now available with multi-touch devices and prototypes of various 

sizes and configurations (Wilson 2004, Wobbrock et al. 2009). 

Although pen- and touch-based gesture recognition is promising for many HCI 

environments, it presumes the availability of, and proximity to, an interactive surface or 

screen. In VEs this is often too constraining; techniques that allow the user to move around 

and interact in more natural ways are more compelling. The following sections cover two 

primary technology approaches for gesture recognition in virtual environments: instrumented 

or device-based (active) and vision-based (passive) interfaces. 

 

4.2 Device-based Gesture Recognition 
There are a number of commercially available tracking systems (covered in Chapters 8 and 

9), which can be used as input to gesture recognition, primarily for tracking eye gaze, hand 

configuration, and overall body position. Each sensor type has its strengths and weaknesses in 

the context of VE interaction. While eye gaze can be quite useful in a gestural interface, the 

focus here is on gestures based on input from tracking the hands and body. 

 

4.2.1 Instrumented Gloves 

People naturally use their hands for a wide variety of manipulation and communication tasks. 

Besides being quite convenient, hands are extremely dexterous and expressive, with 

approximately 29 degrees of freedom (including the wrist). In his comprehensive thesis on 

whole-hand input, Sturman (1992) showed that the hand can be used as a sophisticated input 

and control device in a wide variety of application domains, providing real-time control of 

complex tasks with many degrees of freedom. He analyzed task characteristics and 

requirements, hand action capabilities, and device capabilities, and discussed important issues 

in developing whole-hand input techniques. Sturman suggested a taxonomy of whole-hand 

input that categorizes input techniques along two dimensions: 

• Classes of hand actions: continuous or discrete. 

• Interpretation of hand actions: direct, mapped, or symbolic. 

The resulting six categories describe the styles of whole-hand input. A given interaction task 

can be evaluated as to which style best suits the task. Mulder (1996) presented an overview of 

hand gestures in human-computer interaction, discussing the classification of hand movement, 

standard hand gestures, and hand-gesture interface design. LaViola (1999) provided a 

thorough survey on hand posture and gesture recognition techniques at the end of the decade; 

Dipietro et al. (2008) provide a more recent survey of glove-based systems. 

For several years, commercial devices have been available which measure, to various 

degrees of precision, accuracy, and completeness, the position and configuration of the hand. 

These include “data gloves” and exoskeleton devices (Fig. 10.4) mounted on the hand and 

fingers (the term instrumented glove is used to include both types). Some advantages of 

instrumented gloves include: 

• Direct measurement of hand and finger parameters (joint angles, 3-D spatial 

information, wrist rotation) 

• Provide data at a high sampling frequency 

• Ease of use 

• No line-of-sight occlusion problems 

• Relatively low cost versions available 



• Data that is translation-independent (within the range of motion) 

Disadvantages of instrumented gloves include: 

• Calibration can be difficult. 

• Tethered gloves reduce range of motion and comfort. 

• Data from inexpensive systems can be very noisy. 

• Accurate systems are expensive. 

• The user is forced to wear a cumbersome device. 

 

*** Figure 10.4 goes about here *** 

 

*** Figure 10.5 goes about here *** 

 

Many projects have used hand input from instrumented gloves for “point, reach, and 

grab” operations or more sophisticated gestural interfaces. Latoschik and Wachsmuth (1997) 

present a multiagent architecture for detecting pointing gestures in a multimedia application. 

Väänänen and Böhm (1992) developed a neural network system that recognized static 

gestures and allows the user to interactively teach new gestures to the system. Böhm et al. 

(1994) extend that work to dynamic gestures using a Kohohen Feature Map (KFM) for data 

reduction. 

Baudel and Beaudouin-Lafon (1993) developed a system to provide gestural input to a 

computer while giving a presentation. This work included a gesture notation and set of 

guidelines for designing gestural command sets. Fels and Hinton (1995) used an adaptive 

neural network interface to translate hand gestures to speech. Kadous (1996) used glove input 

to recognize Australian sign language as did Takahashi and Kishino (1991) for the Japanese 

Kana manual alphabet. The system of Lee and Xu (1996) could learn and recognize new 

gestures online. 

More recent examples of glove-based gesture research can be found in (Parvini et al. 

2009) who compare the performance of different approaches; data glove gestures were 

recently studied in (Huang et al. 2011). 

Despite the fact that many or most gestures involve two hands, a large portion of the 

research efforts in glove-based gesture recognition use only one glove for input. The features 

that are used for recognition and the degree to which dynamic gestures are considered vary 

quite a bit in the research literature. 

 

4.2.2 Body Suits and Motion Tracking Systems 

It is well-known that by viewing only a small number of strategically placed dots on the 

human body, people can easily perceive complex movement patterns such as the activities, 

gestures, identities, and other aspects of bodies in motion (Johansson 1973). One way to 

approach the recognition of human movements and postures is to optically measure the 3-D 

position of several such markers attached to the body (Fig. 10.5) and then recover the time-

varying articulated structure of the body. The articulated structure may also be measured more 

directly by sensing joint angles and positions using electromechanical body sensors. Although 

some of the optical tracking systems require a full body suit to be donned, others only require 

dots or small balls to be placed on top of a subject’s clothing. Both systems are referred to 

generically here as “motion capture systems.” 

Motion capture systems have advantages and disadvantages that are similar to those of 

instrumented gloves: they can provide reliable data at a high sampling rate (at least for 

electromagnetic devices), but they are expensive and very cumbersome. Calibration is often 

nontrivial. While the optical systems typically use several cameras and may have to process 

the data offline, their major advantage is the lack of wires and a tether. 

Motion capture systems have been used, often along with instrumented gloves, in several 

gesture recognition systems. Wexelblat (1994) implemented a continuous gesture analysis 

system using a data suit, data gloves, and an eye tracker. In this system, data from the sensors 

is segmented in time (between movement and inaction), key features are extracted, motion is 

analyzed, and a set of special-purpose gesture recognizers look for significant changes. 



Marrin and Picard (1998) developed an instrumented jacket for an orchestral conductor that 

includes physiological monitoring to study the correlation between affect, gesture, and 

musical expression. 

Although many optical and electromechanical tracking technologies are cumbersome and 

therefore contrary to the desire for more natural interfaces, advances in sensor technology 

may well enable a new generation of devices (including stationary field-sensing devices, 

gloves, watches, and rings) that are just as useful as current trackers but much less obtrusive. 

Similarly, the currently cumbersome instrumented body suits may be displaced by sensing 

technologies embedded in belts, shoes, eyeglasses, cell phones, and even shirts and pants. For 

example, inertial sensors in cell phones have been used to classify human activity, including 

gestures (Pylvänäinen 2005, Liu et al. 2009, Wu et al. 2009, Kratz 2010, Wang 2012). 

Note that although some of the body tracking methods in this section use cameras and 

computer vision techniques to track joint or limb positions, they require the user to wear 

special markers. In the next section only passive techniques that do not require the user to 

wear any special markers or equipment are considered. 

 

4.3 Passive Vision-based Gesture Recognition 
The most significant disadvantage of the tracker-based systems in Section 4.2 is that they are 

cumbersome. This detracts from the immersive nature of a VE by requiring the user to don an 

unnatural device that cannot easily be ignored and which often requires significant effort to 

put on and calibrate. Even optical systems with markers applied to the body or clothing suffer 

from these shortcomings, albeit not as severely. Computer vision techniques have the 

potential to provide real-time data useful for analyzing and recognizing human motion in a 

manner that is passive and unobtrusive.  

Vision-based interfaces use one or more cameras to capture images, typically at a frame 

rate of 30 Hz or more, and interpret those images to produce visual features that can be used 

to represent human activity and recognize gestures (Wu and Huang 1999, Mitra and Acharya 

2007)). Typically the camera locations are fixed in the environment, although they may also 

be mounted on moving platforms or on other people. For the past two decades, there has been 

a significant amount of research in the computer vision community on detecting and 

recognizing faces, analyzing facial expression, extracting lip and facial motion to aid speech 

recognition, interpreting human activity, and recognizing particular gestures, most of which is 

relevant to this topic. 

Unlike sensors worn on the body, vision approaches to body tracking have to contend 

with occlusions. From the point of view of a given camera, there are always parts of the user’s 

body that are occluded and therefore not visible; for example, the backside of the user is not 

visible when the camera is in front. More significantly, self-occlusion often prevents a full 

view of the fingers, hands, arms, and body from a single view. Multiple cameras can be used, 

but at the cost of higher complexity in both setup, calibration, and processing.  

The occlusion problem makes full-body tracking difficult, if not impossible, without a 

strong model of body kinematics and perhaps dynamics. However, recovering all the 

parameters of body motion may not be a prerequisite for gesture recognition. The fact that 

people can reliably and robustly recognize gestures leads to three possible conclusions: (1) the 

parameters that cannot be directly observed are inferred; (2) these parameters are not needed 

to accomplish the task; or (3) some are inferred and others are ignored. 

It is a mistake to consider passive vision approaches and direct tracking devices (such as 

instrumented gloves and body suits) as alternative paths to the same end. Although there is 

overlap in what they can provide, these technologies in general produce qualitatively and 

quantitatively different output which enables different analysis and interpretation. For 

example, tracking devices can in principle detect and measure fast and subtle movements of 

the fingers while a user is waving his or her hands, whereas human vision in that case may at 

best get a general sense of the type of finger motion. Similarly, vision can use properties like 

texture and color in its analysis of gesture, whereas tracking devices do not. From a practical 

perspective, these observations imply that it may not be an optimal strategy to merely 

substitute vision at a later date into a system that was developed to use an instrumented glove 



or a body suit—or vice versa. 

Unlike special devices that measure human position and motion, vision uses a 

multipurpose sensor; the same device used to recognize gestures can be used to recognize 

other objects in the environment and also to transmit video for teleconferencing, surveillance, 

and other purposes. On the other hand, advances in miniaturized, low-cost, low-power 

cameras integrated with processing circuitry on a single chip increasingly make possible a 

special-purpose “gesture sensor” that outputs motion or gesture parameters to the virtual 

environment. 

Currently, most computer vision systems for recognition look something like Fig. 10.3. A 

digital camera feeds video frames to a computer’s memory. There may be a preprocessing 

step, where images are normalized, enhanced, or transformed in some manner, and then a 

feature extraction step. The features—which may be any of a variety of 2-D or 3-D features, 

statistical properties, or estimated body parameters—are analyzed and classified as a 

particular gesture if appropriate. 

Vision-based systems for gesture recognition vary along a number of dimensions, most 

notably: 

• Number of cameras. How many cameras are used? If more than one, is their 

information combined early (at the pixel or feature level) or late (after recognition of 

body parts or basic movements)? 

• Speed and latency. Is the system real-time (i.e., fast enough, with low enough latency, 

to support interaction)? 

• Structured environment. Are there restrictions on the background, lighting, speed of 

movement, and so forth? 

• User requirements. Must the user wear anything special (e.g., markers, gloves, long 

sleeves)? Is anything disallowed (e.g., glasses, beard, rings)? 

• Primary features. What low-level features are computed (edges, regions, silhouettes, 

moments, histograms, depth maps, etc.)? 

• Two- or three-dimensional representation. Does the system construct a 3-D model of 

the body part(s), or is classification done on some other (view-based) representation? 

• Representation of time. How is the temporal aspect of gesture represented and used in 

recognition (e.g., via a state machine, dynamic time warping, HMMs, time-

compressed template)? 

 

*** Figure 10.6 goes here *** 

 

4.3.1 Head and Face Gestures 
When people interact with one another, they use an assortment of cues from the head and face 

to convey information. These gestures may be intentional or unintentional, they may be the 

primary communication mode or backchannels, and they can span the range from extremely 

subtle to highly exaggerated. Some examples of head and face gestures include: 

• Nodding or shaking the head 

• Direction of eye gaze 

• Raising the eyebrows 

• Opening the mouth to speak 

• Winking 

• Flaring the nostrils 

• Looks of surprise, happiness, disgust, anger, sadness, etc. 

People display a wide range of facial expressions. Ekman and Friesen (1978) developed 

the Facial Action Coding System (FACS) for measuring facial movement and coding 

expression; this description forms the core representation for many facial expression analysis 

systems. 

A real-time system to recognize actions of the head and facial features was developed by 

Zelinsky and Heinzmann (1996), who used feature template tracking in a Kalman filter 

framework to recognize thirteen head and face gestures. Moses, Reynard, and Blake (1995) 

used fast-contour tracking to determine facial expression from a mouth contour. Essa and 



Pentland (1997) used optical flow information with a physical muscle model of the face to 

produce accurate estimates of facial motion. This system was also used to generate 

spatiotemporal motion-energy templates of the whole face for each different expression. 

These templates were then used for expression recognition. Oliver, Pentland, and Bérard 

(1997) described a real-time system for tracking the face and mouth that recognized facial 

expressions and head movements. Otsuka and Ohya (1998) modeled coarticulation in facial 

expressions and used an HMM for recognition. 

Black and Yacoob (1995) used local parametric motion models to track and recognize 

both rigid and nonrigid facial motions. Demonstrations of this system show facial expressions 

being detected from television talk show guests and news anchors (in non–real time). La 

Cascia, Isidoro, and Sclaroff (1998) extended this approach using texture mapped surface 

models and nonplanar parameterized motion models to better capture the facial motion. 

 

4.3.2 Hand and Arm Gestures 
Hand and arm gestures receive the most attention among those who study gesture; in fact, 

many (perhaps most) references to gesture recognition only consider hand and arm gestures. 

The vast majority of automatic recognition systems are for deictic gestures (pointing), 

emblematic gestures (isolated signs), and sign languages (with a limited vocabulary and 

syntax). Some are components of bimodal systems, integrated with speech recognition. Some 

estimate precise hand and arm configuration, whereas others only coarse motion. 

Stark and Kohler (1995) developed the ZYKLOP system for recognizing hand poses and 

gestures in real time. After segmenting the hand from the background and extracting features 

such as shape moments and fingertip positions, the hand posture is classified. Temporal 

gesture recognition is then performed on the sequence of hand poses and their motion 

trajectory. A small number of hand poses comprises the gesture catalog, whereas a sequence 

of these makes a gesture. Similarly, Maggioni and Kämmerer (1998) described the 

GestureComputer, which recognized both hand gestures and head movements. Other early 

systems that recognize hand postures amidst complex visual backgrounds are reported by 

Weng and Cui (1998) and Triesch and von der Malsburg (1996). Oka et al. (2002) tracked 

fingertips, Bretzner et al. (2002) used multi-scale skin color features and particle filtering, and 

Yang et al. (2002) used motion trajectories to represent and recognize hand gestures. 

There has been a great deal of interest in creating devices to automatically interpret 

various sign languages to aid the deaf community (Ong and Ranganath, 2005). One of the 

first to use computer vision without requiring the user to wear specialized devices on the 

hands was built by Starner and Pentland (1995), who used HMMs to recognize a limited 

vocabulary of ASL sentences. A similar effort, which uses HMMs to recognize Sign 

Language of the Netherlands, was described by Assan and Grobel (1997). Vogler and 

Metaxas (2001) dealt with recognizing simultaneous aspects of complex sign language; Wang 

et al. (2007) focused on viewpoint-invariant recognition, while Zaki and Shaheen (2011) 

proposed a combination of new image features for sign language recognition. 

The recognition of hand and arm gestures has been applied to entertainment applications. 

Freeman, Tanaka, Ohta, and Kyuma (1996) developed a real-time system to recognize hand 

poses using image moments and orientation histograms, and applied it to interactive video 

games. Cutler and Turk (1998) described a system for children to play virtual instruments and 

interact with lifelike characters by classifying measurements based on optical flow; more 

recent optical flow-based gesture recognition is presented in (Holte et al. 2010). A nice 

overview of work up to 1995 in hand gesture modeling, analysis, and synthesis is presented 

by Huang and Pavlovic (1995). 

The Leap (Leap Motion 2012), a gesture control system introduced in 2012 initially 

focused on desktop use, is a small device that, according to early reports, accurately tracks the 

3D positions of fingertips, hands, and lower arms, capturing subtle movements in an 

interaction space of about eight cubic feet. The device senses individual hand and finger 

movements independently, providing touch-free motion sensing and control. While there are 

few details available for this device as of Q1 2013, the demonstrations are impressive, and 

there is great interest among researchers and developers to try this device in a variety of 



interactive environments. 

 

4.3.3 Body Gestures 
Full-body motion is needed to recognize large-scale gestures and to recognize or analyze 

human activity (Gavrila 1999, Moeslund et al. 2011). Activity may be defined over a much 

longer period of time than what is normally considered a gesture; for example, two people 

meeting in an open area, stopping to talk, and then continuing on their way may be considered 

a recognizable activity. A different view of these terms was proposed by Bobick (1997) in his 

hierarchy of motion perception: 

• Movement—the atomic elements of motion. 

• Activity—a sequence of movements or static configurations. 

• Action—high-level description of what is happening in context. 

Most research to date has focused on the first two levels. 

The Pfinder system (Wren, Azarbayejani, Darrell, & Pentland, 1996) developed at the 

MIT Media Lab has been used by a number of groups to do body tracking and gesture 

recognition. It formed a 2-D representation of the body, using statistical models of color and 

shape. The body model provided an effective interface for applications such as video games, 

interpretive dance, navigation, and interaction with virtual characters. Lucente, Zwart, and 

George (1998) combined Pfinder with speech recognition in an interactive environment called 

Visualization Space, allowing a user to manipulate virtual objects and navigate through 

virtual worlds. Paradiso and Sparacino (1997) used Pfinder to create an interactive 

performance space where a dancer can generate music and graphics through their body 

movements, for example, hand and body gestures can trigger rhythmic and melodic changes 

in the music. 

Systems that analyze human motion in VEs may be quite useful in medical rehabilitation 

(see Chapter 49, this volume) and athletic and military training (see Chapter 43, this volume). 

For example, a system like the one developed by Boyd and Little (1998) to recognize human 

gaits could potentially be used to evaluate rehabilitation progress. Yamamoto, Kondo, and 

Yamagiwa (1998) described a system that used computer vision to analyze body motion in 

order to evaluate the performance of skiers. 

Davis and Bobick (1997) used a view-based approach by representing and recognizing 

human action based on “temporal templates,” where a single image template captures the 

recent history of motion. This technique was used in the KidsRoom system (Bobick et al. 

1999), an interactive, immersive, narrative environment for children. 

Video surveillance and monitoring of human activity has received significant attention in 

recent years. For example, the W4 system developed at the University of Maryland 

(Haritaoglu, Harwood, & Davis, 1998) tracked people and detected patterns of their activity. 

Although partly relevant to virtual environments – especially in understanding context and in 

multi-person environments – the topic is beyond the scope of this chapter. 

 

4.4 Depth Cameras 
There has been a recent proliferation in the use of depth sensors to detect, track, and recognize 

the gestures and activity of people, largely due to the introduction and rapid popularity of the 

Microsoft Kinect device (Fig. 10.6), which is based on the PrimeSense depth sensor. Others 

have used stereo camera rigs, time-of-flight depth sensors, and other technologies to obtain 3-

D information about the scene for use in gesture recognition. Many of these current 

approaches use both RGB and depth data, which are available from the Kinect and other 

similar RGBD cameras. 

Breuer et al. (2007) and Hackenberg et al. (2011)  explored hand gesture recognition 

using a time-of-flight range camera. Girshick et al. (2011) have used the Kinect for modeling 

body pose and determining human activity; Ren et al. (2011) and Van den Bergh and Van 

Gool (2011) have used RGB and depth data for robustly recognizing hand gestures. Zafrulla 

et al. (2011) used a Kinect to recognize American Sign Language. Doliotis et al. (2011) have 

studied gesture recognition accuracy using an RGBD sensor.  

Although current depth sensors have significant limitations for general use (such as a 



limited range of distances from the sensor and mostly indoor lighting conditions), 

improvements are underway to improve on these, and there is great promise for continued 

progress in real-time, robust gesture recognition in virtual environments using such devices. 

Table 10.1 summarizes some of the main benefits and drawbacks of various categories of 

gesture recognition devices. 

 

Table 10.1. Pros and cons of gesture recognition devices 

 

Device Pros Cons 

Pen- or stylus-based High resolution and 

precision; inexpensive; high 

familiarity 

Inconvenience of additional 

device (pen or stylus) and 

surface; proximity to surface; 

limited 2D recognition space 

Touch-based Ease of use; very high 

familiarity; multi-touch; 

inexpensive 

Inconvenience of additional 

surface; proximity to surface; 

limited 2D recognition space 

Haptic device (e.g., 

Phantom) 

Relatively high resolution 

and precision; 3D gestures 

Expensive; proximity to 

devices 

Instrumented glove High input dimensionality; 

whole-hand input; natural 

use; no line-of-sight 

occlusion; two-hand gesture 

possible 

Expensive; need to don extra 

equipment; limited range if 

tethered; complex 

processing/interpretation 

Motion tracking No direct contact required; 

relatively wide range of 

motion possible; full body 

gestures 

Very expensive; calibration 

needed; obtrusive to wear; 

fixed area of use 

Vision-based tracking and 

recognition 

No direct contact required; 

wide range of motion (esp. 

with mobile sensors); high 

resolution possible; 3D 

gestures possible; full body 

gestures; ease of use; may be 

inexpensive; synergy with 

gaming and other 

commercial markets 

Must be aware of camera 

occlusion, field-of-view; 

calibration may be needed; 

IR illumination may interfere 

with other sensors; complex 

processing 

 

 

 

5. GUIDELINES FOR GESTURE RECOGNITION SYSTEMS 

 

There has been surprising little work in evaluating the utility and usability of gesture 

recognition systems in realistic settings. However, those developing gestural systems have 

learned a number of lessons along the way. Here a few guidelines are presented in the form of 

“dos and don’ts” for gestural interface designers: 

• Do inform the user. As discussed in Section 2, people use different kinds of gestures 

for many purposes, from spontaneous gesticulation associated with speech to 

structured sign languages. Similarly, gesture may play a number of different roles in a 

virtual environment. To make compelling use of gesture, the types of gestures 

allowed and their effects must be clear to the user or easily discoverable. 

• Do give the user feedback. Feedback is essential to let the user know when a gesture 

has been recognized (or has been detected but not recognized). This could be inferred 

from the action taken by the system, when that action is obvious, or by more subtle 

visual or audible confirmation methods. 



• Do take advantage of the uniqueness of gesture. Gesture is not just a substitute for 

a mouse or keyboard. It may not be as useful for 2-D pointing or text entry but great 

for more expressive input. 

• Do understand the benefits and limits of the particular technology. For example, 

precise finger positions are better suited to instrumented gloves than vision-based 

techniques. Tethers from gloves or body suits may constrain the user’s movement. 

• Do usability testing on the system. Don’t just rely on the designer’s intuition (see 

Chapter 34, this volume). 

• Do avoid temporal segmentation if feasible. At least with the current state of the 

art, an initial, bottom-up segmentation of gestures can be quite difficult and error 

prone 

• Don’t tire the user. Gesture is seldom the primary mode of communication. When a 

user is forced to make frequent, awkward, or precise gestures, the user can become 

fatigued quickly. For example, holding one’s arm in the air to make repeated hand 

gestures becomes tiring very rapidly. 

• Don’t make the gestures to be recognized too similar. For ease of classification 

and to help the user more easily make distinguishable gestures. 

• Don’t use gesture as a gimmick. If something is better done with a mouse, 

keyboard, speech, or some other device or mode, use it—extraneous use of gesture 

should be avoided. 

• Don’t unduly increase the user’s cognitive load. Having to remember the whats, 

wheres, and hows of a gestural interface can be a burden to the user. The system’s 

gestures should be as intuitive and simple as possible. The learning curve for a 

gestural interface is more difficult than for a mouse and menu interface because it 

requires recall rather than just recognition among a visible list of options. 

• Don’t require precise motion. Especially when motioning in space with no tactile 

feedback, it is difficult to make highly accurate or repeatable gestures. 

• Don’t create new, unnatural gestural languages. If it is necessary to devise a new 

gesture language, make it as intuitive as possible. 

 

 

6. CONCLUSIONS AND FUTURE DIRECTIONS IN GESTURE RECOGNITION 

 

Although several research efforts have been referenced in this chapter, these are just a 

sampling; many more have been omitted for the sake of brevity. Good sources for much of 

the work in gesture recognition can be found in the proceedings of the IEEE International 

Conference on Automatic Face and Gesture Recognition (FG) and in a number of workshops 

devoted to various aspects of gesture recognition. 

There is still much to be done before rich and fully natural gestural interfaces, which track 

and recognize local human activities, become pervasive and cost-effective for the masses. 

However, much progress has been made in the past decade and with the continuing march 

toward computers and sensors that are faster, smaller, and more ubiquitous, there is cause for 

optimism. As touch-based and pen-based computing continues to proliferate, 2-D gestures 

have become more common, and some of the technology will transfer to 3-D hand, head, and 

body gestural interfaces. Gaming and entertainment is, of course, driving much of the 

progress in gesture recognition. Similarly, technology developed in surveillance and security 

areas will also find uses in gesture recognition for virtual environments. 

There are many open questions in this area. There has been little activity in evaluating 

usability (see Chapter 34, this volume) and understanding performance requirements and 

limitations of gestural interaction. Error rates are reported from 1% to 50%, depending on the 

difficulty and generality of the scenario. There are currently few common databases or 

metrics with which to compare research results. Can gesture recognition systems adapt to 

variations among individuals, or will extensive individual training be required? What about 

individual variation due to fatigue and other factors? How good do gesture recognition 

systems need to be to become truly useful in mass applications beyond simple games? 



Each technology discussed in this chapter has its benefits and limitations. Devices that are 

worn or held—pens, gloves, body suits—are currently more advanced, as evidenced by the 

fact that there are many commercial products available. However, passive sensing (using 

cameras or other sensors) promises to be more powerful, more general, and less obtrusive 

than other technologies. It is likely that both camps will continue to improve and coexist and 

that new sensing technologies will arise to give even more choice to VE developers. 
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FIG. 10.3. Pattern recognition systems



FIG. 10.4. An exoskeleton data glove (Courtesy of Christian Ristow)



FIG. 10.5. An optical motion capture system in use (Kirk et al. 2005) (Copyright 2005 Adam 

Kirk, James O'Brien, and David Forsyth.  Used with permission.)



FIG. 10.6. The Microsoft Kinect in action (depth image, skeleton model, RGB image)
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