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Local approach for face verification in polar frequency domain
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Abstract

We present a face verification system inspired by known properties of the human visual system. In the proposed algorithm the face is

normalized for geometry and luminance, and Fourier–Bessel (FB) descriptors are extracted from three locations in the eyes region (local analysis).

The resulting representations are embedded in a dissimilarity space, where each image is represented by its distance to all the other images, and a

Pseudo-Fisher discriminator is built. Using the FERET database, we submitted the system to a battery of tests under a wide variation of imaging

conditions, including expression, age, and illumination variations. Results showed that the system outperformed previous state-of-the-art methods

in most testing conditions. To deal with partial occlusions, we implemented an occluded region detector that resulted in low performance loss

under up to 50% occlusion level. Finally, we automated the registration step by implementing face and eye detection algorithms. We also showed

that the local-FB analysis outperforms the global-FB version of the system and an alternative polar frequency representation. In conclusion, the

intermediate-scale local analysis approach used in the proposed system resulted in state-of-the-art face verification performance and high

robustness to common problems such as expression, age, and illumination variations and to strong occlusions.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Face verification and identification tasks are highly complex

due to the many possible variations of the same subject in

different conditions, like illumination, facial expression, and

age. Many developers of face recognition algorithms adopted a

biologically inspired approach in solving these problems (e.g.

[1–3]), thus contributing both to understanding human face

processing and to building efficient face recognition

technologies.

The approach described in the present paper was inspired by

developments in neurophysiology and cognitive psychology,

and its fundamentals were first described by [4]. It is based on

an image representation that may be analogous to those used by

the human visual system (HVS). In particular, we evaluated the

performance of a face verification algorithm whose primary
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features are the magnitude of radial and angular components of

faces images and representation in a dissimilarity space. We

show that using an intermediate-scale local analysis approach

of specific face regions, the performance of the proposed

system is improved in comparison to a global analysis, and

achieves state-of-the-art performance.1

The paper is organized as follows: in the next section, we

briefly introduce the reader to the primary spatial processing by

the HVS, highlight the related literature and summarize the

main contributions of this paper. We describe in Section 3 the

Fourier–Bessel Transform (FBT) and the proposed system in

Section 4. We introduce the face database and testing methods

in Section 5. The experimental results are presented in Section

6. In the final two sections we discuss the results and

conclusions.

2. Background and previous work

Face recognition algorithms, for both verification and

identification tasks, were extensively studied in the last two

decades. An exhaustive review of the most representative of
Image and Vision Computing xx (2006) 1–10
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these can be found in [7]. These methods can be classified into

holistic matching, structural-based matching and hybrid

methods. Holistic methods use the whole face as the raw

input, while structural-based algorithms use local and

configural information. Hybrid methods combine both types

of information. The system proposed here can be considered

hybrid, since it consists in applying a holistic method (FBT) in

different regions of the face. Most of the holistic face

recognition algorithms, for both verification and identification,

are based on feature extraction from a Cartesian perspective,

typical to most analog and digital imaging systems. On the

other hand, the HVS is known to process visual stimuli by

fundamental shapes defined in polar coordinates. In the early

stages, the visual image is filtered by neurons tuned to specific

spatial frequencies and location in a linear manner [8]. In

further stages, these neurons output is processed to extract

global and more complex shape information, such as faces [9].

Electrophysiological experiments in monkey’s visual cerebral

areas showed that the fundamental patterns for global shape

analysis are defined in polar and hyperbolic coordinates [10].

Global pooling of orientation information was also shown by

psychophysical experiments to be responsible for the detection

of angular and radial Glass dot patterns [11]. Further evidence

in favor of a polar representation use by the HVS is the log-

polar manner in which the retinal image is mapped onto the

visual cortex area [12]. Thus, it is evident that information

regarding the global polar content of images is effectively

extracted by and is available to the HVS.

Global (spatial) log-polar mapping has been previously

explored for feature detection [13], face detection [14], and

face recognition [15]. One of the disadvantages of this feature

extraction method is the rough representation of peripheral

regions. The HVS compensates for this effect by eye saccades,

moving the fovea from one point to the other in the scene. A

similar approach was adopted by the face recognition methods

of [15] and [16], who performed fine local analysis. However,

these high-resolution polar sampling methods do not provide

any information about global patterns.

In [4], we introduced the representation of face images in

the polar frequency domain by global two-dimensional FBT

features. The novelty of the proposal relied on the

transformation of the image from the spatial domain to

the polar frequency domain through the FBT and resulted in

excellent face recognition performance. However, it still

suffered from the deficiencies of the global approach, like

low resolution of peripheral regions and sensitivity to partial

occlusion.

In this paper, we present a novel approach and integration of

new mechanisms that improved significantly the overall

performance of the already state-of-the-art performance of the

previous system, while making it robust against frequent face

verification problems. The main contributions of the paper are:

† Local approach: we apply the FBT at three strategic locations

[17,18] in the eyes region. This approach assumes that an

intermediate working scale is more informative and robust

than the completely global or local working scales.
† Robustness to partial occlusion: focusing on the eyes region

improves stability against partial occlusions.Weexplored this

fact by detecting possibly occluded face regions and

excluding them from the luminance normalization pre-

processing.

† Robustness to illumination and age variation: we present

robustness evaluation on a subset with illumination variation

and on two subsets with different age variations, besides the

previous subset with expression variations.

† Fully automatic system: the previous algorithm required

ground-truth information for the face normalization process.

Now face and eye detection algorithms are integrated,making

the verification system completely automatic when faces are

not occluded.

† Comparison with alternative representations: FBT features

are just one form of image representation in the polar

frequency domain. Here we show that an alternative

representation, the polar Fourier transformation, results in

inferior performance.
3. Polar frequency analysis

The Fourier–Bessel (FB) series [19,20] found several

applications in analyzing patterns in a circular domain [20,21]

and is useful to describe the radial and angular components in

images. Let f(x,y) be the region of interest in the image. FBT

analysis starts by converting the image coordinates from

Cartesian (x,y) to polar (r,q). Let (x0,y0) be the origin of

the Cartesian image. The polar coordinates necessary to

obtain the new image representation f(r,q) are defined as

qZtanK1(yKy0/xKx0) and rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKx0Þ

2C ðyKy0Þ
2

p
.

For square images, the considered maximum radius was the

distance from the center of the region of interest to one of the

corners. Radial resolution was fixed at one pixel width, but

the angular resolution could be varied by increasing or reducing

of the number of sampled radii. The intensity of each point of the

f(r,q) function was determined by bilinear interpolation [22].

The f(r,q) function is represented by the two-dimensional FB

series, defined as
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However, polar frequency analysis can also be done using

other transformations. An alternative method is to represent

images by polar Fourier transform descriptors. The polar Fourier

transform is a well known mathematical operation where, after

converting the image coordinates from Cartesian to polar, as

described above, a conventional Fourier transformation is

applied. These descriptors are directly related to radial and

angular components, but are not identical to the coefficients

extracted by the FBT.
Fig. 1. Block diagram of the training phase in the proposed face verification syste

coefficients is represented in colored levels (red indicates the highest value, blue the

the last step that is substituted by a classification stage.
4. Face verification using FBT

The proposed algorithm (Fig. 1) starts with image regis-

tration, occlusion detection, and normalization. After these

steps, we extract the FB coefficients from the images, compute

the pair-wise Cartesian distance between all the FBT-

representations and represent each object by its distance to all

other objects. In the last stage, we train a pseudo Fisher

classifier. We tested this algorithm on the whole image (global

analysis) and on the combination of three facial regions (local

analysis).
4.1. Face registration, partial occlusion detection

and normalization

Face representation requires prior image registration and

usually a spatial and luminance normalization pre-processing.

Assuming the sample images contain a single face, we detected

the head with a cascade of classifiers [23] and estimated the
m (left column) and an example case (right column). The modulus of the FB

lowest). Test images undergo through the same processing sequence, except for



Y. Zana et al. / Image and Vision Computing xx (2006) 1–104

+ model ARTICLE IN PRESS
location of the eyes region with an active appearance model

algorithm [24]. Within this region we used flow field

information [25] to determine the eyes center. Using the eyes

coordinates, we translated, rotated, and scaled the images so that

the eyes were registered at specific pixels. Next, the images were

cropped to a size of 130!150 pixels and a gray mask was

applied to remove most of the hair and background. At this point

we detected possibly occluded regions, as explained below, and

masked them too. The unmasked region was histogram

equalized and normalized to zero mean and a unitary standard

deviation.

Face occlusion is one of the most difficult problems for face

verification. Although our face and eye detection algorithms

were not adapted to handle face occlusions, we were interested

in preparing our system to deal with this face verification

problem, assuming that the face detection problem was solved.

Therefore, in the occlusion condition tests, we used ground truth

information for face registration. Face occlusion was modeled as

a homogeneous–luminance region of a connected area without

any ‘holes’ (small regions within the homogeneous area) in it

and of at least 650 pixels, i.e. approximately 3% of the total

image area. Thus, we detected occluded regions by applying

morphological operators to segment the image into flat zones. If

the biggest region exceeded the 650 pixels size criteria and

contained no ‘holes,’ it was considered as an occluded region. In

that case, it was masked along with the presumably hair and

background regions and not considered in the next luminance

normalization step.

4.2. Spatial to polar frequency domain

Images were transformed by a FBT up to the 30th Bessel

order and 6th root with angular resolution of 38, thus obtaining

372 coefficients. These coefficients correspond to a frequency

range of up to 30 and 3 cycles/image of angular and radial

frequency, respectively. This frequency range was selected

based on earlier tests [4] with the small-size Olivetti face

database [26]. We tested the FBT descriptors of the whole

image, as well as a combination of the upper right region, upper

middle region, and the upper left region (Fig. 1). When using the

polar Fourier transform, the angular sampling was matched and

only coefficients related to the same frequency range covered by

the FBT were used. Both amplitude and phase information were

considered, as is the case of FBT.

4.3. Polar frequency to dissimilarity domain

Images were transformed from the FBT domain to a

dissimilarity space as follows. Let the representation set TZ
{t1,t2,.,tn} refer to the n training FBT images. Given an

Euclidean distance matrix D2Rn!n between those objects,

where D(ti,tj) is the Euclidean distance between ti and tj, each
image ti is mapped as a vector of its disimmilarity to all the

training images, i.e. ti/dðti;TÞZ ½Dðti;t1Þ;Dðti;t2Þ;.;Dðti;tnÞ�.

This approach was formulated by [27] and is based on the

assumption that the dissimilarities of similar objects to ‘other

ones’ is about the same. Among other advantages of this
representation space, by fixing the number of features to the

number of objects, it avoids a well known phenomenon, where

recognition performance is degraded as a consequence of the

small number of training samples as compared to the number of

features.
4.4. Classifier

We classified test images based on a pseudo Fisher linear

discriminant (FLD) using a two-class approach [28]. A FLD is

obtained bymaximizing the (between subjects variation)/(within

subjects variation) ratio [29]. Here we used a minimum-square

error classifier implementation [30], which is equivalent to the

FLD for two-class problems [29]. In these cases, after shifting

the data such that it has zero mean, the FLD can be defined as

gðxÞZ dðx;TÞK
1

2
ðm1Km2Þ

� �T

SK1ðm1Km2Þ (4)

where x is a FBT probe image, S is the pooled covariance

matrix, andmi stands for the mean of class i. The probe image x

is classified as corresponding to class-1 if g(x)R0 and to class-2

otherwise. However, as the number of training objects and

dimensions is the same in the dissimilarity space, the sample

estimation of the covariance matrix S becomes singular, and the

classifier cannot be built. One solution to the problem is to use a

pseudo-inverse and augmented vectors [30]. Thus, Eq. (4) is

replaced by

gðxÞZ ðdðx;TÞ;1ÞðdðT;TÞ; IÞðK1Þ (5)

where (d(x,T),1) is the augmented vector to be classified, d(T,T)

is the training set dissimilarity matrix [d(t1,T),d(t2,T),.,d(tn,-

T)]T, and (d(T,T),I) is the augmented training set dissimilarity

matrix. The inverse (d(T,T),I)(K1) is the Moore–Penrose

Pseudo-inverse, which gives the minimum norm solution. The

pseudo-inverse relies on the singular value decomposition of the

matrix (d(T,T),I) and it becomes the inverse of (d(T,T),I) in

the subspace spanned by the eigenvectors corresponding to the

non-zero eigenvalues. The classifier is found in this subspace.

The current L-classes problem can be reduced and solved by

the two-classes solution described above. The training set was

split into L pairs of subsets, each pair consisting of one subset

with images from a single subject and a second subset formed

from all the other images. A pseudo-FLD was built for each pair

of subsets. A probe image was tested on all L discriminant

functions, and a ‘posterior probability’ score was generated

based on the inverse of the Euclidean distance to each subject.
5. Database, preprocessing, and testing procedures

We used the FERET database, due to its large number of

individuals and strict testing protocols that allow precise

performance comparisons between different algorithms [31].

Here, we compare our algorithm performance with a ‘baseline’

algorithm and with the published results of three successful

approaches [32]. As a baseline algorithm we implemented a

standard principal component analysis [1]. The principal



Fig. 2. 1st and 2nd rows: samples from the datasets. 3rd row: normalized face

(gallery image from 1st row) and the global FB inverse transformation image.
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components were based on a set of 700 images selected

randomly from the gallery subset. Not all 1196 images were

used, due to the huge amount of random-access-memory that

such operation requires. The first three principal components,

which encode basically illumination variations [33], were

excluded before projecting of the training and test images. The

three other approaches are: Gabor wavelets combined with

elastic bunch graph matching (EBGM) [2], localized facial

features extraction followed by a Linear Discriminant Analysis

(LDA) [34], and a Bayesian generalization of the LDA method

[35]. Test results of these methods were obtained from the

official FERET database site: www.itl.nist.gov/iad/humanid/

feret/perf/eval.html.

In the FERET protocol, a gallery set of one frontal view

image from 1196 subjects is used to train the algorithm and a

different dataset is used as probe. All images are gray-scale

256!384 pixels size. We used the four probe sets, termed FB,

DupI, DupII and FC [32]. The FB dataset is constituted of a

single image from 1195 subjects, taken from the same subjects

in the gallery set, after an interval of a few seconds, but with a

different facial expression. There were no constrains or anotation

of the type of facial expressions. The DupI and DupII datasets

include 722 and 234 images, respectively. The DupI images

were taken immediately or up to 34 months after the gallery

images, while the images in DupII were taken at least 18 months

after the gallery images. The FC subset contains 194 images of

subjects taken with a different camera and different lighting.

Fig. 2 shows a few example images with the different variations

and the effect of face normalization and FB transformation.

The eyes coordinates were extracted automatically, as

described in Section 4.1. Approximately 1% of the faces were

not localized, in which cases the eyes region coordinates were

set to a fix value derived from the mean of the located faces. The

final mean error was 3.6G5.1 pixels. In order to estimate the

system performance under minimal localization errors and face

occlusion, we executed a second series of experiments in which

ground-truth information was used. The face registration was

followed by a normalization step, as described in Section 4.1.

The same pre-processing procedure was used in previous

algorithms, except for the Gabor–EBGM system where a

special normalization procedure was used.

The performance of the system was evaluated by verification

tests according to the FERET protocol [31]. Given a gallery

image g and a probe image p, the algorithm verifies the claim that

both were taken from the same subject. The verification

probability PV is the probability of the algorithm accepting the

claimwhen it is true, and the false-alarm ratePF is the probability

of incorrectly accepting a false claim. The algorithm decision

depends on the posterior probability score si(k) given to each

match and on a threshold c. Thus, a claim is confirmed if si(k)%c

and rejected otherwise. A plot of all the combinations of PV and

PF as a function of c is known as a receiver operating

characteristic (ROC). PV and PF were calculated as the number

of confirmations divided by the number of correct or incorrect

matches, respectively. This procedure was repeated for 100

equally spaced threshold levels. Training and tests were done

with the PRTools toolbox [36].
6. Results

6.1. Semi-automatic system

Fig. 3 shows the performance of the proposed algorithm in

the verification test with ground-truth information. This test is

important for evaluation of the system performance without the

interference of face localization errors and accurate comparison

with previous algorithms. On the expression dataset the global

and local FBT versions performed at about the same level as the

best and second-best algorithms, respectively. On both age

datasets the FBT algorithms outperformed the previous

algorithms, with the local version being slightly superior. On

the illumination dataset the global and local FBT algorithms

were equal or better than the second-best previous algorithm

(PCACLDA).When the global and local algorithms were based

on polar Fourier transform descriptors, instead of on FBT

coefficients, a major loss of performance was observed in tests

on all datasets, with the exception of the local version on the

expression dataset. These results indicate that the PFT

representation can achieve good performance, but it is very

sensitive to age and illumination variations. We also computed

the equal error rate of the proposed algorithms (Table 1). The

equal error rate occurs at a threshold level where the incorrect

rejection and false alarm rates are equals (1KPVZPF). Lower

values indicate better performance. The equal error rate results

http://www.itl.nist.gov/iad/humanid/feret/perf/eval.html
http://www.itl.nist.gov/iad/humanid/feret/perf/eval.html


Fig. 3. ROC functions of the FBT, polar Fourier transform (PFT), principal component analysis (PCA), and previous algorithms on the age, expression and

illumination subsets.
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confirm the performance superiority of the FBT algorithms as

shown by the ROC functions.
6.2. Partial occlusion

Local approaches for face recognition are in general more

robust for occlusions (e.g. [37,38]) than global ones. We

integrate a simple occluded regions detector in order to exclude

these regions from the normalization pre-processing procedures,

as described in Section 4.1. One can have an idea of the FBT

features occlusion robustness potential by examining the effect

of occlusion on a few sample images. We used two images from

one subject and one image from another subject. One of the
Table 1

Equal error rates (%) of the FBT, polar Fourier transform (PFT), principal

component analysis (PCA), and previous algorithms on the age, expression and

illumination subsets

Algorithm Age (1–34

months)

Age (18–34

months)

Expression Illumination

FBT-global 7.7 8.3 1.7 7.4

FBT-local 7.3 8.3 1.4 5.9

PFT-global 16 20 4.2 23

PFT-local 12 12 1.4 16

PCA 16 20 5.6 14

PCACBaye-

sian

18 21 4.9 18

PCACLDA 13 13 1.2 10

Gabor–EBGM 13 14 2.5 5.1
images from the former subject was partially occluded. Next, we

extracted FB features from the three eye regions of the three

images and computed the Euclidean distance between the

occluded image and the other two images. Fig. 4 shows the

results for one representative example. Without any occlusion,

the two images from the same subject are closer than the images

from different subjects. Occlusion linearly increases the distance

between the images of the same subjects, but does not affect

significantly the distance between images of different subjects.
Fig. 4. Effect of occlusion (% of columns starting from the right-eye side) on

the Euclidean distance between FBT occluded test image and a training image

from the same (continuous line) or different (dashed line) subject.



Fig. 5. Examples of image occlusion: no occlusion, mouthCright eye (MOC

RE), and mouthCnose (MOCNO).
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As a result, only after occlusions of more than 40% does it starts

to become difficult to identify the test image.

We evaluated the system robustness by occluding all the

test images (but not the training images) by a gray mask that

covered at least 50% of the 130!150 pixels face image. We

tested two masking options: (1) masking of the mouth and

right-eye regions and (2) masking of the mouth and nose

regions (Fig. 5). Although this type of occlusion is not as

realistic as using objects such as scarfs and sunglasses, it is

efficient in simulating absence of spatial information. Fig. 6

shows the effect of occlusion on the performance of the

global and local versions of the FBT algorithms. The local

version was significantly affected when illumination variation

was combined with occlusion, but was quite stable under

expression and age variations. In contrast, the global version

performed much worse under occlusion conditions on all

subsets. These results confirm the advantage of the local over

the global approach, and demonstrate the high robustness of
Age (1-34months)

Expression

FBT-Local
FBT-Local-Occluded MO & NO

FBT-Global-Occluded MO & NO
FBT-Global-Occluded MO & Re

FBT-Local-Occluded MO & RE
FBT-Global

Fig. 6. ROC functions of the FBT on the occluded and not occluded age, expression a

mouthCnose (MOCNO).
the local-FBT under strong occlusion conditions combined

with expression and age variations.
6.3. Fully automatic system

Fig. 7 shows the performance of the FBT algorithms with

ground-truth information and when the eyes were detected

automatically. The localization errors introduced in the latter case

reduced the performance of the FBT algorithms up to 20%,

approximately as it affected the PCA algorithm, which is known

to be sensitive to this type of error [39]. The localization

sensitivity of the proposed system is expected, considering the

variance property of theFBT to translation [40]. It is interesting to

notice, however, that under such conditions the advantage of the

local over the global approach was reduced. Unfortunately, it is

hard to compare the sensitivity of the current system to

registration error with the sensitivity of previously published

methods, since the authors do not make available their specific

implementation, and when they perform such tests, they do not

report the localization error levels of their face detector algorithm.
7. Discussion

We introduced a fully automated biologically-motivated

local-based system for face verification tasks. The main

empirical result of this study is the demonstration of the high

performance of a verification system based on FBT descriptors,
Age (18-34months)

Illumination

nd illumination subsets. Types of occlusion: mouthCright eye (MOCRE), and



Age (1-34months) Age (18-34months)

Expression Illumination

FBT-Local

FBT-Local-Auto

FBT-Global-Auto

PCA

PCA-Auto

FBT-Global

Fig. 7. ROC functions of the semi-automatic and automatic FBT and principal component analysis (PCA) algorithms on the age, expression and illumination subsets.
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especially when these are extracted locally. Moreover, it was

shown that a system based on an alternative polar frequency

representation, namely the polar Fourier transform, is signifi-

cantly less robust to common face variations. The significant

advantage of the FBT approach in the experiments is an

indication of the robustness of the polar features in realistic

situations of face variations that exceeds simple facial

expression, like illumination and age.

The superior behavior of the local approach was especially

strong w.r.t. robustness to occlusion. In the local version, the

mouth region is completely ignored, thus its occlusion or

variation (e.g. due to a new beard or a scarf) does not affect

performance at all. However, the local-FBT outperformed the

global-FBT even when the occluded regions included face

regions that were analyzed by the local version. Pilot tests

indicated that the local-FBT algorithm fails only when more

than 50% of the face image is occluded or when both eyes where

covered, for example, by sunglasses (data not shown).

The property of robustness to occlusion of local analysis was

explored by others. Local principal component analysis was

used in [18,37,38] to detect occluded regions in face images.

Test images were classified by comparing the unoccluded

regions to corresponding regions in training images. However,

the combination of FBT features and local approach has several

advantages over that method besides performance. In our

proposal, there is no need for special training strategies [37] or
for training of specific classifiers for each testing image

depending on the occluded region [38]. Finally, there is no

need for any classification rule for the combination of the local

features, as the FBT features form a single vector.

In the current study, occlusion was performed on the raw

images. In contrast, [37] and [38] occluded normalized face

images. This is an unrealistic condition, as their luminance

normalization pre-processing considered information from

occluded regions. It could be argued on similar ground that

relying on ground-truth information in the occlusion condition is

equally unrealistic. However, this is a qualitatively different

situation, since even a partially occluded face still can be

correctly registered, although at the moment that was shown

only when a small region (!13%) was occluded [37].

It is hard to compare our performance results with those

obtainedby [37,38], since their testswereperformedon subsets of

less than 100 images. The training and test images also did not

included variations of expression, illumination or age. The

algorithm of [37] was adapted in order to deal with expression

variation by weighting differently local areas and assuming that

the facial expression of the training images is known. In contrast,

here we show that the proposed system can deal simultaneously

with expression, illumination, and age variations, in addition to

large scale occlusions.

The results indicate that significant performance gain of the

automatic FBT method can be achieved by improving the eyes
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localization algorithm. For example, [37] learned the subspace

that represents localization errors within eigenfaces. Thismethod

can be adopted for the FBT subspace, with the advantage of the

option to exclude from the final classification face regions that

give high localization errors.

The relation of the present algorithm to human face

recognition was not directly evaluated here, but a few

associations can be done. As discussed in the introduction,

there is clear evidence that the HVS extracts global radial and

angular shape information, a fact that might look incompatible

with the informative advantage of the local information pooling

showed here. However, only little is known about the size of

the global pooling area. A 1.2 visual degrees pooling area was

suggested for the detection of Glass patterns [11], but the

spatial locations and scale regarding face images remain open

questions.

In the proposed system, the classifier operates in non-

domain-specific metric space whose coordinates are

similarity relations. The high performance achieved by

this representation indicates that the ‘real-world’ proximity

relations between face images are preserved to a good

extent in the constructed internal space. It is possible that

humans also use an analogous space to represent visual

objects. This hypothesis was studied by correlating the

distance between different shape objects by objective and

perceptual parameters (see [41] for a review). Comparison

of the two measurements is usually done by a multi-

dimensional scaling analysis, which projects objects as

points in a two-dimensional space where the distance

between the points approximate the Euclidean distance

between the original objects. For example, in one study

[42] objective and perceptual sorting of face images were

highly correlated, especially when the objective sorting

used global features, such as age and weight of the

persons in the images. Similar results were obtained in a

neurophysiological study [43] in which monkeys were

presented with face images. It was found that the

multidimensional scaling analysis maps obtained from the

original images and from the response patterns of neurons

in the inferotemporal cortex had similar patterns. These

results indicate that representing images in a dissimilarity

space can be analogous to human representation

mechanisms.
8. Conclusions

The proposed system combines several methods to achieve

state-of-the-art face verification performance for expression and

age variations, and robustness to wide occlusion. However, its

robustness to registration errors and illumination variation should

be still improved. The proposedmethod can also be useful for the

understanding of human face processing and we are currently

developing psychophysical experiments to establish the level of

its relation to biological systems. Preliminary results [44] indicate

a similar pattern of sensitivity of the human and FBT-based

algorithm to polar frequency filtering.
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