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Abstract

The research described in this paper analyzes the in-plane
rotational robustness of the Viola-Jones object detection
method when used for hand appearance detection. We de-
termine the rotational bounds for training and detection for
achieving undiminished performance without an increase in
classifier complexity. The result – up to 15° total – dif-
fers from the method’s performance on faces (30° total).
We found that randomly rotating the training data within
these bounds allows for detection rates about one order of
magnitude better than those trained on strictly aligned data.
The implications of the results effect both savings in train-
ing costs as well as increased naturalness and comfort of
vision-based hand gesture interfaces.

1. Introduction
In previous work [5], we investigated various hand postures
and views for their suitability to reliable detection with ar-
bitrary backgrounds. Using Viola and Jones’ extremely fast
pattern recognition method (Section 3 and [8]), we found
vast differences in the achievable accuracy, that is, the max-
imum detection rate for a given false positive rate. We used
a detector for the best suited posture in a vision-based hand
gesture interface, where robust hand detection is of utmost
importance. This vision interface serves as the sole input
modality to control all functions of a wearable computer
system [6]. The detector, combined with skin color veri-
fication, has not once detected a false positive in practical
application, indoors and outdoors, and in many hours of op-
eration. Given that the hand is in the right posture, it is rec-
ognized within a few frames. The high detection accuracy
allows reliable initialization of a set of dependent computer
vision methods that track the hand and recognize key pos-
tures, despite the instability of a head-worn camera and the
unknowns of uncontrolled environments.

Unfortunately, said object detection method is not in-
herently invariant to in-plane object rotations, requiring the
user of our mobile system to perform very precise gestures
– a daunting task with a head-worn camera. Viola and Jones
extended their method to detect objects exhibiting arbitrary
in-plane rotations, requiring additional effort both algorith-
mically, during training, and during detection [3].

Our objective for this work was to analyze the limits
of the original approach [8], without incurring a perfor-
mance penalty, and for objects other than faces (because
their appearance characteristics are entirely different, see
Section 3.1). We explain the method, introduce a new fea-
ture type, and discuss the dataset in Section 3. Section 4
presents our experiments and the results. We show that de-
tection accuracy can be improved by an order of magnitude
without algorithmic modifications, while the speed perfor-
mance remains unchanged. These results are consistent for
a number of hand postures and appearances. We employed
the improved detectors in our mobile vision interface and
can report better and faster initialization due to more natu-
ral and less rigid hand postures required for detection.

2. Related work
Face detection has attracted a great amount of interest
[10, 2] and many methods relying on shape, texture, and/or
temporal information have been described. Texture-based
approaches in particular have yielded the most universal
results. However, little work has been done on finding
hands in unconstrained grey-level images, not even view-
dependent, posture-specific hand appearances. Instead,
most attempts to detect hands from video place restrictions
on the environment. For example, skin color is surprisingly
uniform [7, 11, 4], so color-based hand detection is possi-
ble. This by itself is not reliable as hands have to be distin-
guished from other skin-colored objects. Motion flow infor-
mation is another modality that can fill this gap [1], but for
non-stationary cameras this approach becomes quite com-
plex. An extensive study [9] investigated the suitability of
a number of classification methods for the purpose of view-
independent hand posture recognition. However, detection
without the help of skin color information and real-time per-
formance were not considered.

Our work investigates unimodal hand detection in un-
constrained grey-level images with a method that meets the
real-time requirements of vision-based interfaces (VBI).

3. Viola-Jones detector
The basis for this work is a learning-based object detec-
tion method, recently proposed by Viola and Jones [8]. It



is considered the fastest and most accurate pattern recogni-
tion method for faces in monocular grey-level images, and
in prior work we confirmed similarly excellent performance
for hand detection [5]. The method operates on so-called
integral images: each image element contains the sum of
all pixels values to its upper left, allowing for constant-time
summation of arbitrary rectangular areas. During training,
“weak” classifiers are selected with AdaBoost, each of them
a pixel sum comparison between rectangular areas. Since
the originally proposed feature types did not have sufficient
discriminative power for all hand appearances, we added a
new feature that achieved superior classification rates. This
feature (Fig. 1) is more general than the one introduced
in [3]. Hundreds of these classifiers are then arranged in
a multi-stage cascade. Lazy successive cascade evaluation
and the constant-time property allow the detector to run
fast enough for the low latency requirements of VBIs. The
method’s accuracy, speed performance, and its sole reliance
on grey-level images make it very attractive for hand detec-
tion.
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Figure 1: The feature types. The fourth type (shown in two in-
stances) compares two white areas with two black areas. Its areas’
locations and sizes are only minimally constrained and can even
overlap.

3.1. In-Plane Rotations
Viola-Jones face detectors handle about 30° of in-plane
rotation of frontal and profile views, 15° in either direc-
tion [3]. However, we found detectors for hands to be much
more sensitive to in-plane rotations (see Subsection 4.1);
this prompted the research presented here. The difference
to faces stems from the hand’s smaller features (fingers) be-
ing more sensitive to correct alignment during training, as
well as from less inter-person appearance variation of a cer-
tain posture and view.

Jones and Viola recently extended their method to de-
tect arbitrary in-plane rotations and side views of faces [3].
In a first stage of classification, implemented with a deci-
sion tree, one of twelve classifiers is selected. Each of these
handles detection of faces within about 30° of in-plane rota-
tions. While this approach is still very fast, it adds training
time and about doubles detection time.

Similarly, we investigated detection of in-plane rotations
of various hand postures. However, our focus was not on
covering the entire 360° range of rotations but instead to
increase each detector’s range of detected rotations without
adding any computational overhead and without negatively
affecting the false positive rate.

3.2. Dataset, Training, and Baseline
We created a training set of over 330 very well aligned hand
appearances for each of six posture/view combinations from
different people’s right hands, taken with different cameras
in both indoor and outdoor settings (Fig. 2). One classi-
fier was trained for every posture on half the images and
validated on the other half. 180 random images not contain-
ing hands were scanned to periodically increase the negative
training set (see [8] for details).

Figure 2: The six postures, 25x25 pixels, bottom row rotated by
15°. From left: closed, open, sidepoint, victory, Lpalm, and Lback.

For the closed posture, we rotated both the training and
validation sets by various amounts around the image area’s
center and trained one classifier for each angle. Consistent
parameters for the training caused equally-complex cascade
stages throughout all experiments in this paper. The evalua-
tion (Fig. 3) shows that there are no large differences in the
accuracy of the classifiers, especially for low false positive
rates. Establishing this baseline is important because some
rotations could be intrinsically harder to detect than others
– these experiments dismiss this possibility.
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Figure 3: Classifiers trained and evaluated for the same rotation.

4. Rotational robustness
4.1. Problem: Rotational Sensitivity
To demonstrate the sensitivity of the detection method when
used for hand appearances, we tested a classifier trained on
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Figure 4: Trained for unrotated training images, evaluated for
test images rotated by various angles. There is a sharp decrease in
detection accuracy for in-plane rotations of 4° or more. Note the
symmetry for rotations to the left and right.

well-aligned examples for its accuracy. In contrast to Viola
and Jones’ face detector, we found poor accuracy with ro-
tated test images for as little as 4° (Fig. 4). A second set
of experiments shows that this is not caused by peculiarities
of the unrotated appearance of the particular hand posture:
Eight classifiers were trained on examples rotated by var-
ious degrees, then tested with examples rotated randomly
between 0° and 15°. The results in Fig. 5 demonstrate their
high rotational sensitivity in contrast to a classifier that was
trained on 0°-15°-rotated examples (top curve; the differ-
ence is even larger for false positive rates below 10

−4).
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Figure 5: Trained for stated angle, evaluated on randomly rotated
test set. None of the fixed-angle classifiers achieves accuracy close
to the classifier trained for various angles.

4.2. Bounds
The objective of the second set of experiments was to de-
termine the angles we could rotate the training examples
and still achieve good detection performance on the equally-
rotated test set. We created a large training set with four rep-
etitions of the same images of the closed posture, each ro-
tated by an additional 15°. A Viola-Jones detector over time
keeps the positive examples that are reliably detectable,
while it successively ignores those that would require an
unacceptably high false positive rate. The experiment’s as-
sumption is that well-detectable examples will be retained
and all others sacrificed in order to achieve a low false posi-
tive rate. The evaluation (Fig. 6) suggests that the examples
with 0° and 15° of rotation are more consistently recogniz-
able than those with 30° and 45°. Therefore, we set the
bounds for rotating the training examples to within 15°.
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Figure 6: A classifier created on a training set with multiple ro-
tations does not treat all angles equally. Instead, examples rotated
by 30° and 45° are more likely to be dropped in favor of examples
with smaller rotations.

4.3. Rotation Density of Training Data
Next, we were interested in the influence that different ro-
tation angle densities have on training and detection per-
formance. Three classifiers were trained; their training and
validation sets contained examples rotated in varying steps:
A = {0, 5, 10, 15}, B = {0, 3, 6, 9, 12, 15}, and C = {0..15}
with random angles. They consisted of 198, 190, and 239
weak classifiers, respectively. The detectors were evaluated
on examples randomly rotated between 0 and 15 degrees.

No significant accuracy variation was observed. We con-
clude that accuracy is not affected by rotation angle density
for angles of 5° or less. This is an important result because
wider steps allow for fewer training examples, reducing data
collection effort and computational training cost.



4.4. Other Postures
Finally, we confirmed the applicability of the main results
obtained for the closed posture to the other five postures.
Fig. 7 plots the detection rate of classifiers built with rotated
training sets (0°-15° random) divided by that of classifiers
built with unrotated training sets. Both were evaluated with
a test set with all examples rotated by 15°. The detectors
trained on rotated examples achieve at least equal perfor-
mance, and for low false positive rates they outperform the
detectors trained on fixed examples by about one order of
magnitude. They also have a lower minimum false positive
rate while still detecting some hand appearances.
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Figure 7: Ratio of detection rates for “trained on rotated” over
“trained on unrotated”, evaluated on 15° rotated areas. There are
no data points if the unrotated classifiers have a detection rate of
zero.

4.5. Overall Results and Discussion
The number of weak classifiers required for a certain accu-
racy did not differ significantly between classifiers trained
on rotated and unrotated training images. Since we used
consistent training parameters (number of weak classifiers
per cascade stage and their accuracy) for all detectors, the
resulting detection speed performance of classifiers for 0°-
15°-rotated images is about equal to that of classifiers that
detect unrotated images only.

The results presented in this paper are likely to general-
ize to other objects because the surveyed hand appearances
exhibit very different characteristics, such as their convexity
(open vs. closed), their texture variation (Lback vs. Lpalm),
and the background to foreground ratio (closed vs. side-
point). As detailed in Section 4.1, presenting training im-
ages that are rotated within these bounds is crucial to good
accuracy for object appearances other than faces.

5. Conclusions
This paper’s contribution is a detailed analysis of Viola-
Jones detectors for in-plane rotations of hand appearances.
The main result is that only about 15° of rotations can be
efficiently detected with one detector, different from the
method’s performance on faces. Most importantly, the
training data must contain rotated example images within
these rotation limits. Detection rates on rotated appearances
improve by about one order of magnitude, without a nega-
tive impact on detection speed. We also introduce a more
expressive feature type that is required for good accuracy
on some hand appearances.
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