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Abstract

This paper introduces “Flocks of Features,” a fast tracking
method for non-rigid and highly articulated objects such
as hands. It combines KLT features and a learned fore-
ground color distribution to facilitate 2D position track-
ing from a monocular view. The tracker’s benefits lie in
its speed, its robustness against background noise, and its
ability to track objects that undergo arbitrary rotations and
vast and rapid deformations. We demonstrate tracker per-
formance on hand tracking with a non-stationary camera
in unconstrained indoor and outdoor environments. The
tracker yields over threefold improvement over a CamShift
tracker in terms of the number of frames tracked before the
target was lost, and often more than one order of magni-
tude improvement in terms of the fractions of particular test
sequences tracked successfully.

1. Introduction

We present a fast method for tracking the 2D location of
unaugmented hands from monocular views. By integrating
image cues obtained from optical flow and a color proba-
bility distribution, our method is able to follow rapid hand
movements despite arbitrary finger configuration changes
(postures). It can deal with dynamic backgrounds, some
lighting changes, and significant camera motion such as
from a hand-held camera during walking. It does not require
a shape-based hand model, thus it is in principle applicable
to tracking any deformable or articulated object. A more
distinct and uniform object color increases performance but
is not essential. We show extensive experiments with hands,
demonstrating for our test sets up to 347% and 825% perfor-
mance improvement over CamShift tracking [2], depending
on the measurement method.

The tracker’s core idea is motivated by the seemingly
chaotic flight behavior of a flock of birds such as pigeons.
While no single bird has any global control, the entire flock
still stays tightly together, a large “cloud.” This decentral-
ized organization has been found to mostly hinge upon a
simple constraint that can be evaluated on a local basis:
birds like to maintain a minimum safe flying distance to the
other birds, but desire not to be separated from the flock by
more than another threshold distance [13].

Figure 1: Tracking despite a non-stationary camera, hand articu-
lations, and changing lighting conditions. The images are selected
frames from sequence #5.

Our hand tracker consists of a set of small image areas,
or features, moving from frame to frame in a way similar
to a flock of birds. Their “flight paths” are determined by
optical flow, and then constrained by observing a minimum
distance from all other features and by not exceeding a max-
imum distance from the feature median. If these conditions
are violated, the feature is repositioned to a location that
has a high skin color probability. This fall-back on a second
modality counters the drift of features onto nearby back-
ground artifacts that exhibit strong grey-level gradients.

The speed of pyramid-based KLT feature tracking [11,
16] allows our method to overcome the computational
limitations of model-based approaches to tracking, easily
achieving the real-time performance required for vision-
based interfaces. The flocking behavior in combination with
the color cue integration is responsible for the quality of
the results: in our experiments, hands were tracked repeat-
edly for more than a minute despite all efforts to distract
the tracker. Several examples are shown in the video clip
that accompanies the paper and is available from the first
author’s web site.1 A few frame snapshots are also shown
in Figure 1.

Hand gesture human-computer interfaces have the po-
tential to open new realms of applications and functional-
ities, especially for mobile and worn computing devices.
Recognizing hand motions and configurations by means of
computer vision is a particularly promising approach as it
allows a maximum of versatility without encumbering the
user. In prior work, we built a mobile computer that was

1currently at http://www.cs.ucsb.edu/˜matz/RTV4HCI.wmv
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Figure 2: Snapshots from sequences #3 with highly articulated hand motions. 200x230 pixel areas were cropped from the 720x480-sized
frames. The cloud of little dots represents the flock of features, the big dot is their mean. Note the change in size of the hand appearance
between the first and fifth image and its effect on the feature cloud.

operated solely through hand gesture recognition with a
head-worn camera, providing output in a head-worn dis-
play [9]. All other components need not be accessed and
are stowed away in a conventional backpack. Robust hand
detection (see [8]) initializes the vision system which then
tracks the hand with the method described here. Key pos-
tures are recognized and – along with the 2D hand location –
drive input to an application designed to support the mobile
user. Posture recognition also serves as re-initialization of
the tracking, reducing feature drift and accommodating for
lighting changes. Critical aspects of the vision components
are user independence, their robustness to arbitrary environ-
ments, and their computational efficiency as they must run
in concert on a laptop computer, providing real-time and
low-latency responses to user actions.

2. Related work

Rigid objects with a known shape can be tracked reli-
ably before arbitrary backgrounds in grey-level images [1,
6]. However, when the object’s shape varies vastly over
time such as with gesturing hands, most approaches re-
sort to shape-free color information or background differ-
encing [4, 10, 14], thus being subject to unimodal failure
modes, caused for example by a non-stationary camera. We
use a multimodal technique that can overcome these vul-
nerabilities. Other multi-cue methods integrate for exam-
ple texture and color information and can then recognize
and track a small number of fixed shapes despite arbitrary
backgrounds [3]. Our method tracks without a priori knowl-
edge of possible postures and can handle any number of
them. Depth information combined with color also yields a
more robust hand tracker [5], yet stereo cameras are more
expensive and cumbersome than the single imaging device
required for our monocular approach.

Object segmentation based on optical flow (for example
with normalized graph cuts [15]) can produce good results
for tracking objects that exhibit a limited amount of defor-
mations during global motions and thus have a fairly uni-
form flow [12]. Flocks of Features relaxes this constraint
and can track despite concurrent articulation and location
changes (see Figure 2).

Our method makes no attempt at estimating the articula-
tion of the hand’s phalanges (see for example [19, 17]), this
is left for subsequent processing [9].

3. Method
The motivation for our new approach stems from the diffi-
culty of tracking in real-time from a monocular view highly
articulate objects such as hands during rapid movements.
If the environment can not be constrained, for example, to
a static or uniformly colored background, single-modality
methods fail if only one assumption is violated. Our ap-
proach integrates two image cues in a very natural manner.

We chose pyramid-based KLT feature tracking as our
first modality because it delivers excellent results on quickly
moving rigid objects and because it can be computed very
efficiently [11, 16]. The flocking feature behavior was in-
troduced to allow for tracking of objects whose appear-
ance changes over time, to make up for features that are
“lost” from one frame to another because the image mark
they were tracking disappeared. Since mere feature re-
introduction within proximity of the flock can not provide
any guarantees on whether it will be located on the object
of interest or some background artifact, color as the second
modality is consulted to aid in the choice of location. An
overview of the entire algorithm is given in Figure 3.

3.1. KLT features and tracking initialization
KLT features are named after Kanade, Lucas, and Tomasi
who found that a steep brightness gradient along at least
two directions makes for a promising feature candidate to
be tracked over time (“good features to track,” see [16]).
In combination with image pyramids (a series of progres-
sively smaller-resolution interpolations of the original im-
age [11]), a feature’s image area can be matched efficiently
to the most similar area within a search window in the fol-
lowing video frame. The feature size determines the amount
of context knowledge that is used for matching. If the fea-
ture match correlation between two consecutive frames is
below a threshold, the feature is considered “lost.”

In the presented system, a hand detection method [8]
supplies both a rectangular bounding box and a probabil-
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input:
bnd_box - rectangular area containing hand
mindist - minimum pixel distance between features
n - number of features to track
winsize - size of feature search windows

initialization:
learn color histogram
find n*k good-features-to-track with mindist
rank them based on color and fixed hand mask
pick the n highest-ranked features

tracking:
update KLT feature locations with image pyramids
compute median feature
for each feature
if less than mindist from any other feature

or outside bnd_box, centered at median
or low match correlation

then relocate feature onto good color spot
that meets the flocking conditions

output:
the average feature location

Figure 3: The Flocks of Features tracking algorithm. k is an
empirical value, chosen so that enough features end up on good
colors; we use k = 3. The fixed hand mask is a known spatial
distribution for pixels belonging to some part of the hand in the
initialization posture.

ity distribution to initialize tracking. The probability mask
was learned offline and states for every pixel in the bound-
ing box the likelihood that it belongs to the hand. Next,
approximately 100 features are selected within the bound-
ing box according to the goodness criterion and observing a
pairwise minimum distance. These features are then ranked
according to the combined probability of their locations’
mask- and color probabilities. The target number highest-
ranked features form the subset that is chosen for tracking.
Its cardinality will be maintained throughout tracking by re-
placing lost features with new ones.

Each feature is tracked individually from frame to frame.
That is, its new location becomes the area with the highest
match correlation between the two frame’s areas. The fea-
tures will not move in a uniform direction; some might be
lost and others will venture far from the flock.

3.2. Flocks of Features
The main innovation presented in this paper, Flocks of Fea-
tures, allows for tracking of fast-moving and articulating
objects without the need for an object model. (The color
distribution can be seen as a model, yet it is not known a
priori but learned on the fly.) It is a way of enforcing a
loose global constraint on the feature locations that keeps
them spatially confined. During tracking, the feature loca-
tions are first updated like regular KLT features as described
in the previous subsection and their median is computed.
Then, two conditions are enforced at every frame: no two
features must be closer to each other than a threshold dis-

tance, and no feature must be further from the feature me-
dian than a second threshold distance. Unlike birds that will
gradually change their flight paths if these “flocking condi-
tions” are not met, our method abruptly relocates affected
features to a new location that fulfills the conditions. The
flock of features can be seen in Figure 2 as clouds of little
dots.

The effect of this method is that individual features can
latch on to arbitrary artifacts of the object being tracked,
such as the fingers of a hand. They can then move inde-
pendently along with the artifact, without disturbing most
other features and without requiring the explicit updates of
model-based approaches, resulting in flexibility and speed.
Too dense concentrations of features that would ignore
other object parts are avoided because of the minimum-
distance constraint. On the other hand, stray features that
are likely to be too far from the object of interest are brought
back into the flock with the help of the maximum-distance
constraint.

We chose the median over the mean location to enforce
the maximum-distance constraint because of its robustness
towards spatial outliers. In fact, we also remove the furthest
15% of features from the median computation to achieve
temporally more stable results. However, the location of
the tracked object as a whole is considered to be the mean of
all features since this measure changes more smoothly over
time than the median. The gained precision is important for
the vision-based interface’s usability.

3.3. Color modality and multi-cue integration
At hand detection time, the observed hand color is learned
in a normalized-RGB histogram and contrasted to the back-
ground color as observed in a horseshoe-shaped area in the
image around the hand. This assumes that no other ex-
posed skin body parts of the same person who’s hand is to
be tracked is within that background reference area. Since
our applications mostly assume a forward- and downward-
facing head-worn camera, this assumption is reasonable.
We ensured that it was met for our test videos, which also
included other camera locations. The segmentation quality
that this dynamic learning achieves is very good for as long
as the hand’s lighting conditions do not change dramatically
and the reference background is representative for the ac-
tual background. For example, wooden objects that are not
within the reference background area during learning will
frequently be classified incorrectly as foreground color.

The color information is used as a probability map (of a
pixel’s color belonging to the hand) in three places. Firstly,
the CamShift method which we compared our tracker to
solely operates on this modality. Secondly, at tracker initial-
ization time, the KLT features are placed preferably onto lo-
cations with a high skin color probability. This is true even
for the two tracking styles that did not use color information

3



in subsequent tracking steps, see Section 4.
Thirdly, the new location of a relocated feature (due to

low match correlation or violation of the flocking condi-
tions) is chosen to have a high color probability, currently
above a fixed 50% threshold. If this is not possible with-
out repeated violation of the flocking conditions, it is cho-
sen randomly. A change in lighting conditions that results
in poor classification with the learned distribution causes
gracefully degrading tracking performance: only relocated
features suffer while most features will continue to follow
grey-level artifacts. For speed reasons we do not take the
grey-level gradient information – the goodness-to-track –
into account at this point anymore. However, we presume
that this would not significantly improve tracking because
in application the features automatically move to those lo-
cations after a few frames.

This method leads to a very natural multi-modal inte-
gration, combining cues from feature movement based on
grey-level image texture with cues from texture-less skin
color probability. The relative contribution of the modalities
can be controlled by changing the threshold of when a KLT
features is considered lost between frames. If this threshold
is low, features are relocated more frequently, raising the
importance of the color modality, and vice versa.

4. Experiments
The main objective of the experiments was to assess our
tracker’s performance in comparison to a frequently used,
state of the art tracker. We chose the CamShift tracker [2]
method because it is widely available and because it is rep-
resentative of single-cue approaches. The contribution of
both the flocking behavior and of the multi-cue integration
to the overall performance was also of interest. We there-
fore compared five tracking styles:

• CamShift: We supplied the OpenCV implementation
of CamShift [2] with the learned color distribution. A
pilot study using a fixed HSV histogram yielded infe-
rior results.

• KLT features only: The KLT features were initial-
ized on the detected hand and subject to no restrictions
during subsequent frames. If their match quality from
one to the next frame was below a threshold, they were
reinitialized randomly within proximity of the feature
median.

• KLT features with flocking behavior: As above, but
the constraints on minimum pairwise feature distance
and maximum distance from the median were enforced
at every frame (see Subsection 3.2).

• KLT features with color: As plain KLT features, but
resurrected features were placed onto pixels with high
skin-color probabilities (see Subsection 3.3).

• Combined flocking and color cue: Our main con-
tribution, this tracking style combines the above two
methods as described in Section 3.

All styles used color information that was obtained in
identical ways. All KLT-based styles used the same feature
initialization technique, based on a combination of known
hand area locations and learned hand color. This guarantees
equal starting conditions to all styles.

Feature tracking was performed with three-level pyra-
mids in 720x480 video, which arrived at our DirectShow fil-
ter at approximately 13fps. The tracking results were avail-
able after 2-18ms processing time, depending on search
window size and the number of features tracked.

Aside from comparing different tracking styles, we
also experimented with different parameterizations of our
method. While further investigation is necessary, we
present first results of varying the following independent
variables: the number features tracked, the minimum pair-
wise feature distance, and the feature search window size.

4.1. Video sequences
We recorded a total of 518 seconds of video footage in
seven sequences. Each sequence follows the motions of the
right hand of one of two people, some filmed from the per-
former’s point of view, some from an observer’s point of
view. For 387 seconds (or 4979 frames) at least one of the
styles successfully tracked the hand. Table 1 details the se-
quences’ main characteristics. The videos were shot in our
lab and at various outdoor locations, the backgrounds in-
cluding walkways, random vegetation, bike racks, building
walls, etc. The video was recorded with a hand-held DV
camcorder, then streamed with FireWire to a 3GHz desk-
top computer and processed in real-time. The hand was de-
tected automatically when in a certain “initialization” pos-
ture with a robust hand detection method [8]. Excerpts of
the sequences can be found in the video accompanying this
paper (see Introduction).

5. Results
We define tracking to be lost when the mean location is not
on the hand anymore, with extremely concave postures be-
ing an exception. The tracking for the sequence was stopped
then, even though the hand might later have coincidentally
“caught” the tracker again due to the hand’s path intersect-
ing the erroneously tracked location. Since the average fea-
ture location can not be guaranteed to be on the center of the
hand or any other particular part, merely measuring the dis-
tance between the tracked location and some ground truth
data can not be an accurate measure for determining track-
ing loss. We thus visually inspected and manually annotated
the results.
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id outdrs post. skin bg len max tracked

1 no no yes 95s 79.3s 1032f
2 no yes yes 76s 75.9s 996f
3 no lots little 32s 18.5s 226f
4 yes yes little 72s 71.8s 923f
5 yes yes yes 70s 69.9s 907f
6 yes yes yes 74s 31.4s 382f
7 yes yes yes 99s 40.1s 513f

Table 1: The video sequences. Three were taken indoors, four in
the outdoors. In the first one, the hand was held in a mostly rigid
posture (fixed finger flexion and orientation), all other sequences
contained posture changes (column “post.”). The videos had vary-
ing amounts of skin-colored background (“skin bg”) within the
hand’s proximity. Their full length is given in seconds, count-
ing from the frame in which the hand was detected and tracking
began. The maximum time and number of frames that the respec-
tively best method tracked a given sequence are stated in the last
column.

5.1. Better than CamShift

Figure 4 illustrates our method’s performance in compar-
ison to a CamShift tracker that is purely based on color.
The leftmost bar for each of the seven sequences shows that
CamShift performs well on sequences three and four due to
the limited amount of other skin-colored objects nearby the
tracked hand. In all other sequences, however, the search
region and the area tracked quickly expand too far and lose
the hand in the process.

The other bars are from twelve Flocks of Features track-
ers with 20-100 features and search window sizes between
5 and 17 pixels squared. Out of these twelve trackers,
the worst and mean tracker for the respective sequence is
shown. In all but two sequences, even the worst tracker
outperforms CamShift, while the best tracker frequently
achieves an order of magnitude better performance (each
sequence’s best tracker is normalized to 1 on the y-axis
and not explicitly shown). The rightmost bar in each group
represents a single tracker’s performance: the overall best
tracker which had 15x15 search windows, 50 features and a
minimum pairwise feature distance of 3 pixels.

Next, we investigated the relative contributions of the
flocking behavior and the color cue integration on the com-
bined tracker’s performance. Figure 5 indicates that adding
color as an additional image cue contributes more to the
combined tracker’s good performance than the flocking be-
havior in isolation. The combination of both techniques
achieves the overall vast improvements over the CamShift
tracker.
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Figure 4: This graph shows the time until tracking was lost for
each of the different tracking styles, normalized to the best style’s
performance for each video sequence. Groups 1-7 are the seven
video sequences. Group 8 is the sum of all sequences, normal-
ized to the sum of each sequence’s best style’s performance. Our
Flocks of Features track the hand much longer than the compari-
son tracker.

5.2. Parameter optimizations
Figure 6 presents the tracking results after varying the target
number of features that the flocking method maintains. The
mean fraction’s plateau suggests that 50 features are able
to cover the hand area equally well as 100 features. The
search window size of 11x11 pixels allows for overlap of the
individual feature areas, making this a plausible explanation
for no further performance gains after 50 features.

In a related result (not shown), we observed no signifi-
cant effect related to the minimum pairwise feature distance
in the range between two and four. Smaller threshold val-
ues however (especially the degenerative case of zero) allow
very dense feature clouds that retract to a confined part on
the tracked hand, decreasing robustness significantly.

Just as the previous two parameters, the search window
size should ideally depend on the size of the hand and pos-
sibly the size of its articulations. We did not dynamically
adjust these values since our experiments were conducted
exclusively on hands, which were also within a size factor
of about two of each other (an example for scale change
are the first and fifth image in Figure 2). The window size
has two related implications. A larger size should be bet-
ter at tracking global motions (position changes), while a
smaller size should perform advantageously at following
finger movements (hand articulations). Second, larger ar-
eas are more likely to cross the boundary between hand and
background. Thus it should be more difficult to pronounce a
feature lost based on to its match correlation. However, Fig-
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Figure 5: Contribution of flocking versus color to the combo
tracker’s performance. Shown is the normalized sum of the num-
ber of frames tracked with each tracker style, similar to the eighth
group in Figure 4. The combo tracker distinctively shows synergy
effects over the other trackers’ performances.

ure 7 does not explicitly show these effects. We suspect that
other factors play a role in how well the sequences come off,
which warrants further investigation. On the other hand, the
general trend is very pronounced and we chose the tracker
parameters accordingly.

6. Discussion
The experiments showed that the performance improvement
must be attributed to two factors. First, the purely texture-
based and thus within-modality technique of flocking be-
havior contributes as witnessed by comparing KLT features
with and without flocking (see Figure 5). Second, the cross-
modality integration adds to the performance, visible in im-
provements from flocking-only and color-only to the com-
bined approach.

A perfect integration technique for multiple image cues
would reduce the failure modes to simultaneous violations
of all modalities’ assumptions. To achieve this for our
method and its on-demand consultation of the color cue, a
failure in the KLT/flocking modality would have to be de-
tectable autonomously (without help from the color cue).
To the best of our knowledge, this cannot be achieved theo-
retically. In practice, however, each feature’s match quality
between frames is a good indicator for when the modality
might not be reliable. This was confirmed by our experi-
ments as we could observe the features to flock towards the
center of the hand (and its fairly stable appearance there)
as opposed to the borders to the background where rapid
appearance changes are frequent.

The presented method’s limitations can thus be attributed
to two causes, undetected failure of the KLT tracking and si-
multaneous violation of both modalities’ assumptions. The
first case occurs when features gradually drift off to back-
ground areas without being considered lost nor violating
flocking constraints. The second case occurs if the back-
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Figure 6: How varying the number of features influences the per-
formance for each of the video sequences. The KLT features were
updated within an 11x11 search window and a pairwise distance
of 2.0 pixels was enforced. (The bars are normalized for each se-
quence’s best tracker, which might not be shown here.)

ground has a high skin-color probability, has high grey-level
gradients to attract and capture features, and the tracked
hand undergoes transformations that require many features
to reinitialize.

Flocks of Features frequently track the hand successfully
despite partial occlusions. Full object occlusions can be im-
possible to handle at the image level and are better dealt
with at a higher level, such as with physical and probabilis-
tic object models [7, 18]. Our method improves the input
to these models, providing them with better image obser-
vations that will in turn result in better model parameter
estimates. Enforcing temporal consistency by applying a
Kalman filter or particle filtering methods is another way to
improve tracking robustness.

There is a performance correlation between the target
number of features, the minimum distance between fea-
tures, and the search window size. The optimal parameters
also depend on the size of the hand, which we currently as-
sume to vary after initialization with no more than approx-
imately a factor of two in each dimension. In our future
work, we will attempt to quantify these relationships and
derive optimal parameters for different object sizes.

Our method was designed for coarse hand tracking for a
time span in the order of one minute. It is to provide 2D
position estimates to an appearance-based posture recogni-
tion method that does not require an overly precise bound-
ing box on the hand area. Thus, it was sufficient to obtain
the location of some hand area, versus that of a particular
spot such as the index finger’s tip. In our complete vision-
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Figure 7: How tracker performance is affected by search window
size (square, side length given on x-axis). Larger window sizes
improve tracking dramatically for sequences with very rapid hand
location changes (sequences 3, 4, 5), but tracking of fast or compli-
cated configuration variations suffer with too large windows (se-
quences 3, 7).

based gesture interface (see [9], also briefly described in
the Introduction), every successful posture classification re-
initializes tracking and thus extends the tracking period into
the long-term range.

The achieved frame rate was limited by the image acqui-
sition and transmission hardware and not by the tracking al-
gorithm. Higher frame rates will allow further performance
improvements because KLT feature tracking becomes much
faster and less error prone with shorter between-frame la-
tencies.

7. Conclusions

We presented a real-time 2D tracking method for hands in
monocular views. A flock of KLT features is maintained
with the aid of a learned color distribution as a second im-
age cue. A certain amount of size and color constancy after
initialization is expected, but the method is robust to most
other influences: it operates indoors and outdoors, with dif-
ferent people, and despite dynamic backgrounds and cam-
era motion. The method requires no object model and thus
might be applicable to tracking other very deformable and
articulated objects such as human bodies. Its computation
time of 2-18ms per 720x480 RGB frame leaves room for
other computation such as hand posture recognition meth-
ods in order to build higher-fidelity vision-based gesture in-
terfaces.
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