
Location-based augmented reality on mobile phones

Rémi Paucher and Matthew Turk
Computer Science Department

University of California, Santa Barbara
rpaucher@cs.ucsb.edu | mturk@cs.ucsb.edu

Abstract

The computational capability of mobile phones has been
rapidly increasing, to the point where augmented reality has
become feasible on cell phones. We present an approach to
indoor localization and pose estimation in order to support
augmented reality applications on a mobile phone platform.
Using the embedded camera, the application localizes the
device in a familiar environment and determines its orien-
tation. Once the 6 DOF pose is determined, 3D virtual ob-
jects from a database can be projected into the image and
displayed for the mobile user. Off-line data acquisition con-
sists of acquiring images at different locations in the envi-
ronment. The online pose estimation is done by a feature-
based matching between the cell phone image and an image
selected from the precomputed database using the phone’s
sensors (accelerometer and magnetometer).

The application enables the user both to visualize vir-
tual objects in the camera image and to localize the user in
a familiar environment. We describe in detail the process
of building the database and the pose estimation algorithm
used on the mobile phone. We evaluate the algorithm per-
formance as well as its accuracy in terms of reprojection
distance of the 3D virtual objects in the cell phone image.

1. Introduction
There have been many augmented reality systems using

various approaches for visual augmentation of the scene.
Most of these methods fall into one of two categories:
pose computation and object recognition. Many in the AR
community use object recognition to provide information
about the recognizable objects viewed by the user. How-
ever this approach works only if the user is looking at spe-
cific known objects; it does not support augmented reality
when there are no special objects in the scene. A more flex-
ible approach is to determine the 6 DOF pose of the sensor,
which enables the projection of any 3D virtual object from
a database into the image the user is viewing at any location
in the 3D scene.

Our work uses an approach of this type, computing the
sensor pose in an indoor environment and augmenting the
scene by projecting 3D information into the image. Among
many images of the environment taken at different locations
in the environment offline (creating a local database for use
in the AR system), the algorithm selects the database im-
age which is the most similar to the live cell phone image.
The next step is to match the two images to find point cor-
respondences, based on features extracted in both images.
Then the pose between the two images can be computed so
that the position and the orientation of the cell phone cam-
era can be known. 3D virtual objects from the database are
then projected in the image according to the computed pose
as depicted in Figure 1.

Using mobile phones for augmented reality has both ad-
vantages and drawbacks. First, cell phones with cameras are
becoming ubiquitous, so this is the most convenient plat-
form on which to do augmented reality. AR applications
can also benefit from cell phone sensors such as accelerom-
eters and magnetometers, which can improve the quality of
augmented reality and facilitate user tracking. However, de-
spite rapid advances in mobile phones as a computing plat-
form, their performance for real-time imaging applications
is still very limited. Their computation power is equivalent
to that of a typical computer perhaps ten years ago. They
also have relatively slow memory access and a small cache.
Many do not support floating-point numbers natively, mak-
ing some computations quite slow.

Many applications tracking cell phone position and ori-
entation send data to a remote computer that does the com-
putations and sends back the results to the mobile device.
This approach is not well adapted to augmented reality ap-
plications because of bandwidth limitations and the over-
head and additional power consumption of data communi-
cation. For these reasons, we chose in this work to do all the
computation on the mobile device. Considering the trend in
cell phone computation power, it will most likely be feasi-
ble to develop real-time AR applications processed locally
in the near future.

This work aims at showing the feasibility of doing indoor

Figure 1. Application overview. The database contains several im-
ages taken at different locations (the green dots) in the indoor en-
vironment (blue blob). The arrows are the optical axes and the
angles represent fields of view. The pose (translation T and ro-
tation R) between the cell phone image (bold blue lines) and a
database image is computed by image matching. Then the 3D vir-
tual objects (represented by yellow cubes) are projected into the
cell phone image. Here, only one virtual object is seen by the cell
phone.

localization and augmented reality on the fly using only the
cell phone’s sensors and processing. Such a system could
be used, for example, in a museum by visitors, to view tour
directions and information about pieces of art when point-
ing their phones at them.

The paper is organized as follows: In Section 2 we dis-
cuss the related work. Section 3 will describe the pre-
processing steps to learn the environment and the database
building process. In Section 4 we will present how the addi-
tional cell phone sensors help in pose estimation. Our algo-
rithms for image matching and pose computation on the cell
phone side will be described in Section 5, and our results
are presented in Section 6. We conclude with a discussion
on the results and further work.

2. Related work

Early localization systems used radio signals to deter-
mine the user location and relied on a remote server [8] [11].
These systems came with a significant infrastructure cost.

Much work has been done in the robotics community on
localization [18] [14] [6] [17]. However, the robots usu-
ally have fewer degrees of freedom, and much of the work
relies on landmarks. Also many of these systems do not
provide metric localization, because they do not deal with a
3D model.

The augmented reality community often uses markers in
the environment because of the low computation power re-

quirements and their robustness [16] [15] [19]. Some works
use them for localization [9] [10] [13]. However this is an
invasive solution since objects have to be tagged with these
codes. Our approach does not require one to place any ad-
ditional content in the environment. Much of the work in
the AR community uses object detection and recognition
techniques rather than pose estimation.

SLAM approaches like [5] enable to localize the user by
building a map on-the-fly. However this kind of approach is
more appropriate to small unfamiliar workspaces and pro-
vide much less precise maps.

6 DOF pose estimation has become possible on mo-
bile phones due to the increasing computation power avail-
able on these devices [20]. However, for large and uncon-
strained environments pose estimation may be infeasible
due to the difficulties of efficiently matching a given image
with a database of information about the complete environ-
ment. In this work, we consider only database images that
are likely to be seen by the camera at its estimated posi-
tion. Therefore the approach is easily scalable to wide ar-
eas, unlike approaches that search the whole database [12].
Arth et al. [1] worked on the problem of localization on
cell phones by feature matching, using a potential visible
set (PVS) approach to search only relevant images. Their
method searches all the point sets adjacent to the camera’s
location. The embedded sensors on today’s cell phones en-
able us to go a step further and produce an estimate of the
camera pose before any processing of the image.

3. Database building
The first step in the application is to acquire data in ad-

vance about the environment; e.g., to go through a museum
and create a database that will be used subsequently by AR
applications in the building. This involves carrying a cam-
era rig through the space and preprocessing this data on a
host computer. The data comprises images of the environ-
ment taken at different locations. For each image, we store
the pose of the camera (its absolute rotation and position)
and its intrinsic parameters. Then we extract SURF fea-
tures [2] in each of the images and store their positions in
the image as well as their descriptors. On the cell phone ap-
plication, we want the user localization to be metric; this re-
quires us to have metric information in the database. There-
fore we use a stereo camera for the database images, which
produces the depth for each pixel of the image. As a result,
we also store the 3D position of the features in each image.
For a reason to be explained below, we also store the 3D
position of the center of the images.

Among all the detected SURF features, we have to
choose the most robust ones; i.e., those that are likely to
be detected in the cell phone image and be close to the new
feature in terms of descriptor similarity. In order to do that,
we track each feature over several frames and keep only the

ones that were successfully tracked over all the frames. The
criterion to keep a feature from one frame to the next one
is that the feature position remains close to its previous po-
sition and that the distance between the descriptors is short
enough. In practice, we track the SURF features while the
stereo camera remains still. This eliminates many of the
features detected because of the noise in the image.

4. Cell phone sensors and pose estimation

Once the database has been collected and processed, the
indoor environment is ready to support location-based AR
on the mobile phone. As we will see in Section 5, having
a coarse estimate of the pose makes the image retrieval step
easier and accelerates the pose estimation algorithm. In this
work, we used the N97 phone from Nokia. It has several
sensors to help us with the pose estimation such as GPS, an
accelerometer, a magnetometer and a rotation sensor.

First, when considering cell phone pose estimation, we
have to define an absolute coordinate system. As a right-
handed cartesian coordinate system, we chose the system
(
−→
E ,−→g ,

−→
N), where

−→
E is East, −→g gravity and

−→
N North.

In this section, we will show how to use the cell phone
sensors to produce a camera pose estimation in the defined
coordinate system.

4.1. Position

The accelerometer outputs the second derivative of the
position, so it is theoretically feasible to obtain the position
by double integrating the accelerometer data. However our
experiments showed that the data outputted by this sensor
is too noisy to get an estimation of the position. Figure 2
shows the results of an experiment comparing the ground
truth 2D trajectory and the trajectory estimated with the ac-
celerometer data, while the user walked holding the phone
upright. The graph shows a bird’s eye view, with an equal
number of points in both curves. An accurate trajectory es-
timate would overlap the rectangular ground truth; in con-
trast, the accelerometer-based position estimate was wildly
off.

Another solution is to use the GPS data which gives the
location of the user with a few meters error. Depending
on the application, that can be adequate. However, if the
system is used indoor there is usually no GPS signal avail-
able, so the position cannot be estimated with the cell phone
sensors. Therefore in our tests, if there is no GPS signal
available, we initialize the user location with the last com-
puted position (i.e., the position computed for the previous
frame). Where a GPS signal is not available, we assume the
user does not walk more than two meters between two pic-
tures, so that we can initialize his location to the previous
computed location.

Figure 2. Accelerometer accuracy for trajectory estimation. The
2D position (top-down view) of a walking user holding the cell
phone is estimated using the accelerometer data (blue line) and
compared to ground truth (green line). The accelerator-only esti-
mate is not useful.

Figure 3. The first criterion of the database search. Ki are the 3D
centers of the database images, wi their optical axes. O and u are
the estimated location and rotation, dT and ∆α their uncertainties.
According to the first criterion, only the database images which
have centers inside the blue cone are searched.

4.2. Orientation

The accelerometer sensor outputs three channels that
represent the acceleration along the three cell phone axes.
Besides measuring acceleration due to the user, the ac-
celerometer also measures the gravity acceleration. Thus
if the user is not moving, the three gravity components pro-
jected in the cell phone reference can be measured by the
sensor. This enables us to obtain the tilt of the phone, that
is, two parameters out of three of the cell phone rotation
matrix. The same information can also be obtained from
the rotation sensor. This sensor gives three angles that rep-

resent the amount of rotation around the three cell phone
axes. These angles can be used to retrieve the three compo-
nents of the gravity vector in the cell phone reference. The
advantage of using this sensor rather than the accelerome-
ter is that the outputs of this sensor are not sensitive to user
movements. However the sensor is less precise than the ac-
celerometer because the angles are quantized to 15 degrees.

The last parameter to compute is the amount of rotation
around a vertical axis. To fully determine the rotation we
need additional information from the magnetometer. The
2D magnetometer (or digital compass) outputs the angle
from the projection of the North vector onto the cell phone
plane and one cell phone axis. This angle gives us one pa-
rameter, which is enough to compute the full orientation
of the cell phone because we already have two parameters
given by the accelerometer/rotation sensor. By expressing
the components of all three cell phone axes from the gravity
components and the magnetometer angle, we obtain the full
cell phone rotation matrix.

5. Cell phone application

5.1. Database search restriction

Once the augmented reality application captures an im-
age, it searches the database for the most relevant stored im-
age. The database can contain an arbitrarily large number
of images. Searching among all the images is not feasible,
since the matching step is a time-expensive step run on the
cell phone. Most of the database images do not need to be
searched because the portion of the environment they repre-
sent is not even visible to the user. In Section 4 we showed
how we could obtain an estimate of the camera pose from
the cell phone sensors. Using this estimate, we can discard
images that are not likely to being seen by the user; for ex-
ample, images that represent a scene behind the user. We
used two criteria to select only the relevant images.

First, for a database image to be considered, its center
has to be seen by the cell phone camera. We can determine
this since we stored the 3D point of the center of all the
database images. In case the 3D point of the center is not
inside the camera’s field of view, the overlap region (if there
is some) between the two images is not large enough for
the pose estimation to be precise enough. Because there
is an uncertainty on the phone orientation estimated by the
sensors, we have to extend somewhat the field of view of
the cell phone camera in which we search for the 3D point.
In the same way, we assume that the user location is close
to the estimated location (thanks to GPS or the previously
computed location). The larger the uncertainties, the larger
the number of images to be searched. Figure 3 illustrates
this first criterion.

The second criterion prevents bad image matching con-
figurations. The matching step is done using features that

are rotation-invariant to some extent. The matching process
will fail if there is too much rotation between the two im-
ages. Thus we do not search for images that have an orienta-
tion that is too different from the camera. This criterion also
helps to remove many irrelevant images, such as those with
centers that are not seen by the cell phone camera despite
being inside its field of view (because of possible walls, or
the possible non-convexity of the environment).

Using these two criteria restricts the search significantly.
For each database image, we load in memory its 3D center
point and the absolute pose of the stereo camera that cap-
tures the image. This information is about 36 bytes for each
image. The image descriptors are loaded on demand. How-
ever the two criteria have some limitations. The best way
to restrict the search would be, on top of using these two
criteria, to group all images from the same room together,
so that only the images taken in the same room as the user
will be searched.

5.2. Image retrieval

Among the images that have been selected to be
searched, we select the best matching candidate by using
a classic feature-based approach. The SURF features are
detected in the cell phone image and the descriptors are
computed at each of these points. Then for each possible
image of the database, the features from the cell phone im-
age are matched to the ones from the database image. For
each feature of the cell phone image, the nearest neighbor
in the database image features set is searched. Then we se-
lect only the good matches, that is, the matches that have a
low enough distance between each other, and also the ones
for which the ratio between the second best distance and
the best distance is high enough. By this method, we ob-
tain sets of good matches between the cell phone image
and each of the possible database images. We then select
the image from the database that has the highest number of
good matches with the cell phone image. This method gives
good results in general. The robustness can be increased by
adding an outlier removal step that would remove incorrect
matches before counting the number of good matches for
each image.

The nearest neighbor search of descriptors is performed
using a KD-Tree structure. Thus we store a KD-Tree for
each image during the preprocessing step. Search is imple-
mented using the Best Bin First technique [3], a technique
which is about 90% as accurate as linear search but 100
times faster.

5.3. Outlier removal process

Once the selected database image has been matched with
the cell phone image, we obtain a set of candidate matches,
from which incorrect matches need to be removed. The
most common way to remove outliers between two views

is using a RANSAC [4] loop computing the fundamental
matrix at each iteration. Depending on the algorithm used,
5, 7 or 8 points are needed to compute the fundamental ma-
trix. We considered that algorithms that need fewer than 8
points are too time-consuming, even if they are more pre-
cise. However the 8-point algorithm uses a linear criterion
that gives very poor results in the presence of noise, which
is why using it inside a RANSAC loop gives unusable re-
sults. This leads both to discarding inliers and to accepting
outliers. We cannot use this because the pose computation
algorithm is very sensitive to outliers, so it needs to deal
only with inliers. Therefore we first remove the most obvi-
ous wrong matches by approximating the transformation as
planar. Thus we first fit a homography between the two sets
of points using the Least Median of Square algorithm. Then
the points that lie too far from their image by the homogra-
phy are considered as outliers. In other words, only points
that roughly satisfy a planar criterion are selected. The cho-
sen threshold is of course high, so that depth changes are
allowed. This step removes most of the outliers and is fast
because it requires only four matches to estimate the ho-
mography at each iteration. We can then use the 8-point
algorithm combined with RANSAC to remove the final out-
liers. Since matches have been filtered before this step, we
need only a small number of RANSAC iterations.

The 8-point algorithm works well to remove outliers dur-
ing the last step of the outlier removal, but because of its
poor accuracy it fails to give a precise estimate of the fun-
damental matrix, even when refining the estimate using all
of the inliers. It can only be used to remove outliers but not
to estimate the pose.

We also considered removing the outliers using the 3D
points coordinates to estimate the 6 DOF pose from three
points [7] in a RANSAC loop. However this method is more
complex because it requires solving polynomial equations
which lead to up to four solutions. We chose not to use it
because we obtained similar results with our method in less
time.

5.4. Pose computation

At this step we have a set of presumably correct matches
between the cell phone and the database images, which en-
ables us to compute the relative pose between the two im-
ages. Given 2D-3D matches, we have to find the translation
and the rotation between the two cameras. In the following,
ci and di are 2D points in the cell phone and the database
images respectively, Xi is a 3D point in the database system
coordinates, and Kc and Kd are the calibration matrices of
the cell phone and the stereo camera, respectively. In this
section, we propose two different methods to estimate the
pose.

5.4.1 Reprojection minimization

The final goal is that the projected virtual objects match the
image content as close as possible. Therefore, the reprojec-
tion error of the database 3D points in the cell phone image
is the most meaningful criterion to minimize. No matter
which method we use, the final pose estimation step has to
be the minimization of this criterion:

min
R,T

∑
i

∥∥∥∥ Kc (RXi + T)
(Kc (RXi + T))3

−
(

ci

1

)∥∥∥∥2

The minimization is done using the Levenberg-
Marquardt algorithm, over six parameters (three for the ro-
tation and three for the translation). Of course the pose has
to be well estimated before doing this local minimization.
In our tests if the number of matches is high, the estimation
does not have to be very precise for the global minimum to
be found. A pose estimation using the 8-point algorithm is
adequate. The problem is now to initialize the pose before
doing the final minimization.

5.4.2 First initialization method

Because the 8-point algorithm does not give good results,
we propose an alternative algorithm to initialize the pose.
We have an estimate (R̂) of the rotation given by the cell
phone sensors. We can still minimize the sum of squares
as in the 8-point algorithm, but only over the translation
parameters, by setting the rotation equal to the sensors es-
timate. The translation can only be estimated up to scale
when using the 2D points, so the minimization is done on
only two parameters. Plus we do not have the essential ma-
trix constraints problems from the 8-point algorithm any-
more, because we minimize directly over pose parameters.
The × symbol stands for cross product.

minT
‖T‖=1

∑
i

(
T.
(
ci × R̂di

))2

The resolution is done using an SVD decomposition on a
3×3 matrix, which is very fast. This is precise because the
rotation is well estimated by the cell phone sensors. This
same method can be used inside a RANSAC loop to re-
move the outliers; it requires only two points to determine
the translation and is very fast. We have tested this outlier
removal technique, but it does not remove all the outliers,
and performs worse in general than the homography fit.

Next we refine the pose by minimizing the Sampson cri-
terion, which is more meaningful than a linear criterion:

min
F

∑
i

((
ci

T Fdi

)2
(Fdi)

2
1 + (Fdi)

2
2 + (FT ci)

2
1 + (FT ci)

2
2

)

where the fundamental matrix F is expressed as a function
of the pose parameters: F = Kd

−T [T]×RKc
−1.

In this minimization, the translation is represented in
spherical coordinates and the rotation via the angle/axis rep-
resentation. The minimization is thus done over five param-
eters thanks to the Levenberg-Marcquardt algorithm. This
minimization is of course local, so it needs a good initial-
ization. We initialize it with the pose estimation from the
previous algorithm.

At this point, the translation has only been estimated up
to scale. To obtain the translation norm, we use point depths
from the stereo camera (database). For each match, we can
compute the translation norm value using geometric consid-
erations in triangles. Among all these values for the trans-
lation norm, selecting the median is the best choice to be
sensitive to noisy matches as little as possible.

5.4.3 Second initialization method

The previous method provides an accurate 6 DOF pose es-
timation. However it is rather slow because it involves an
LM minimization. We propose an alternative method to ini-
tialize the pose. Let us consider this minimization (R̂ is the
estimation of the orientation using the cell phone sensors):

min
T

∑
i

∥∥∥∥Kc

(
R̂Xi + T

)
−
(
R̂Xi + T

)
3

(
ci

1

)∥∥∥∥2

This criterion is the linearized version of the final crite-
rion we want to minimize. Of course it is less meaningful,
because it gives more importance to the points that have a
high depth and to the ones that lie far from the image cen-
ter. But it has the advantage of being much more easily and
quickly minimized. Because the rotation is estimated by
the cell phone sensors, the minimization is done over only
the three translation parameters. The derivatives of this ex-
pression are linear, so it requires only one 3×3 matrix SVD
decomposition to compute the translation parameters.

This method is faster than the previous one because it
uses only one SVD decomposition. In our experiments it is
slightly more robust for finding the global minimum.

6. Results and performance
6.1. Augmented reality

In our tests, we picked in the 3D model some 3D points
that correspond to something remarkable in the environ-
ment. All the 3D virtual objects we used for the AR ex-
periments are planar rectangles. Although any 3D object
can be inserted in the database, rectangles make it easier for
visualization and error measuring. We built a database of
images in a lab environment and picked rectangles in the 3D
model. After the user points the cell phone in the direction

of these objects, the pose between the cell phone camera
and the database image is computed. The visible objects
are then projected into the cell phone image according to
the pose estimation. Figure 4 shows the augmented picture;
the reprojection error is about four pixels for a 640×480
image. As we can see, the final minimization is a manda-
tory step. As always, there is a trade-off between quality
and time. The bigger the images, the more features will be
extracted, so the precision will be better but the algorithm
will be slower.

We can have even better results when the rotation is
lower. In the previous test, the rotation was about 45 de-
grees. Figure 6 shows a result where rotation is close to 0
degrees and the error is only about two pixels.

6.2. Localization

This application also enables to get the location (and the
orientation) of the cell phone in the environment. Figure 5
shows the result of the localization process while the user
was walking inside the lab. The position error is in general
about 10-15 centimeters. One can notice one green point
alone in the middle of the floor plan. The matching pro-
cess failed here because the cell phone image quality was
inadequate.

Figure 5. Localization result when the user is walking in the lab.
Green points are ground truth and red points are computed posi-
tions.

6.3. Computation time

The implementation was done in Symbian C++ and
Open C/C++ on a Nokia N97 cell phone. It is equipped
with a single-core ARM 434 MHz processor with 128Mb
of RAM. The most limiting step in this application is the
SURF algorithm, which takes more than 8 seconds to run
on a 640×480 image. This is mostly due to the fact that
Symbian only emulates the floating point precision because

Figure 4. Final augmented picture with (left) and without (right) the final minimization.

Figure 6. Augmented picture when the rotation between the
database and the cell phone images is low. Accuracy is better.

it does not natively support it. In our SURF implementation,
all the processed data are floating-point numbers, which ex-
plains why it takes so much time. This could be reduced by
using a fixed-precision version of the SURF algorithm (or
using a mobile platform with floating point computation,
which are becoming more common). For comparison, the
algorithm runs at 10fps for 640×480 images on a 1.73GHz
computer.

The second step of the algorithm is the matching process
between two sets of descriptors which takes about 1.1 sec-
onds. Again, this time could be significantly reduced if the
architecture natively supported floating-point precision.

The computation times for each step of the pose estima-
tion algorithm are displayed in Figure 7. The pose compu-
tation takes one third of a second if the fastest method is
used, or 430 ms with the other method. All the algorithms

Figure 7. Pose estimation computation time for both initialization
methods (5.4.3 and 5.4.2).

also use double precision, which increases execution time.

6.4. Discussion

Each database image generates a 3D point cloud. To
have a good registration between all of them, the stereo
camera positions and orientations have to be very precise.
Only 3D points from one database image are used, so the
3D virtual objects can be described in local coordinates for
each image. In other words, we can associate to each image
its own 3D objects. In this case, however, the augmenta-
tion is more limited because only the 3D objects from one
image will be projected in the user image. However having
accurate poses for database images is no longer necessary,
and we can choose which objects can be projected in the
image, which solves occlusion problems due to walls, for
example. The accuracy of the algorithm could be improved

if the quality of the images was improved. The stereo cam-
era is very sensitive to brightness and reflective surfaces.
To capture good quality images with the stereo camera, the
user has to choose manually the parameters (gain, exposure,
etc.) that differ for each image. The same goes for the cell
phone images. With Symbian APIs, instead of capturing a
640×480 image, the camera actually captures a 480×360
image that is rescaled to 640×480. Thus a lot of precision
is lost to the detriment of the matching step. Because of
this issue, there is also a large uncertainty in the cell phone
calibration parameters that we obtained thanks to Zhang’s
algorithm [21].

7. Conclusion and further work
In this paper we showed that augmented reality using 6

DOF tracking is feasible on mobile phones. The cell phone
is tracked with a precision of about 10-15cm, which trans-
lates to error in the augmented images of about a few pixels.
For further work, we would like to improve the translation
initialization before the final minimization. That could be
solved by increasing the frame rate, so that the user move-
ment between two frames would be low enough to be able
to initialize the position with the last user position without
user speed limitation. Techniques like optical flow or track-
ing could then be used to avoid searching the database at ev-
ery frame. Because there is no location estimation from the
sensors, the user has to start the application at a known loca-
tion; otherwise the application has to search all the database
images, which is not feasible on the cell phone. This task
would be very suitable for a remote server, because the
search can be entirely parallelized. This would be helpful
to initialize the user location. In addition, we may consider
switching from the SURF algorithm to a more lightweight
state-of-the-art feature, such as in [20] where real time per-
formance is achieved. Finally, porting the code to an ar-
chitecture that would have native support for floating-point
numbers like the Nokia N900 mobile phone would improve
the frame rate drastically.

References
[1] C. Arth, D. Wagner, et al. Wide area localization on mobile

phones. In Proc. IEEE International Symposium on Mixed
and Augmented Reality, pp 73–82, Orlando, FL, 2009.

[2] H. Bay, T. Tuytelaars, et al. Surf: Speeded up robust features.
In European Conference on Computer Vision, pp 404–417,
2006.

[3] J. S. Beis and D. G. Lowe. Shape indexing using approx-
imate nearest-neighbour search in high-dimensional spaces.
In Proc. IEEE Conf. Comp. Vision Patt. Recog, pp 1000–
1006, 1997.

[4] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. pp 726–740, 1987.

[5] P. Gemeiner, A. Davison, et al. Improving localization ro-
bustness in monocular SLAM using a high-speed camera. In
Proc. of Robotics: Science and Systems IV, June 2008.

[6] J.-S. Gutmann, W. Burgard, et al. An experimental com-
parison of localization methods. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
1998.

[7] R. M. Haralick, C. Lee, et al. Analysis and solutions of the
three point perspective pose estimation problem. Tr, 1991.

[8] A. Harter, A. Hopper, et al. The anatomy of a context-aware
application. In Proceedings of the 5th Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Network-
ing, pp 59–68, 1999.

[9] M. Kalkusch, T. Lidy, et al. Structured visual markers for
indoor pathfinding. In Proceedings of the First IEEE Inter-
national Workshop on ARToolKit. IEEE, 2002.

[10] L. Naimark and E. Foxlin. Circular data matrix fiducial
system and robust image processing for a wearable vision-
inertial self-tracker. In Proceedings of the 1st Interna-
tional Symposium on Mixed and Augmented Reality, page 27,
Darmstadt, Germany, 2002.

[11] N. B. Priyantha, A. Chakraborty, et al. The Cricket Location-
Support System. In 6th ACM MOBICOM, Boston, MA, Au-
gust 2000.

[12] N. Ravi, P. Shankar, et al. Indoor localization using camera
phones. In Proceedings of the Seventh IEEE Workshop on
Mobile Computing Systems & Applications, pp 1–7, 2006.

[13] G. Reitmayr and T. W. Drummond. Initialisation for visual
tracking in urban environments. In Proceedings of the 2007
6th IEEE and ACM International Symposium on Mixed and
Augmented Reality, pp 1–9, 2007.

[14] T. Röfer and M. Jüngel. Vision-based fast and reactive
monte-carlo localization. In IEEE International Conference
on Robotics and Automation, pp 856–861, 2003.

[15] M. Rohs. Real-world interaction with camera-phones. In 2nd
International Symposium on Ubiquitous Computing Systems,
pp 74–89, Tokyo, Japan, Nov. 2004.

[16] M. Rohs and P. Zweifel. A conceptual framework for camera
phone-based interaction techniques. In Proc. Pervasive, pp
171–189, 2005.

[17] R. Sim and G. Dudek. Mobile robot localization from
learned landmarks. In Proceedings of IEEE/RSJ Conference
on Intelligent Robots and Systems (IROS), 1998.

[18] S. Thrun, D. Fox, et al. Robust monte carlo localization
for mobile robots. Artificial Intelligence, 128(1-2):99–141,
2001.

[19] E. Toye, R. Sharp, et al. Using smart phones to access site-
specific services. IEEE Pervasive Computing, 4(2):60–66,
2005.

[20] D. Wagner, G. Reitmayr, et al. Pose tracking from natural
features on mobile phones. In ISMAR ’08: Proc. IEEE/ACM
International Symposium on Mixed and Augmented Reality,
pp 125–134, 2008.

[21] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22:1330–1334, 1998.

