
Chapter 1
Computer Vision for Mobile Augmented
Reality

Matthew Turk and Victor Fragoso

Abstract Mobile augmented reality (AR) employs computer vision capabilities in
order to properly integrate the real and the virtual, whether that integration involves
the user’s location, object-based interaction, 2D or 3D annotations, or precise align-
ment of image overlays. Real-time vision technologies vital for the AR context
include tracking, object and scene recognition, localization, and scene model con-
struction. For mobile AR, which has limited computational resources compared with
static computing environments, efficient processing is critical, as are consideration of
power consumption (i.e., battery life), processing and memory limitations, lag, and
the processing and display requirements of the foreground application. On the other
hand, additional sensors (such as gyroscopes, accelerometers, and magnetometers)
are typically available in the mobile context, and, unlike many traditional computer
vision applications, user interaction is often available for user feedback and disam-
biguation. In this chapter,wediscuss the use of computer vision formobile augmented
reality and present work on a vision-based AR application (mobile sign detection and
translation), a vision-supplied AR resource (indoor localization and post estimation),
and a low-level correspondence tracking and model estimation approach to increase
accuracy and efficiency of computer vision methods in augmented reality.

1.1 Introduction

Augmented reality (AR) provides a live experience of the physical world with
computer-generated augmentation appropriate to the location and particular task
at hand. The augmentation is often specific textual information (e.g., the name of a
nearby person or the date of a building’s construction), location or geometric infor-
mation (e.g., outlining or marking the destination building or door), or a virtual entity
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(e.g., an animated character or an advertisement placed appropriately in the scene).
This information may be delivered by several different modalities or channels, such
as audio (speech or sound directed individually to the user), video (through a display
screen or anotherwayof projecting imagery to the user), haptics (touch-based interac-
tion), or othermeans.WhileARmay include awide range of technologies,modalities
and devices, the most typical AR systems aim to provide visual information through
a transparent (optical see-through) or video see-through display—perhaps delivered
via a smartphone or a head-mounted device.

In order to properly deliver spatial information, an AR system needs to know
the location of the user and device either coarsely or precisely, depending on the
application and the type of augmentation. In Sect. 1.3, we present research in pose
estimation and localization for indoor environments. Many AR systems have used
easily recognizable visualmarkers placed in the scene to aid tracking and localization
(e.g., [25, 49]). However, this limits AR to structured environments, and most recent
work in the field has sought to avoid this restriction. In the most demanding case, the
precise position of the camera sensor is required, along with an accurate geometric
and photometric model of the user’s environment, in order to deliver artifact-free
annotations that appear well integrated with the visual scene. Real-time, artifact-free
mobile augmented realitywith nontrivialmodels for augmentation is still a significant
research challenge. Small errors can easily translate to significant misalignments,
which are especially noticeable over time as a graphical overlay jitters with respect
to the underlying scene. In some AR applications, apparent jitter can be reduced by
using thick lines, temporal filtering, good annotation design, and other mechanisms,
but misalignment remains a limiting factor in most augmented reality systems.

Markerless AR systems rely on low-level tracking and modeling techniques [20]
to build 3D models and compute the camera position and orientation with respect
to a known coordinate system. Typical approaches start with feature detection and
description, then match features from frame to frame, using known geometric con-
straints to build a (often sparse) model comprising 3D locations of keypoints and the
pose of the camera with respect to the model. While these are all areas that have been
long studied in the computer vision field, augmented reality brings a different set
of constraints and demands to the problem, which has led to practical solutions that
are well-matched to the AR context (e.g., [26, 50]). In Sect. 1.4, we present work on
keypoint correspondences and model estimation that aims to improve the accuracy,
speed, and robustness of vision-based tracking and modeling.

To create a model of a full workspace or large area, low-level tracking and model-
ing techniques must handle issues that arise when synthesizing multiple portions of
a scene, when combining rotational motion with more general (rotational + transla-
tional) motion, when closing the loop on a scene (returning to a portion previously
modeled), and other challenging issues. In recent years, much progress has been
made in systems that provide SLAM (simultaneous localization and mapping) capa-
bilities for mobile robots, micro aerial vehicles, and AR applications. While beyond
the scope of this chapter, our work in live tracking andmapping for both rotation-only
and general motion [21] may be helpful in merging models and avoiding undesired
calibration procedures in consumer AR applications.
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Some augmented reality applications focus on objects in the camera’s field of
view than on (or in addition to) general scene geometry, providing information about
objects of interest or giving a user the ability to interact with a virtual representation
of the object. For example, someone playing an augmented game may indicate an
object for the virtual character to go to, or a consumer may select an object to get
additional information (such as vendor and price) that may float above the object
in the AR display. In Sect. 1.2, we describe a system for automatic sign translation,
which augments the scene by replacing the text of a sign by its translation, while
displaying the appropriate sign geometry and background colors.

Given the impressive advances in recent years in mobile computing hardware and
devices and in computer vision algorithms for tracking, modeling, and recognition,
in addition to the rapid maturity of mobile computing ecosystems and a tremendous
consumer demand for mobile devices and applications—not to mention the capti-
vating futuristic portrayals in film and television—the field of mobile augmented
reality has captured the imagination of many and is poised to become a mainstream
technology for entertainment, productivity, learning, and other important areas.How-
ever, much progress is still needed in order to deliver the high-quality experience
that is envisioned. This chapter describes a few efforts toward this goal of improved
vision-based AR technologies to support compelling user experiences.

1.2 Sign Translation

One compelling augmented reality application is the translation of text in natural
scenes (or sign translation) using a mobile device; see Fig. 1.1 for an illustration.
This application, besides being useful when traveling abroad, imposes interesting
and challenging mobile computer vision problems: text detection, visual tracking,
and character recognition, among others. To guarantee a satisfactory user experience,
the application must solve these problems as efficiently and quickly as possible.

With these constraints in mind, we developed TranstlatAR [17], a translation
system that uses the camera and the touchscreen of a mobile device. The system
identifies thewords of interest from the live camera streamandpresents the translation
as anARoverlaywhich seamlessly replaces the original text in the live camera stream,
matching background and foreground colors estimated from the source images. In
the following sections, we describe the translation system as well as an automatic
text detector tailored for this system.

1.2.1 Overview of the System

TranslatAR’s architecture, shown in Fig. 1.2, was designed such that all the expensive
operations run in the background thread,while the systemmaintains interactive frame
rates for tracking and augmentation. In the following sections, we describe several
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Fig. 1.1 Top row TranslatAR in operation. The user detects the text he or she wishes to translate
and taps on it (top left). The system automatically detects the extent of the text, extracts the letters
via OCR, and produces a translation, which is then presented as a live augmented reality (AR)
overlay (top right). Bottom row TranslatAR used in two other situations

components in the system, such as the text detection algorithm, text extraction and
recognition, the translation, the visual tracking, and the translation overlay process.

1.2.2 Text Detection

The goal of the text detection component is to compute an accurate bounding box
enclosing the sign to translate. This computed bounding box is important to initialize
the visual tracker as well as to extract the text via OCR.

The original text detection algorithm implemented in the system required the user
to tap on the text of interest; the user’s input enabled the text detection process to be
efficient given the computational resources of a mobile device. Thus, given a point c
onto which the user tapped, the system first finds the bounding box around the text,
then the exact location and orientation of the text within. This process is illustrated
in Fig. 1.3 and is explained in the following sections.

Bounding box. To find approximate upper and lower text boundaries, first the
image gradients Ix and Iy are computed. A short horizontal line segment sh around
the input point c is then moved vertically upward and downward, respectively, until
the following criterion is met (for δy consecutive scanlines):

max
(x,y)∈sh

|Ix(x, y)| < ε, (1.1)
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Fig. 1.2 Architecture of TranslatAR: Initialization and per-frame operations run in themain thread,
while the rest of the operations are executed in the background

(a) (b)

(c) (d)

Fig. 1.3 Text detection in operation after the user’s tap. First, the vertical extent of the text is
determined (a). Subsequently, using the assumed text height, the horizontal extent is estimated (b).
A constrained and modified Hough transform is used to estimate the baseline and orientation (c),
and finally, the area is expanded to account for ascenders and descenders (d)

that is, until the segment sh does not cross any vertical edges. The example in Fig. 1.3a
shows the final upper and lower location of sh. The same process is applied to
compute the left and right boundaries, sweeping a vertical line segment sv over
Iy. The algorithm uses knowledge obtained in the first step by making the length of
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sv relative to the distance between upper and lower sh (i.e., the estimated text height).
Here, the required width of the “gap” δx is set slightly larger so that the algorithm
does not stop between letters. The result of this process is shown in Fig. 1.3b. Values
for ε, δx, δy, and the lengths of sh and sv were obtained experimentally.

Though fast and simple, this approach is able to detect an approximate bound-
ing box in many conditions. However, it is susceptible to fail for very nonuniform
backgrounds.

Location and orientation refinement. Todetect the exact location andorientation
of the upper and lower “baselines” of the text, the algorithm applies a constrained
and modified Hough transform as follows: First, only pixels within the bounding
box are considered, and only lines that cross the vertical line through c at an angle
of ±15◦ are taken into account. This reduces the computational cost considerably,
ensures that only “reasonable” lines are taken as candidates for baselines, and lever-
ages the assumption/limitation that the user will hold the phone roughly parallel to
the text.

Second, the algorithm optimizes the voting scheme for the task of finding text
baselines as follows: horizontal edges (i.e., in Iy) vote for lines passing through the
respective point (vote with positive weight), while vertical edges (in Ix) vote against
them (vote with negative weight). This is designed so that the ideal line goes along
horizontal edges while cutting few or no vertical edges. The result can be seen in
Fig. 1.3c. Finally, lines aremoved vertically until no edge intersections are detected to
account for ascenders anddescenders (Fig. 1.3d). The resulting quadrilateral regionof
interest is warped into a rectangle, correcting any perspective distortion and showing
the text as if seen orthogonally.

Text extraction, recognition, and translation. The system uses the computed
warped image as described earlier to perform background and foreground color
estimation and to “read” the text via OCR.

We begin describing the color estimation. The algorithm assumes that the let-
ters have a single constant color with a reasonable amount of color contrast to the
background, i.e., that there are two dominant clusters in color space that represent
foreground and background. They are extracted from the subsampled rectified image
using K-Means [1] with k = 2. To differentiate between foreground and background,
the algorithm retrieves a few labeled samples along the left and right borders and
assumes that the background color is the onewith themajority of the collected labels;
this is justified as the detection algorithm automatically includes a small margin.

This approach estimates both colors very accurately and fastwhen the assumptions
are met. It can fail for very nonuniform backgrounds when there are significant
specularities on the letters. However, in such cases, one of the other components
(detection, OCR) is likely to fail, and though improving the user experience, the
color estimation is not crucial to the operation.

The system relies on a standard OCR system for extraction and recognition of
the letters and uses the warped image containing the word of interest for this task.
The system used Tesseract [45], as it is freely available and was easy to integrate. As
bad text detection frequently causes the OCR to return spurious, non-alphanumeric
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characters (such as punctuation marks), the system computes the ratio of alphanu-
meric characters to all characters in the string as a rough indicator of successful
extraction.

The following (optional) step was motivated by preliminary tests with the OCR
which showed that single letters were frequently misrecognized. With a string
returned from the OCR, the system searches through a dictionary of valid words
to identify the nearest neighbor with respect to the Levenshtein distance [32]. The
Levenshtein distance to the found string is computed for each dictionary word within
±2 of the length of the found string, and the word with the smallest distance is taken
as replacement for the original string returned by the OCR. This implementation
clearly does not scale to large dictionaries and is only meant as proof-of-concept
add-on.

With the extracted string, the system uses Google Translate API,1 an existing free
online translation service, to do the actual text-to-text translation. The input language
is detected automatically by Google Translate, and the desired output language can
be selected by the user in our GUI.

1.2.3 Visual Tracking and AR Overlay

Visual tracking enables the system to keep track of the word of interest in the live
video stream and to present the translation in a live AR-style overlay. Fortunately,
several circumstances make tracking in our application easier than in the general
case: (1) it can be assumed that the text is displayed on a near-to-planar surface, (2)
as the region of interest consists of text, it is automatically well-textured and contains
features with high contrast, which is important for tracking, (3) the system is only
required to track over short periods of time (as long as it takes the system to obtain
the translation and the user to read it), (4) the system assumes a “cooperative” user
who will not move the phone jerkily.

The application implemented a tracking system based on ESM [4], in which an
image region is tracked by iteratively minimizing the difference between a reference
frame (the template) and the current frameover awarp transformation. In otherwords,
the tracker computes a warp that aligns the template image onto the current frame.
Though costly for large intra-frame movements and/or large image templates, in our
case (due to the above constraints), it provides sufficiently fast and robust tracking
even for a relatively small template.

Based on the transformation computed by the tracker, a graphical augmentation is
rendered onto the live video screen; first the bounding box is displayed while the text
is being translated, and then, as soon as it becomes available, the translation itself is
seamlessly augmented in the live stream.

1https://developers.google.com/translate/.

https://developers.google.com/translate/
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1.2.4 Implementation Details

The systemwas implemented on the Nokia N900 smartphone, which is based on a TI
OMAP 3430 SoC with a 600MHz ARM Cortex A8 CPU and runs the Linux-based
operating system Maemo. The application was developed in C++, using OpenCV
and libCVD for computer vision tasks (processing frames of size 320 × 240),
GStreamer for frame capture, andQt for theGUI,which consists of a large viewfinder
and a few buttons for configuration (e.g., language selection).

The ESM tracker was implemented from scratch using libCVD. It uses a down-
sampled grayscale version of the warped rectangular text bounding box as a template
and the respective previous frames homography as initial estimate for the 8-degree-
of-freedom alignment. The graphical augmentation was implemented in OpenGLES
2, leveraging the device’s GPU; the translated text is rendered with OpenCV and then
passed to the vertex shader along with the transformation estimated by the tracker,
and finally the fragment shader renders the texture onto the current frame. HTTP
requests to and responses from Google’s online translation service are handled with
the curl library,2 a library for transferring data using various protocols.

1.2.5 Evaluation

Runtime. Table1.1 presents an overview of the execution times of the main system
components on the N900. As the expensive steps are offloaded into a background
thread, the system maintains interactive frame rates for tracking and live feedback
throughout the computation. The application achieved a frame rate of about 26 fps.

Text detection. To evaluate the text localization method [17], we used the ICDAR
2003 detection dataset. This dataset contains 251 images of varying size with at
least one word in each image. Ground truth is provided in the form of a horizontal
bounding box for each word.

As the algorithm was designed to work with video frames of a fixed size, the
images were resized to 320 × 240 pixels. To conduct automated evaluation, the
experiment simulated the required user input: the starting point c. This point was
calculated/simulated as the center of the rectangle provided by the dataset, and it was
adjusted properly to the new dimensions. As the dataset only provides an enclosing
horizontal rectangle, and since the algorithm computes the (more accurate) quadrilat-
eral, we calculated the minimal enclosing horizontal rectangle to be able to compare
against the provided ground truth.

The performance measures proposed by Lucas [35] are based on a matching score
mp between two text area rectangles, which is defined as the area of the intersection
divided by the area of the minimum bounding box containing both rectangles. mp is
1 for two identical rectangles and 0 for nonintersecting pairs.

2Libcurl is available at http://curl.haxx.se/.

http://curl.haxx.se/
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Table 1.1 Average execution times on the Nokia N900 for themain steps of the processing pipeline
in TranslatAR

Component Time (ms)

Initialization upon input

Find text bounding box 71.0

Initialize tracker 5.0

Background thread

Text location refinement 414

Extract colors 10

OCR 630

Render translation texture 10

Per-frame operations

Capture and preprocess frame 21.9

Tracking 8.5

Render AR overlay and display frame 7.7

Total per-frame 38.1

With the expensive steps offloaded into a background thread, the system maintains a frame rate of
about 26 fps

For automatic detectors, there will not be a unique 1:1 matching between detected
andground truth areas, hence the respective bestmp for eachdetected andground truth
area is taken and subsequently averaged to yield precision and recall, respectively.
Different values for precision and recall thus result from detecting too many or too
few areas, but no distinction is made between too large and too small areas. However,
due to themanual “seeding” of the algorithm, there is guaranteed to be a 1:1matching,
and therefore the ICDAR definition of precision and recall both default to the average
mp for our algorithm. For further analysis, we also calculated pixel-wise precision and
recall (e.g., as used by Park and Jung [39]), i.e., the ratio of pixels correctly labeled
as text versus all pixels labeled as text, and the ratio of pixels correctly labeled as
text versus all text pixels.

To optimize the parameters of the algorithm, we used the training part of the
ICDAR set, then evaluated the metrics on the test part. The obtained are pixel-wise
precision and recall of 31 and 68%, respectively, and an average mp = ICDAR
precision of 41%. This falls within the middle range of values published by
Lucas [35], but cannot compete with the best scoring algorithms described by
Lucas [35] and Epshtein et al. [14], which achieve precision and recall values of
60–70%. It should be noted that the described algorithm requires a single point as
input, while the other algorithms are fully automatic, but also that the described
algorithm runs in less than 0.5 s on a mobile device and is hence one to two orders
of magnitude faster than the aforementioned algorithms (see timings in [14, 35]).

A few examples of good and bad detection are shown in Fig. 1.4. The algorithm
is prone to “overshoot” all the way to the borders of the image for nonuniform
backgrounds, but it rarely cuts off letters. Note that the latter error is more fatal in
our application than the former (in which case the OCR still has a chance to ignore
the extra parts).
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Fig. 1.4 Examples of good (top and mid rows) and bad (bottom row) text localization on the
ICDAR 2003 dataset. The blue point in each quadrilateral represents the (simulated) input of the
user. TranslatAR’s algorithm was able to very accurately detect the text at different scales and
under perspective distortion. The failure cases are mostly due to very nonuniform background
and/or lighting effects (first two). For very large letters, the expansion algorithm used to detect the
texts bounding box can stop inside one of the letters (bottom right)

Table 1.2 Reasons of failure of the detection-extraction-translation process on a set of 30 video
clips

Component No. of words % of failures % of all

Detector failed 7 16.3 8.9

Color est. failed 6 14.0 7.6

OCR 26 60.8 32.9

Translation 4 9.3 5.1

Correct result 36 of 79 – 45.6

If one component fails, the later components are not evaluated—e.g., the OCR failed 26 times,
although detector and color estimation delivered a good result

Component test. We used our own set of 30 video clips of various outdoor signs,
each containing several words, to further test the system as a whole and determine
which components cause failures. Here, both providing the user input as well as eval-
uating the result was done manually. The results are listed in Table1.2. As emerges
from the table, the OCR is the most common cause of failure, while the detector
works correctly in 72 out of 79 cases.
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1.2.6 Automatic Text Detection

To enhance the user experience in the mobile AR translation systems, we developed
an automatic text detection algorithm (see Petter et al. [41] for full details). In order
to offer a fast automatic text detector, we focused in finding a single letter. The
algorithmwas designed on the following premise: detecting one letter provides useful
information that is processed with efficient rules to quickly find the reminder of a
word. This approach allows for detecting all the contiguous text regions in an image
quickly. Moreover, the algorithm presented a method that exploits the redundancy
of the information contained in the video stream to remove false alarms; see Fig. 1.5
for an illustration of this automatic text detection algorithm.

The general structure of the algorithm is shown in Fig. 1.6. The algorithm works
on a grayscale image and can be overall described into three main steps: (1) Localize
a first potential letter (zone of interest); (2) Verify that a letter was found; (3) Find
the rest of the word based on the found letter.

Step 1: Finding a Zone of Interest

The aim of this step is to find a zone of interest that may contain a letter. The
approach is based on existing methods [19, 33, 51] because of their efficiency and
good performance. These methods leverage the high rate of edges contained in text

Fig. 1.5 Automatic text detection for TranslatAR. The algorithm scans the input image (a) until
it finds a zone of interest that contains text (b). Subsequently, the algorithm expands the zone of
interest with efficient rules (d), and finally, our method produces the final bounding box (e). Final
bounding box with real examples (right-most column)
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Find the rest of 
the word

Search for a 
zone of interest

Contains a 
letter?

No
Yes

Is all the 
image 

scanned?

No

Done

Yes

Fig. 1.6 Overview of the automatic text detection

Fig. 1.7 Contour
reconstruction process:
Original picture (Left), edge
map produced with Canny
(Middle), reconstruction with
dilatation operator, and a
cross-shaped structuring
element (Right)

areas. Therefore, a potential letter can be found on an edge map by building objects
composed of closed contours that later can be categorized as letter or non-letter. In
the following paragraphs, we explain in more detail the building blocks of this step.

Prior to detecting edges, a Gaussian smoothing filter of size 5 × 5 pixels is
applied to reduce noise that could cause errors in further computation. The Canny
edge detector [8] is used for producing a binary map indicating the presence per-
pixel of every edge. This edge detector is efficient and provides accurate results
which makes it suitable for our purpose.

The original image is sometimes too blurry for edges to be detected. Thus, some
shapes, including letters, could be overlooked by the edge detection and not appear in
the edge map (see Fig. 1.7). To ensure the continuity of the contour, a preprocessing
step is necessary before starting the contour building step. Avoiding this step can
produce an incorrect contour by the algorithm. For reconnecting the edge pixels
together, we use dilation, a binary morphological tool. For our implementation, a
cross-shaped structuring element of pixel size 3 worked the best for filling the holes
in the contours.

The algorithm starts scanning from left to right and top to bottom to find an edge
pixel in the binary map. When an edge pixel is found, the contour of the object
containing this pixel is built with an 8-connectivity connected component algorithm.
The 8-connectivity algorithm [10] is a region-based segmentation algorithm which
checks the 8-pixel neighbors of a pixel and connects this pixel with its similar neigh-
bors. Information about the bounding box containing the computed contour, such as
height, width, position of the centroid, etc., is available as an outcome of this step.
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Step 2: Determining if a Letter Was Found

The main intention of this step is to verify whether or not the zone of interest actually
contains a character. This task is not straightforward, as the words contained on bill-
boards, road signs, or books have different sizes or fonts whichmake learning precise
shapes of letters a challenging task. However, since signs are typically meant to be
easily readable, discriminating text regions from non-text regions with geometric
information should be possible.

A Support Vector Machine (SVM) and a set of image features are adopted to
accomplish the discriminating task. SVMs are widely used in the literature (e.g.,
[28, 52]) and are quite useful for binary categorization tasks. SVMs have a strong
mathematical foundation and provide a simple geometric explanation of their clas-
sification.

In order to select the best features to address this discrimination task, experiments
were conducted for evaluating several combinations of image features. The most
effective features found were the First-Order Moments (FOM)

FOM1 =
∑

x

∑

y

xI(x, y) (1.2)

FOM2 =
∑

x

∑

y

yI(x, y), (1.3)

and Second-Order Moments (SOM) normalized with the number of pixels on the
contour (NB),

SOM1 =
∑

x

∑
y x2I(x, y)

NB
(1.4)

SOM2 =
∑

x

∑
y y2I(x, y)

NB
, (1.5)

where x, y are the coordinates of the pixel in the clipped zone of interest and I(x, y)
denotes the intensity of the pixel.

Step 3: Finding the Rest of the Word

In order to robustly find the rest of the word given the position of the first letter, we
combined two features that provide information about the surrounding characters:
image intensities and the edge map. These features determine when to stop scan-
ning in the surrounding areas, and therefore, to determine the spatial extent of the
bounding box.

Given the first letter of the word or phrase to be detected, the background and
foreground intensities in the grayscale domain can be extracted.Wecan safely assume
in most cases that each word is contained in a homogeneous colored background and
the letters have approximately the same intensity; we can then infer the intensity and
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find the remaining letters. The K-Means algorithm with k = 2 is used to find the two
intensities. In order to know which intensity corresponds to the letter, we create a
second bounding box with the same center as the first bounding box of the zone of
interest. The width and height of the new bounding box are computed as follows:
width2 = width + δw and height2 = height + δh, where δh = δw = 2 pixels (see
Fig. 1.8). The pixels on the perimeter of that new box are likely to be background
elements, and therefore, the closest intensity to the mean of those perimeter pixels is
chosen to be the intensity of the background. Consequently, the remaining intensity
is attributed to the letter.

Edge pixels around the found letter are likely to be part of the rest of the word
because text regions present a high edge density. Useful information to estimate the
position of the remaining letters is extracted from the adjacent edge pixels of the
zone of interest.

In order to speed up the full word bounding box computation, the algorithm scans
the image horizontally with three line segments. A single line segment is positioned
on top, middle, and bottom of the found characters bounding box. Each segment
is then scanned on the left and right side of the zone of interest considering a gap
of size s on every side. The algorithm looks for pixels with intensities similar to
the letters intensity along the segment. Edge pixels that are present in the analyzed
gap are considered simultaneously. In this manner we guarantee that in fact we are
likely to see pixels representing letters on the image. The size of the gap used in
our algorithm is calculated as follows: s = 1.1 × H , where H is the height of the
found letter. The size as a function of the height allows us to consider the breach
that exists between two adjacent characters in a word. However, when such breach
is less than 1.1 × H, the algorithm considers both adjacent words as a single word.
The procedure is applied until no edge pixels are detected or no similar intensity is
found in the analyzed gap of every line segment. As an outcome of this procedure
we obtain the width of the bounding box.

To find the height boundaries, the algorithm scans pixels along horizontal line
segments with lengths equals to the computed bounding box widths described earlier
(see Fig. 1.9a). The algorithm scans these lines following the same pixel criteria of
intensities and edges used earlier. The algorithm moves the lines up and down until
this criteria is fulfilled.

The combination of these two procedures computes a rectangular bounding box
that encloses the letters of a certain text in the analyzed image (see Fig. 1.9b).
Scanning with three horizontal parallel line segments tolerates a certain perspective

Fig. 1.8 Method to find the
intensity of the background.
A second box is created
and the mean of the intensity
of the pixels on the perimeter
of the new box is associated
to the background

Box
New bounding box

Original bounding box
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Fig. 1.9 Left Horizontal and vertical scanning to find letter pixels (intensity or edge pixels). Gaps
of size s are analyzed between the letters during the procedure. Right Considering only information
from edges (left) or intensity (middle) can determine an incorrect bounding box. Combining both
features produces a better bounding box (right). a Scanning lines. b Bounding box computation

distortion of the letters that compose the word. However, the produced bounding box
computed with these procedures may be slightly larger or smaller than the minimum
bounding box due to noise present in the image.

Once a word is found, the search for additional words in the image continues until
every pixel of the image not part of a word bounding box has been scanned.

Filtering False Alarms by Leveraging Temporal Information
from Video Stream

An additional step is applied when the algorithm is used on a video stream, which is
the case in an augmented reality translation system. In order to keep track of stable
text regions and remove false alarms as much as possible, the algorithm leverages the
temporal information that we can obtain from the video stream. We are interested
in tracking these stable text regions. Since the scene does not change much from
frame to frame, assuming that the frames on the video stream are generated at a high
frame rate, the stable regions repeat and the position and area of the true positives
detected bounding boxes does not vary much; therefore, false alarms will behave
more unstably in this sense. The stability of these correct bounding boxes allows the
algorithm to remove a fair amount of false positives.

The algorithm retains the center position and the area of the detected bounding
boxes on the first frame. On subsequent frames, the system redetects the bounding
boxes andmatches themwith the previously seen boxes based on areas and centroids.
For every retained bounding box we increment a counter c if the bounding box
matches a previously seen region, and decremented if it is not seen. A bounding box
is considered to be stable if c > 1.

There are three different cases for matching that occur when comparing two
bounding boxes (see Fig. 1.10):

Fig. 1.10 Considered cases when comparing bounding boxes: Inclusion (left), Intersection (mid-
dle), and Disjunction (right)
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1. One of the bounding boxes contains the other one.
2. The two bounding boxes intersect.
3. The two bounding boxes do not intersect and neither of them contains the other

one.

Cases 1 and 2 are situations where the bounding boxes in question can represent
the same word. In order to know which case correspond to two bounding boxes,
the positions of their upper left and lower right corners are compared. Once two
bounding boxes are considered to be potentially the same word, further aspects are
analyzed in order to determine a match.

To determine a match for the first case 1 the algorithm evaluates the ratio r
between the smallest area and the biggest area. A match is determined if r > 0.7.
For the second case, the algorithm evaluates the absolute value of the displacement
of the centers c1 = (x1, y1) and c2 = (x2, y2), i.e., δx = |x1 − x2| and δy = |y1 − y2|,
as well as the ratio of the areas used in the first case. The method declares a match
considering the following criteria: δx < εx, δy < εy, and r > 0.7, where εx = 0.35 ×
width, εy = 0.35 × height (the height and width correspond to the smallest bounding
box). Subsequently, the algorithm averages the centroids and areas of the matching
bounding boxes in order to keep track of the box on the remaining frames.

Evaluation

We carried out a series of experiments in order to thoroughly evaluate the text detec-
tion algorithm and the integration of this method with TranslatAR.

We created our own dataset to test the algorithm in a more realistic context, i.e.,
low-resolution, mobile camera, and others. This dataset comprises 400 images, each
containing a single word from natural scene which follow the assumptions made for
this project (see Sect. 1.2.6), and 400 non-text images.

In order to evaluate the performance of the proposed method, we evaluated every
outcome manually, and the outcome was labeled as successful if all the letters of the
word were contained in the bounding box. The results of this experiment are reported
in Table1.3.

Table 1.3 Accuracy of the automatic text detector

True positives (%) False positives (%) Precision (%) Recall (%) f-score (%)

87 41 68 87 76

Table 1.4 Distribution of failure for the missed words

1st step (%) 2nd step (%) 3rd step (%)

4.57 81.04 14.39
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Fig. 1.11 Words correctly detected (left) and failures (right)
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The algorithm found the majority of the words; however, it is also susceptible to
a substantial rate of false alarms. By analyzing the failures, both missing words and
false alarms, we concluded that the main problem occurs when verifying the zone of
interest (i.e., the second step, see Sect. “Step 2: Determining if a Letter Was Found”).
The SVM was the most common source of failure for the case of false negatives,
failing to detect words (see Table1.4).

It was also observed that false alarms arise in images with high edge densities,
as the first step declares those regions as zones of interest and therefore the second
step declares them as text regions. Moreover, another observation was that the SVM
with SOM/FOM as features tends to declare any symmetrical non-text region in an
image as text (see Fig. 1.11).

1.2.7 Discussion and Future Work

Recently, new text detection [24, 37, 38] and extraction [5, 29] in natural scenes
algorithms and new powerful mobile devices have become available. Thus, these
algorithms can potentially improve the performance of the text detection and extrac-
tion significantly as long as they run efficiently on a mobile device. As shown in
this section, the OCR (or text extraction system) and the text detection components
are the most challenging and important pieces in this application, as they enable the
computation of a good translation.

1.3 Indoor Localization

The computational capability of mobile phones has been rapidly increasing to the
point where augmented reality has become feasible on such devices. In this section,
we describe an approach to indoor localization and pose estimation in order to support
augmented reality applications in an indoor environment and on a mobile phone
platform.

Estimating an accurate camera pose is crucial for delivering a high-quality aug-
mented reality experience, because the application needs to understand how the
camera is oriented and located with respect to the scene in order to augment virtual
information accurately. In this section, we describe a system [40] that localizes the
device in a familiar environment and determines its position and orientation using
the camera and sensors in the mobile device. Once the 6 degrees-of-freedom (DOF)
pose is determined, 3D virtual objects from a database can be projected onto the
image and displayed for the mobile user.

The application has two main phases: an offline data acquisition and an online
pose estimation. The offline data acquisition phase consists of building a database
by acquiring images at different locations in the environment, while the online pose
estimation computes the position and orientation of the device by matching features
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Fig. 1.12 Indoor localization application overview. The database contains several images taken at
different locations (the green dots) in the indoor environment (blue blob). The arrows are the optical
axes and the angles represent fields of view. The pose (translation T and rotation R) between the
cell phone image (bold blue lines) and a database image is computed by image matching. Then the
3D virtual objects (represented by yellow cubes) are projected onto the mobile device image. Here,
only one virtual object is seen by the mobile device

between the device image and an image from the database; the pose estimation
also uses information from the sensors (accelerometer and magnetometer) for the
computation as we discuss later in this section. In Fig. 1.12 we show an overview of
the application.

The application enables the user both to visualize virtual objects in the camera
image and to localize the user in a familiar environment. We describe in detail the
process of building the database and the pose estimation algorithmused on themobile
phone. We discuss the performance evaluation of the proposed algorithm as well as
its accuracy in terms of re-projection error of the 3D virtual objects onto the cell
phone image.

1.3.1 Building the Environment Database

The first step in the application is to acquire data in advance about the environment;
e.g., to go through a museum and create an image database that will be used sub-
sequently by AR applications in the building. This involves carrying a camera rig
through the space and preprocessing this data on a host computer. For each image, the
acquisition process stores the pose of the camera (its absolute rotation and position)
and its intrinsic parameters. Then the process extracts SURF features [2] in each of
the images and stores their positions in the image as well as their descriptors. The
goal of themobile application is to localize the usermetrically. Therefore, the process
uses a stereo camera for building the image database and to estimate the depth for
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every pixel of each captured image. As a result, the process stores the 3D position
of the features in each image. For a reason to be explained below, the 3D position of
the center of the images are stored as well.

Among all the detected SURF features, the system chooses the most robust ones;
i.e., those that are likely to be detected by mobile camera device and be close to the
new feature in terms of descriptor similarity. In order to do that, the system tracks
each feature over several frames and keeps only the ones that were successfully
tracked over all the frames. The criterion to keep a feature from one frame to the next
one is the following: the feature position must remain close to its previous position
and their descriptor distances are small enough. In practice, the system tracks the
SURF features, while the stereo camera remains still.

1.3.2 Computing a Rotation Matrix from Sensors

Once the database has been collected and processed, the indoor environment is ready
to support location-based AR on the mobile phone. As it is described later, having a
coarse estimate of the pose makes the image retrieval step easier and accelerates the
pose estimation algorithm. For this work, we used the N97 phone from Nokia. The
device has several sensors, such as GPS, an accelerometer, a magnetometer, and a
rotation sensor, that can help the application in estimating the pose.

As the first part of the pose estimation step, a “world” coordinate system is defined.
As a right-handed Cartesian coordinate system, the application used the system
(E, g, N), whereE is the unit vector representing east, g is the unit vector representing
the gravity force, and N is the unit vector representing north. In this section, we
describe how the system obtains the rotation matrix of the camera pose from sensor
measurements.

The accelerometer senses the second derivative of the position. Assuming the
measurements are noise free, it is thus theoretically feasible to obtain the position
by double integrating the accelerometer data. However, experiments showed that
the data produced by this sensor is too noisy to get a reliable estimation of the
position. Figure1.13 shows the results of an experiment comparing the ground truth
2D trajectory and the trajectory estimated with the accelerometer data, while the user
walked holding the phone upright. The graph shows a bird’s-eye view, with an equal
number of points in both curves. An accurate trajectory estimate would overlap the
rectangular ground truth; in contrast, the accelerometer-based position estimate was
wildly off.

Another solution to estimate the position is to use the GPS data which gives the
location of the user with a few meters of error. Depending on the application that can
be adequate. However, if the system is used indoors there is usually no GPS signal
available, so the position cannot be estimated with the cell phone’s GPS sensor.
Therefore, if there is no GPS signal available, the system uses the last computed
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Fig. 1.13 Accelerometer accuracy for trajectory estimation. The 2D position (top-down view) of
a walking user holding the cell phone is estimated using the accelerometer data (blue line) and
compared to ground truth (green line). The accelerator-only estimate is not useful

user location (i.e., the position computed for the previous frame). Moreover, the
application assumes that the user does not walk more than two meters between two
frames, so that the previous estimated position can be reused to estimate a new one.

The accelerometer sensor outputs three channels that represent the acceleration
along the three cell phone axes. Besides measuring acceleration due to the user, the
accelerometer measures the gravity acceleration. Thus if the user is not moving,
the three gravity components projected in the cell phone reference system can be
measured by the sensor. This enabled the system to obtain the tilt of the phone,
that is, two parameters out of three of the cell phone rotation matrix. The same
information can also be obtained from the rotation sensor. This sensor gives three
angles that represent the amount of rotation around the three cell phone axes. These
angles can be used to retrieve the three components of the gravity vector in the cell
phone reference frame. The advantage of using this rotation sensor rather than the
accelerometer is that the outputs of this sensor are not sensitive to user movements.
However, the sensor is less precise than the accelerometer because the angles are
quantized to 15◦.

The last parameter to compute is the amount of rotation around a vertical axis.
To fully determine the rotation, the system needs additional information from the
magnetometer. The 2Dmagnetometer (or digital compass) outputs the angle from the
projection of the North vector onto the cell phone plane and one cell phone axis. This
angle gives the system one parameter, which is enough to compute the full orientation
of the mobile device because the system already has two parameters given by the
accelerometer/rotation sensor. By expressing the components of all three cell phone
axes from the gravity components and the magnetometer angle, the application can
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obtain the full cell phone rotation matrix. In the subsequent paragraphs, we will
describe how the system estimates the camera pose leveraging this rotation matrix
computation.

1.3.3 Localizing the Mobile Device

Once the augmented reality application captures an image, it searches the database
for the most relevant stored image to fully estimate the device’s pose. The database
can contain an arbitrarily large number of images and searching among all the images
is not feasible, since the feature matching process is a time-expensive step on the
mobile device. Fortunately, most of the database images do not need to be searched
because the portion of the environment they represent is not even visible to the user.
We describe how the camera pose can be obtained from the mobile device’s sensors
and use it so that the system can discard images that are not likely to being seen by
the user; for example, images that represent a scene behind the user.

The system uses two criteria to select only the relevant images. First, the system
checks that the database image centers are visible by the mobile phone camera. This
is computed using the stored 3D points representing the database image centers. For
this criterion, the system assumes two premises: (1) the overlapping region (if there
is some) between two images (the database image and the mobile camera image)
is not large enough for estimating the pose accurately when a center is not inside
the cameras field of view; and (2) the user moves smoothly so that user’s location is
continuous. Due to the uncertainty on the estimated phone orientation from sensors,
the system extends the field of view to search for 3D points. The system increases
the number of images to be searched as a function of the uncertainty, i.e., the more
uncertainty the more images to search. Second, the system discards images whose
orientation differ significantly from the camera’s orientation to prevent bad image
matching configurations. Thanks to these assumptions, the image search is restricted
and the search process is more efficient.

For every database image, the system loads in memory its 3D center point and
the absolute pose of the stereo camera that captured the image; this information is
about 36 bytes for each image. The system loads feature descriptors on demand for
each image as well.

Among the images that have been selected to be searched, the system selects
the best matching candidate by using a classic nearest-neighbor feature matching
approach. The SURF features are detected in the cell phone image and the descriptors
are computed at each of these points. Then for every image of the database found
as a result of the search process aforementioned, the features from the cell phone
image are matched to the ones from the database image. For each feature of the cell
phone image, the nearest neighbor in the database image features set is searched.
Subsequently, the system keeps only good matches, that is, matches that have a low
enough distance between each other, and also the ones for which the ratio between
the second best distance and the best distance is high enough; note that this is the
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inverse of the Lowe’s ratio [34]. As an outcome of this method, the system obtains
sets of good matches between the cell phone image and each of the possible database
images. Subsequently, the system selects the image from the database that has the
highest number of good matches with the cell phone image, as it is used to compute
the pose.

Thenearest-neighbor (NN) searchof descriptors for featurematching is performed
using a KD-Tree structure. The system computes and stores a KD-Tree for every
image during the preprocessing step. The NN search is implemented using the best-
bin-first technique [3], a technique which is about 90% as accurate as linear search
but 100 times faster.

Once the selected database image has been matched with the cell phone image,
the system obtains a set of candidate matches, from which incorrect matches need
to be removed. The system estimates first a homography via the least median of
square algorithm [43], and keeps only points that roughly satisfy the planar criterion
checkedvia the estimated homography.The systemuses a high threshold so that depth
changes are allowed. Subsequently, a fundamental matrix is computed exploiting the
matches supporting the previously computed homography within a RANSAC [15]
scheme using the 8-point algorithm [23].

At this point the systemhas a set of putative correctmatches between the cell phone
and the database images, which enable the application to compute the pose. From
these matches, the system then computes a set of 2D-3D matches by associating
the 2D feature detected on the device with the 3D point corresponding to the 2D
feature on the database image. Then, given these 2D-3D matches, the system solves
for the translation and rotation of the device with respect to the world. To explain
this in detail, let ci be 2D point in the cell phone image, Xi be a 3D point in the
database coordinate system, and Kc be the calibration matrix of the cell phone.
The algorithm minimizes the reprojection error over the mobile device’s extrinsic
parameters (rotation matrix R and translation vector T ), i.e.,

minimize
R,T

∑

i

∥∥∥∥
Kc(RXi + T)

α
−

[
ci

1

]∥∥∥∥
2

2

, (1.6)

where α = (Kc(RXi + T))3 is the third vector entry. This measure is minimized as
the system’s goal is to align the virtual with the real world as accurately as possible.
To this end, the reprojection error (Eq.1.6) is in the form of a least-squares problem
which can be solved via the Levenberg–Marquardt [31] (LM) method. However, to
use the LM solver an initial solution must be computed first. We describe a method
to initialize this solver in the following paragraphs.

The initialization method assumes that the rotation matrix R̂ can be estimated via
sensor measurements. Then the method focuses on finding a good initial transla-
tion vector T . To this end, the method obtains the translation vector by solving the
following problem:
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minimize
T

∑

i

∥∥∥∥Kc(R̂Xi + T) − α

[
ci

1

]∥∥∥∥
2

2

. (1.7)

Equation (1.7) uses the estimated rotation matrix R̂ from the sensor measurements
and the problem ends up being a linear unconstrained least-squares problem, which
can be solved for T efficiently using linear algebra methods.

After solving the problem described in Eq. (1.6) over the rotation matrix R and a
translation vector T , which are the parameters describing how the camera is oriented
and positioned with respect to the scene, the system is now able to display AR
augmentations onto the device’s image.

1.3.4 Evaluation

To evaluate the approach, we built a database of an environment and used planar
objects in the scene for visual assessment. The evaluation consisted in estimating the
camera pose and drawing a quadrangle enclosing planar objects that were recognized
and depicted by the mobile device. In Fig. 1.14 we show an augmentation of planar
objects in the scene and confirm that minimizing the reprojection error finds a good
camera pose estimate that can be useful for an AR application. In Fig. 1.15a, we show
quadrangle augmentations of three different recognized planar objects in the scene.

It is possible to use the estimates in order to localize the user within an envi-
ronment; the translation vector T is the parameter that reveals the location of the
user with respect to the scene. A visualization of these localizations are shown in
Fig. 1.15b. From this experiment, the observed estimated user’s location error was
about 10–15cm.

The implementation was done in Symbian C++ and Open C/C++ on a Nokia
N97 cell phone. It is equipped with a single-core ARM 434MHz processor with

Fig. 1.14 Augmented images with (left) and without (right) the reprojection error minimization.
The green quadrangle is the augmented virtual information onto the real scene
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Fig. 1.15 Left Quadrangle augmentation of planar objects after estimating the mobile camera pose.
Right Localization of the user within an environment by using the camera pose estimates. Green
points are ground truth positions and red points are the estimated ones. One can notice a single
green point alone in the middle of the floor plan. The matching process failed here because the cell
phone image quality was inadequate. a Augmentation of 3 objects. b Estimated users’ position

128Mb of RAM. The most expensive step in this application is the SURF detection
an description algorithm, which takes more than 8s to run on a 640 × 480 image.
This is mostly due to the fact that Symbian only emulates the floating point precision
because it does not natively support it; the used SURF implementation uses floating
point numbers. This could be reduced by using a fixed-precision version of the SURF
algorithm (or using a mobile platform with floating point computation, which are
now common). For comparison, the algorithm runs at 10 fps for 640× 480 images on
a 1.73GHz computer. The second most expensive computation is feature matching,
which took about 1.1 s. The pose estimation took about one third of a second; the pose
refinement algorithms used double precision numbers, which increased execution
times.

1.3.5 Discussion and Future Work

The approach presented in this section was tailored for mobile phones that did not
have powerful computational resources. However, this has changed recently and
now we can find powerful mobile devices containing floating point units, multi-core
and fast processors, and more RAM. Fortunately, algorithms solving for the camera
pose from 2D to 3D correspondences, also known as the perspective-n-point (PnP)
problem, have become more efficient and mobile device friendly, e.g., [27, 30, 46].
As potential future directions, these PnP can be used to directly estimate camera
poses. Moreover, inertial measurements can be leveraged and used in combination
with the aforementioned algorithms to quickly and accurately compute a camera
pose estimate.
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1.4 Keypoint Correspondences and Robust Model
Estimation

In many augmented reality (AR) applications, the accuracy of the camera pose is
a critical component to ensure a high-quality augmentation. This is because it is
necessary to understand how the camera is positioned and oriented with respect to
the world in order to accurately augment virtual objects onto images; see for instance
the indoor localization application described in Sect. 1.3.

A common approach to estimate camera poses is by understanding the relative
motion of the cameras depicting a scene; this process is a crucial part in structure from
motion (SfM) [13]. To get an understanding of all the relative camera motions given
a collection of images, a set of keypoint correspondences between image pairs must
be computed first. Subsequently, different models, such as homographies, essential
matrices, and fundamental matrices, are computed from these correspondences and
are used later to extract valuable camera pose information.

In general, we wish to compute these models as quickly as possible. This is very
important in particular to mobile augmented reality applications because they need
to perform the augmentations as fast as possible. Nevertheless, several nuisances
make this estimation process nontrivial; for instance, a critical nuisance is the pres-
ence of incorrect keypoint correspondences between image pairs. These incorrect
correspondences, the “outliers,” have to be filtered in order to compute accurate
models.

In this section, we present two approaches that speed up the process of robustly
estimating models from contaminated keypoint correspondences with outliers. We
describe two different methods to estimate the correctness of the correspondences
leveraging information from the matching distances using the statistical theory of
extreme values [9, 12].

1.4.1 Computing Keypoint Correspondences

To compute keypoint correspondences between a reference image and a query image,
we first need to detect features or keypoints on both images. Subsequently, for every
keypoint a descriptor is computed, e.g., SIFT [34] or SURF [2]. These descriptors,
which are a representation for every detected keypoint, are used to establish the
keypoint correspondences following the nearest-neighbor (NN) rule: the jth query
keypoint is assigned to the i�th reference keypoint such that

i� = argmin
i

{‖qj − ri‖
}n

i=1 , (1.8)

where ri and qj are the reference and query descriptors, respectively. In other words,
the NN rule computes the least dissimilar reference keypoint given a query keypoint.
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1.4.2 Predicting Correctness for Keypoint Correspondences

Incorrect correspondences, or outliers, occur when the truth reference keypoint is
not the least dissimilar, or when the truth reference keypoint was not detected in
the query image. To detect these outliers produced by the NN rule (see Eq.1.8),
we proposed a predictor based on the statistical theory of extreme values [16]. The
predictor, which is called MRRayleigh, computes a correctness probability which
later is used to label the correspondences as correct or incorrect and to speed up a
robust estimation process.

The main premise of the predictor, which was inspired by the work of Scheirer et
al. [44], is that computing a statistical model for the minimum distances generated
from the incorrect correspondences is possible by exploiting the statistical theory of
extreme values. Thus, checking if a minimum distance used in the NN rule is likely
to be a sample generated from this model or not allows us to estimate the correctness
of the correspondence.

More formally, we consider the descriptor distance dij = ‖qj − ri‖ to be a con-
tinuous random variable following a distribution F. We know that some distances
correspond to correct correspondences and others to incorrect ones. Thus, there are
two underlying random processes generating distances for correct and incorrect cor-
respondences, which we call Fc and Fc̄, respectively. The NNmatching process then
takes a decision by observing several distances samples from these distributions.
Because we are matching 2D features corresponding to actual 3D points, there must
be a single correct answer and thus a single distance corresponding to a correct
match. However, we can also have the case that there is no correct answer at all
because a reference keypoint was not detected in the query image. Therefore, we can
expect that there is at most a distance corresponding to a correct match among all
the distances computed when using the NN matcher for a query qj. In other words,
we have at most a single sample drawn from Fc and many samples from Fc̄.

In order to compute a model that explains the behavior of the minimum distance
that theFc̄ process can generate,we use the distributions suggested from the statistical
theory of extreme values. In Fig. 1.16 we provide an illustration of the densities
involved for this processing. Next, we review themain theorem used in our approach.

Review of the Fisher–Tippet–Gnedenko Theorem

The Fisher–Tippet–Gnedenko Theorem, also known as the block maxima theorem,
provides a family of distributions to model the maximum or minimum values that a
random process can generate:

Theorem 1 Let Xi be a sequence of i.i.d. random variables and let

Mn = max {X1, . . . , Xn}
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(a) (b)

Fig. 1.16 Left The two underlying random processes’ densities involved in the generation of the
distances, correct match distances density (dashed curve) and incorrect match distances density
(continuous curve). Right The minimum distance that the random process for incorrect matches can
generate is a random variable, thus a density describing it can be obtained (continuous curve); the
underlying two random processes: correct (dashed curve) and incorrect (dotted curve) processes.
a Random processes. b The minimum model

denote the maximum. If there exist sequences of normalizing constants an > 0, bn∈R,
and a nondegenerate probability distribution function G, such that

P(a−1
n (Mn − bn) ≤ z) → G(z) as n → ∞ (1.9)

then G(z) is of the same type as one of the three extremal-type distributions: Gumbel,
Fréchet, and Weibull.

In other words, the block maxima theorem states that the rescaled sample maxi-
mum

(
a−1

n (Mn − bn)
)
converges in distribution to a variable having an extremal-type

distribution. We refer the reader to [9, 12] for the proof of this theorem. Although
Theorem1 considers maximum values, we can still use it to model sampled minima
using one of the three extremal-type distributions. To do so, we must first apply a
simple transformation: X ′ = −X ⇒ max

{
X ′} = −min {X}.

To determine exactly which of the three extremal-type distribution to use for mod-
eling the maxima/minima, we need the domain of attraction tests [9, 12]. However,
the generalized extreme value distribution (GEV),

G(z;μ, σ, ξ) =
{
exp

{
− [

1 + ξ
( z−μ

σ

)]− 1
ξ

}
if ξ 
= 0

exp
{− exp

[− z−μ

σ

]}
if ξ = 0

, (1.10)

subsumes the three extremal-type distributions. Thus, we can use the GEV to model
maxima or minima from a random process, avoiding the domain of attraction tests.
The GEV distribution has three parameters: location μ, scale σ , and shape ξ .
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MRRayleigh: The Predictor

To estimate the correctness of a correspondence, we calculate a confidence or belief
given their distances used in the NN matching process. To do so, we proposed the
MRRayleigh predictor [16], shown in Algorithm1.

Algorithm 1 MRRayleigh
Require: {d1:n}, k, and δ ∈ (0, 1)
Ensure: v ∈ {1, 0} and p
1: Dk ← Get the smallest k samples from {d1:n}
2: d� ← minDk
3: σ ← Fit Rayleigh distribution to Dk \ d�

4: p ← P(C = correct|d�, Dk) = 1 − RayleighCDF(d�; σ)

5: if p > δ then
6: Predict correspondence as correct: v = 1
7: else
8: Predict correspondence as incorrect: v = 0
9: end if

This predictor requires the distances {d1:n} obtained by comparing a given query
descriptor q with the set of reference descriptors {ri}n

i=1; k, a number of samples that
define the left tail ofFc̄; and a threshold δ, which is used to decide if a correspondence
is correct or incorrect. Thepredictor computes a correctness confidence or beliefp and
returns v = 1 when the correspondence is likely to be correct, and v = 0 otherwise.

The idea of the predictor is to compute a model for the minimum distance that
the process Fc̄ can generate using the distributions stated in Theorem1, and use it
to verify if the minimum sample used in the NN matcher is a sample that is likely
to be generated from the computed model. To compute this model, the algorithm
selects the k lowest distances, which are samples from the tail of Fc̄ (Step 1). Sub-
sequently, the algorithm fits a Rayleigh distribution, which is a special case of the
Weibull distribution, to the k samples discarding the minimum (Steps 2–3). Next, the
algorithm computes the confidence by evaluating the Rayleigh’s inverse cumulative
distribution function (cdf) at the minimum distance (Step 4). Finally, the algorithm
decides given this confidence and a threshold if the correspondence is likely to be
correct or incorrect (Steps 5–9).

InFig. 1.17,wepresent the prediction performance using twodifferent descriptors,
SIFT and SURF, for computing correspondences on the publicly available affine
covariant features dataset [36]. This dataset contains eight sub-datasets, each with
systematic variations of a single imaging condition: viewpoint, scale, image blur,
illumination, or jpeg compression. Every sub-dataset contains six images: a reference
image and five query images of the same scene varying a single imaging condition.
In addition, every sub-dataset provides five homographies that relate the reference
image with each of the query images in the sub-dataset. These homographies were
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(a) (b)

Fig. 1.17 ROCcurves for correctness correspondence prediction. The experiment comparesLowe’s
ratio [34] (LWR), Brown’s ratio [7] (BR), Meta-Recognition [44] (MRW), and MRRayleigh [16]
(MRR) on the Oxford dataset [36]. MRRayleigh outperforms the other predictors. Left Prediction
performance for SIFT matches. Right Prediction performance for SURF matches. a SIFT matches.
b SURF matches

used to compute the ground truth for correct correspondences for SIFT and SURF
matches. To obtain the receiver operating characteristic (ROC) curves, the threshold
δ was varied from 0 to 1, and k = 0.5%n, where n is the number of reference
features. We can see in Fig. 1.17 that the proposed MRRayleigh (MRR) outperforms
the other methods, Lowe’s ratio [34] (LWR), Brown’s ratio [7] (BR), and Meta-
Recognition [44] which uses Weibull distribution for prediction, regardless of the
descriptor.

1.4.3 Nonuniform Sampling Strategies for Robust Model
Estimation

Because the MRRayleigh algorithm provides a confidence on the correctness of
a NN matching decision, it is possible to create a nonuniform sampling strategy
for robustly estimating a model leveraging the computed confidences. The classical
method to estimate thesemodels robustly in the presence of outliers is RANSAC [15].
This method samples the data uniformly to generate hypotheses or models, which
later are checked against all the data to assess their quality. The hypothesis that
explains most of the data is the solution that this method returns. To speed up
the convergence of this method, nonuniform sampling strategies can be devised
(e.g., [11, 16, 18, 42]).
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SWIGS: A Nonuniform Sampling Strategy from MRRayleigh
Predictions

We describe two approaches leveraging the benefits of extreme value theory (EVT).
The first method, SWIGS [16], uses the confidence computed by MRRayleigh to
compute a nonuniform sampling strategy. The strategy is obtained by computing a
weight for every correspondence, i.e.,

wi = pi∑n
i=1 pi

, (1.11)

where pi is the confidence for the ith correspondence. These weights form a discrete
probability mass function over the correspondences, which is used as the nonuniform
sampling strategy.

To evaluate the performance of SWIGS (the nonuniform sampling strategy), we
presented an experiment onhomography estimation in a densematching scenario [16]
using the affine covariant features dataset [36]. The nonuniform sampling strategy
was combined with MLESAC [48], a variant of RANSAC whose purpose is to
calculate a hypothesis or model that maximizes a likelihood function instead of
maximizing the support of the model.

The experiment comparedSWIGSwith other nonuniform samplingmethods com-
bined with MLESAC: BEEM [22]; a Guided-Sampling [47] with a general distrib-
ution considering all the imaging conditions (GEN); a Guided-Sampling [47] that
considers only the distribution for a specific imaging condition (SPEC); BLOGS [6]
where ml = d−1

1 , and mlr = mlc = d−1
2 as our approach considers a different match-

ing procedure; and a classical random sampling (uniform distribution) for a baseline.
The results of this experiment are shown in Fig. 1.18, where the first two rows

show the results obtained for SIFT, and the rest for SURF matches. The percentage
of correct matches or correspondences are presented in the first and third rows, while
the iterations are in the second and fourth rows. The x-axis indicates the index of
the images contained in the considered sub-datasets (omitting the reference image,
which is index 1); an increasing index represents a larger variation with respect to the
reference image. Each column presents the results for a different sub-dataset: bikes,
boat, graf, trees and wall, from left to right.

We can observe that SWIGS tends to require in general fewer iterations than the
other methods (second and fourth rows) to find models that consider a comparable or
higher percentage of correct matches within the allowed number of iterations (first
and third row). We note that SWIGS, SPEC, and BEEM tend to find models that
consider approximately the same number of matches. The GEN method struggles
more to findmodels that consider a high percentage of correct matches in scenes with
repetitive textures, e.g., wall, and trees sub-datasets; repetitive textures can cause a
considerable overlap between correct and incorrect matching scores distributions.
BLOGS and a random sampling (Uniform) method perform similarly in finding
models that consider a high portion of the correct matches.
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Fig. 1.18 Performance evaluation across several sub-datasets (bikes, boat, graf, trees, wall from
left to right). Of all the 5000 repetitions of the experiment, the first and third rows present the
median of the percentage of correct matches found by the best computed models within the allowed
number of iterations, while the second and fourth rows present the median number of iterations at
which the best model was found. The first and second rows present the results for SIFT, and the
third and fourth for SURF

The experimental results presented in this section demonstrate that SWIGS can
perform similarly or better in finding models that consider a good portion of correct
matches in a dense matching scenario. The experiments also show that SWIGS tends
to require fewer iterations than the other guiding sampling methods without sacrific-
ing the number of correct matches found. Moreover, this confirms that MRRayleigh
confidences tend to identify good matches, and these confidences yield an efficient
and accurate nonuniform sampling strategy.

EVSAC: A Nonuniform Sampling Strategy for Low Inlier Ratio Cases

The second method that leverages extreme value theory (EVT), EVSAC [18], esti-
mates the correctness belief pi differently. The main premise of EVSAC is that
there is a single pair of distributions Fc and Fc̄ when matching two images. In
contrast, MRRayleigh assumes there exist a pair of distributions Fc and Fc̄ for
every query feature, i.e., for every NN search for the query feature. Given this new
assumption, the task is to find the parameters for Fc and Fc̄ as well as the mixture
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parameter ε to compute a model for the minimum distances used by the NNmatcher.
These minimum distances can be considered as samples drawn from a distribution
F = εFc + (1 − ε)Fc̄.

Algorithm 2 EVSAC

Require:
{
di,1:k

}n
i=1

Ensure: {wi}n
i=1 and {pi}n

i=1
1: v ← Predict

({
di,1:k

}n
i=1

)

2: (α, β) ← FitGamma
({

di,(1) such that vi = 1
})

3: (μ, σ, ξ) ← FitGEV
({

di,(2)
})

4: Calculate the empirical cdf using di,j�

5: Find ε by solving (1.12)
6: Calculate posterior weights pi using Eq. (1.13)
7: Calculate weights wi using Eq. (1.14)
8: Use the weights wi for generating hypotheses

EVSAC’s algorithm (shown in Algorithm2) computes these parameters as well
as the new nonuniform sampling strategy. EVSAC requires the k smallest distances{
di,1:k

}n

i=1 for every ith correspondence, and computes the weights wi as well as the
correctness confidence pi. The first step in this algorithm is to label each correspon-
dence as correct or incorrect (Step 1); for this step, EVSAC uses the MRRayleigh
predictor algorithm. Subsequently, the algorithm fits a gamma distribution to the dis-
tances of those correspondences labeled as correct, i.e., vi = 1, in step 2. Then, the
algorithm fits a generalized extreme value distribution (GEV) to the second smallest
distances in step 3.

EVSAC uses the GEV distribution to model the underlying distribution that the
minimum distances from the incorrect correspondences follow; this is because now
we have several minimum distances sampled from a single distribution Fc̄. This
implies that the mixture model explaining the minimum distances in the matching
process becomes F = εFc + (1 − ε)Gc̄, where Gc̄ is the GEV distribution. Theo-
rem1 applies only for modeling the minimum distances sampled from Fc̄ because
we have several samples from this distribution, i.e., we have more incorrect corre-
spondences assuming that there is at most a single correct correspondence. On the
other hand, this Theorem does not apply to Fc because we sample a single sample
at most when we match a query feature; recall that Theorem1 requires a sufficiently
large number of samples taken from the underlying distribution.

After estimating the parameters of the distributions, EVSACestimates themixture
model parameter ε in steps 4 and 5. To do so, EVSACsolves the following constrained
least-squares problem:

minimize
y

1

2
‖Ay − b‖22

subject to 1 Ty = 1

0 � y � u,

(1.12)
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where the symbol � indicates entrywise comparison, and

A =
⎡

⎢⎣
Fc(d1) Gc̄(d1)

...
...

Fc(dn) Gc̄(dn)

⎤

⎥⎦, b =
⎡

⎢⎣
F(d1)

...

F(dn)

⎤

⎥⎦, y =
[
ε

ε′

]
, and u =

[
τ

1

]
.

The matrix A ∈ R
n×2 is formed by evaluating all the n minimum distances on the

cumulative distributions functions. The vector b ∈ R
n is formed by evaluating the

empirical cumulative distribution function on all the minimum distances. EVSAC
imposes the constraint ε ≤ τ , as this improves the quality of the estimation of the
mixing parameter. τ is computed as the ratio of the number of correspondences
labeled as correct and n.

EVSAC computes in step 6 the correctness believes pi = P(C = correct|d) for
every correspondence using the Bayes’ rule:

P(C = correct|d) = εfc(d)

εfc(d) + (1 − ε)gc̄(d)
, (1.13)

where C is a discrete random variable indicating correctness, d is a minimum dis-
tance, and fc and gc̄ are the probability density functions for Fc and Gc̄, respectively.
Subsequently, EVSACcalculates theweightswi for every correspondence as follows:

wi = pivi∑n
i=1 pivi

, (1.14)

where vi is the binary value returned by the predictor in step 1. These weights wi

again describe a probability mass function over the correspondences which is used
as the nonuniform sampling strategy.

We now present an evaluation of the performance of EVSAC to find the para-
meters of our probabilistic framework: ε, and the distribution parameters using the
MRRayleigh predictor [16] only as the predictor in step 1. We compared the esti-
mated parameters against the parameters obtained assuming that we had a perfect
correct match detector.

We first examine the accuracy of the estimation of ε in Table1.5. The estimate of
ε using the upper bound in vector u used in (1.12), ε̂, tends to be closer to the real
value, while the estimate without the upper bound (ε̃) can overshoot sometimes.

Next,we examine the quality of the estimation of the different probability densities
and the posterior used to compute the weights wi. In the first column of Fig. 1.19,
we can observe that EVSAC (continuous curves) is able to approximate with a good
accuracy themixture of densities obtainedwith the ground truth data (dashed curves).
In the second column, we present the posterior probabilities computed from the
estimated model (continuous curves) and the posterior obtained from the ground
truth (dashed curves). This means that EVSAC estimates an accurate posterior that
essentially maximizes the information in the matching distances when computing a
confidence value.
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Table 1.5 Estimation of ε comparison: ε̂ is the estimation with τ set as an upper bound (see
Eq.1.12), and ε̃ is without

Image pairs ε ε̂ ε̃

Oxford-Bark (1–4 SURF) 0.0131 0.0141 0.1870

Oxford-Boat (1–6 SURF) 0.0257 0.0270 0.1429

Oxford-Bark (1–3 SIFT) 0.0479 0.0438 0.1291

Oxford-Trees (1–6 SIFT) 0.1028 0.1119 0.2467

Strecha-Brussel (2–3 SIFT) 0.1855 0.2067 0.2263

Strecha-Brussel (1–2 SURF) 0.2964 0.3115 0.3632

The upper bounded estimate tends to provide more accurate estimations

(a) (b) (c) (d)

Fig. 1.19 Comparison of themixture of densities and posterior probability computed using EVSAC
against the ground truth for a pair of images with SIFT matches (a–b) and SURF matches (c–d).
In both experiments the matching score metric is the Euclidean distance. The density estimations
f̂c and ĝc̄ are close to the densities fc and gc̄ computed with an oracle. In the second column, we
compare the estimated posterior probability p̂ with the posterior p computed with the oracle

To evaluate the nonuniform sampling strategy that EVSAC computes, a homogra-
phy experiment is presented. EVSAC is compared against the following nonuniform
sampling algorithms: Guided-MLESAC [47], BEEM’s prior estimation step [22],
BLOGS’ global search mechanism [6], and PROSAC [11]. All these sampling algo-
rithmswere included in a classical hypothesis-test loop,where the supportwas always
being maximized, and a solution was considered “good” if it satisfied the maximality
constraint, i.e., the constraint that a good hypothesis was generated within a certain
number of iterations (see [11] for more details on this constraint). The homography
was computed using the OpenCV findHomography() function without the RANSAC
option. An inlier (or correct correspondence) was considered if the reprojection error
of the homography was less than 5 pixels. The algorithms were allowed to run until
a maximum number of iterations (hypothesis test loops) calculated adaptively is
reached, and the algorithm convergedwhen 90%of the inliers (correctmatches)were
detected. The found hypothesis was refined afterwards using a nonlinear method.

The results of this experiment are summarized in Table1.6. The affine covariant
features dataset [36] used for the experiment presented very challenging scenarios,
where the inlier ratios ε ranged from 1–10% for SIFT and SURF matches. The
experiments were run 300 times. We present the average number of inliers detected
(I); the average RMS reprojection error (E) in pixels w.r.t.to the error achieved by
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Table 1.6 Homography estimation results for SIFT and SURF matches

The results are sorted by inlier ratio (ε) in ascending order. EVSAC performed well when the inlier
ratio is low, and performed equivalently when the inlier ratio increased
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the ground truth data; the average number of models/hypotheses generated (M); the
average time in milliseconds (T); the average Frobenius norm of the error between
estimated homography and the computed homography with the ground truth (F); and
the percentage of “good” runs where each algorithm converged (R). The results are
sorted in ascending order by the inlier ratio. We can observe that EVSAC tends to
perform overall faster when the inlier ratio is very low (see rows A, B, C, D, and E),
and performs equivalent or faster than BEEM and BLOGS as soon as the inlier ratio
increased (see rows F, G, H ). PROSAC and GMLESAC struggled to converge fast
when the inlier ratio was very low (ε < 11%).

1.4.4 Discussion and Future Work

Wehave presented two different nonuniform sampling strategies that can help in esti-
matingmodels, such as homographies, essential matrices, and fundamental matrices,
robustly in the presence of outliers. The two methods leverage the correctness con-
fidences that the statistical theory of extreme values allows us to compute. These
nonuniform sampling methods can help in speeding up various processes, such as
structure-from-motion and feature-based tracking, for use in mobile applications.
A natural extension of these nonuniform sampling algorithms is to modify them so
that they can work for estimations of camera poses from 2D to 3D correspondences,
which is an important step for augmented reality applications as shown in Sect. 1.3.

1.5 Summary

In this chapter, we have provided insight into some of the problems, constraints,
and opportunities that arise in the domain of computer vision for mobile augmented
reality applications. Mobile AR requires robust, real-time computer vision methods
for tracking, modeling, localization, and other tasks, executing on a mobile device
with a foreground process that may require significant resources, and with additional
sensors that may aid the visual processing. As these devices become even more
ubiquitous, powerful, and integrated into people’s daily lives, the opportunities for
mobile computer vision will continue to grow rapidly.

TheTranslatAR sign translation systemdescribed in Sect. 1.2 provides an example
of a full application using computer vision and augmented reality in amobile environ-
ment. The indoor localization capability of Sect. 1.3 gives insight into a vision-based
resource that may be used by AR or other kinds of mobile applications that require
spatial information (i.e., camera pose). Advances in fast, robust keypoint correspon-
dences and model estimation (Sect. 1.4) indicate how efficient low-level choices,
informed by theory, can provide tracking and modeling that is well suited to the
mobile domain with its limited resources.
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With recent advances in all areas of mobile AR, there is now great enthusiasm for
real-world applications on mobile devices—an increasingly important domain for
the computer vision field.
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