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Abstract 
We describe the vision system for Alvin, the Autonomous 

Land  Vehicle,  addressing in particuly the  task of road-following. 
The system builds symbolic descriptions of the road and obstacle 
boundaries  using both video  and range sensors. Road  segmenta- 
tion  methods are described for video-based  road-following,  along 
with  approaches  to  boundary extraction and the transformation of 
boundaries in the image plane into  a  vehicle-centered  three  dimen- 
sional scene model. The ALV has performed  public road- 
following  demonstrations,  traveling distances up to 4.5 Ian at 
speeds up to 20 h/hr along a paved road,  equipped  with an  RGB 
video camera  with padtilt control and a laser range scanner. 

1. INTRODUCTION 
The task of the vision system for a  mobile robot is to locate 

and model the relevant aspects of the  world so that an intelligent 
navigation system can plan  appropriate  action.  For  an  outdoor  au- 
tonomous vehicle, typical  behaviors include road-following.  obsta- 
cle avoidance. cross-counuy navigation,  landmark  detection,  map 
building  and updating, and position estimation. The vision system 
must  provide  a description of the world rich enough to facilitate 
such behaviors. 

In May of  1985. “Alvin“. the Autonomous  Land  Vehicle at 
Martin Marietta Denver  Aerospace,  performed its first  public 
road-following demonstration. In the few  months  leading up to 
that  performance,  a basic vision system  was  developed to locate 
roads in video imagery and send three dimensional road center- 
points to Alvin’s navigation  system.  Since that first  demonstration, 
VITS (for  Vision Task Sequencer) has matured into a  more  general 
framework for a mobile robot vision system,  incorporating both 
video  and range sensors and extending its road-following capabili- 
ties  to include obstacle detection and  avoidance. A second  public 
demonstration in June 1986 showed the improved  road-following 
ability of the system, allowing  the  ALV to travel  a distance of 4.5 
km at  speeds up to 10 km/hr, handle variations in road surface, 
and navigate a  sharp,  almost hairpin, m e .  In October 1986 the 
initial obstacle avoidance capabilities were  demonstiated, as Alvin 
steered  around obstacles while remaining on the road,  and vehicle 
speeds  up to 20 km/hr were demonstrated on an obstacle-free por- 
tion of road. This paper describes Alvin’s vision  system and ad- 
dresses the particular task  of  video  road-following.  Video obstacle 
detection and range-based  road  following  and obstacle avoidance 
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are initially  discussed in [4,5,12]. 

The Autonomous  Land  Vehicle project, part of  DARPA’s 
Strategic Computing  Program, is described in [2] and [lo]. Vision 
research is proceeding  concurrently by a  number of groups (see for 
example  [8,9,13.14,15]), as is work in route and path planning. As 
the ALV is intended to be a  national testbed for autonomous  vehi- 
cle research, various vision systems and algorithms will eventually 
be implemented. The vision system described in this article is the 
system currently  meeting the perception requirements far testing 
and  formal  demonstrations of the  ALV  system. 

2. ALV  SYSTEM  OVERVIEW 
Alvin’s vision subsystem is an integral part of  a larger sys- 

tem,  and can affect and be affected by the performance of the sys- 
tem as a  whole.  Figure 1 illustrates the basic system configuration 
of the ALV,  including  the interfaces to the major modules. In the 
paragraphs  following, each of Alvin’s major components  will be 
briefly  discussed in the context of the interaction as a  complete 
system. See [lo] for a more complete discussion of the initial 
ALV system configuration. 

Figure 1. The ALV System  Configuration. 

The ALV is an all-terrain vehicle with eight-wheel drive, 
diesel-powered, and hydrostatically  driven,  with  a  fiberglass shell 
to protect the interior from dust and inclement weather  and to insu- 
late the  equipment  inside. The ALV hosts a  number of sensors. A 
Land  Navigation  System (LNS) provides position and  heading in- 
formation. The primary vision sensor is a color video CCD cam- 
era,  mounted on a  pan/tilt unit that is under the direct control of 
the vision subsystem. The other vision sensor is a laser range 
scanner which  determines  range by measuring  the  phase shift of a 
reflected  modulated  laser  beam. 

Alvin currently uses a variety of different computers,  and 
the computer architecture has been designed to facilitate the in- 
tegration of additional  machines as necessary. The diverse pro- 
cessing  requirements were met by  designing  a modular multipro- 
cessor architecture. In the  “first generation” ALV  hardware, VITS 
is hosted  on  a  Vicom image processor, while the other software 
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subsystems  are hosted on an Intel multiprocessor  system. v]TTS 
communicates  with the other subsystems  across  a  dedicated com- 
munication  channel. 

The vision subsystem is composed of three basic modules: 
W S ,  the vision executive,  which handles initialization, sets up 
communication  channels,  and  "oversees" the processing; W I D ,  
the  video data processing  unit; and WRD, the range data process- 
ing unit. The task of the vision subsystem in road-following is to 
process color or range  images  to produce a  description of  the road 
in front of the  vehicle. This description is passed to the  reasoning 
subsystem,  which  uses  additional data such as current  position, 
speed,  and  heading to generate a  trajectory for Alvin  to  follow. 

Communication  between the vision subsystem and Reason- 
ing takes  place in two basic forms: the scene model and the posi- 
tion  update. The scene model is the output of the vision  subsys- 
tem  after  each image frame is processed.  The scene model con- 
tains  a  record of Alvin's position and headiing at the time of image 
acquisition,  and  a description of the road found in the  image. The 
description of the road  consists of lists of p in ts  denoting left and 
right  edges of the road, as well as points  surrounding  obstacles. 
The points are given as 3D positions with  respect  to  the vehicle 
center of gravity at the  time the imagery  was  acquired. The rea- 
soning  subsystem  must  then  transform  the  road description into a 
fixed,  world coordinate system for navigation. 

VITS must know the  position  and  heading of the vehicle at 
the  time of image acquisition to integrate sensor information ac- 
quired at different times,  and to transform  vehicle-centered data 
into  world  coordinates. In addition, VITS must be able to predict 
the  location of the road in an image,  given its location in the 
preceding  image. These are effected by means of a position np- 
date message passed from Reasoning to the  vision  subsystem. 
The position update contains information on the  current vehicle 
speed,  position,  and  heading.  Synchronization of position update 
and image  acquisition is mediated by a  position  update  request. 

The Reasoning  subsystem is the executive controller of the 
&V, and  Vision is a resource of Reasoning. At the  highest  level, 
Reasoning is responsible for receiving goals  from  a  human test 
conductor,  creating  a  plan script to accomplish the goals, and coor- 
dinating  the  other subsystems on Alvin to perform the necessary 
tasks. script. 

Because ths processing  involved in creating  a visual 
description of  the environment is beyond the real-time capability of 
present  computers, the scene model is not used  directly in the 
vehicle's control servo loop. Instead, the  Navigator (part of the 
reasoning  subsystem)  pieces  together scene models  from  the  vision 
system  and  builds  a reference trajectory  that is sent to the Pilot  for 
control. The reasoning subsystem accepts  a  position  update re- 
quest  from W S ,  generates the appropriate  data,  and  sends  a posi- 
tion  update to W S .  Upon receipt of a scene model,  Reasoning 
evaluates it and plots a smooth trajectory if the data is acceptable. 
The new  trajectory is computed to smoothly  fit  the  previous  trajec- 
tory. 

The Pilot perforans the actual driving of the  vehicle. Given 
a trajectory from Reasoning,  the  Pilot  computes the error  values of 
lateral  position, headiig and  speed  by  comparing LNS data with 
the  target values specified in the  trajectory. The Pilot uses a  table 
of experimentally  obtained  control  gains to determine commmnds 
needed  to drive the errors towad zero;  these  commands  are  output 

to the vehicle  controllers. The vision subsystem has no direct 
communication  with the Pilot. 

3. VIDEO-BASED WOAD-F 
The task of the vision system in  a road following  scenario  is 

to  provide  a  description of the  road for navigation. Roads may be 
described  in  a  variety of  ways,  e.g.  by sets of road edges, a 
centerline with  associated  road  width, or planu patches. We have 
chosen  to  represent  a  road  by its edges, or more precisely, points 
in three space that,  when  connected,  form  a  polygonal  approxima- 
tion of the  road  edge. The difficulties in extracting  the  real  road 
boundary  directly €rom the  image  led  us to adopt  a  segmentation 
algorithm to first extract the road in the image,  track h e  road/non- 
road  boundary,  and  then calculate thee dimensional  road  edge 
points. 

VITS currently  uses  a clustering algorithm to segment  the 
image  into  road  and  non-road  regions. after producing  a binary 
road image,  the  road boundaries are  traced and trmfomed from 
image  points into three dimensional  road boundaq points. The 
complete cycle time, from digitization to producing  a  symbolic 
description of  the road, is currently just over 2 seconds. The  algo- 
rithm is summarized in the following steps, which  are  discussed in 
detail in the  following  sections: (1) digitize the  video ilages; (2)  
segment road/non-road  regions; (3) extract road hundaries by  trac- 
ing  the  binary  road edges; and (4) transform 2Q road  edge  points 
to 3D coordinates  and  build  the scene model. 

3.1. Sensor Control  and Image ~~~~~i~~~~ 
Because of a  curving road, vehicle oscillation while  travers- 

ing the road, or sudden path  corrections to center the vehicle,  the 
vehicle's headiig may cause a  fixed camera &I lose all or part of 
the road from its field of view. Because sampling  road  pixels is 
vital to the video segmentation algorithm,  losing the road is not ac- 
ceptable. Two methods  compensate for this: panning  the  camera 
and power widowing. Power  windowing,  a  "software  panning" 
technique, is described in Section 3.2.1.3. 

Control of the  pan/tilt  mechanism is a  function of vehicle 
orientation  and  desired  viewing  direction. Dwing mad-following, 
we  would like the  camera to point "down  the  road",  regardless  of 
the  vehicle  orientation,  keeping the road  approximately  centered in 
the  image. "his requires the vision system to how global psition 
information  (provided by the LNS) and relate the  vehicle-centered 
road description to present vehicle location and orientation, and 
then to calculate and  command the desired pan angle. The tilt  an- 
gle is fixed at approximately 17" M o w  the horizon. 

The image  processing  computer digitizes RGB images 
directly into memory  from  the v ida  camera;  typically, the images 
are then blurred to reduce  noise.  Calibration is performed on the 
camera before  a best run to calculate the exact tilt angle  and  focal 
length.  Along  with  the raw images,  the position lapdate is request- 
ed and  received from the cornmication control processor, dlow- 
ing later  conversion  from  a  vehicle-centered  road  description to 
world  coordinates. 
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3.2.  Road  Segmentation successfully separate road  and  non-road clusters and  therefore  seg- 

Segmentation of natural outdoor scenes is a  particularly ment the image. This line is the linear discriminant function in 
complex  problem [7], but it is simplified  when  a  predominant Red/Blue  space. 
feature in the scene (i.e. the road) is the main focus of the seg- 
mentation. In a  real-time, outdoor environment  with  a mobile 
robot, road segmentation is complicated  by the great variability of 
vehicle and environmental conditions.  Changing  seasons,  weather 
conditions,  time of day, and man-made  changes  impact  the video 
segmentation, along with the variable color response of the cam- 
eras, the vehicle suspension system,  performance  of  the  navigation 
and control subsystems, and other changes in the vehicle system. 
Because of these combined effects robust segmentation is very 
demanding. 

The segmentation methods used by VITS are motivated by 
the hardware supporting it, speed requirements.  and  assumptions (a) (b) 
about road and non-road image characteristics. We have proposed 
and tested  various segmentation techniques. all based on Figure 2. Road  image. (a) Original. (b) Red/blue 
knowledge  of  road characteristics in RGB color space. These scatter diagram of image. Line in (b) depicts 
techniques  and  algorithms are described in the  following  sections. rodnon-road boundary. 

3.2.1.  Segmentation  Techniques 

3.2.1.1.  Color  Parameter  Selection 

The slope of the line determines the red and blue com- 
ponents of the tricolor  operation,  with the green  component  equal 
to zero. Because  of the consistent "footprint" of the road cluster, 
the slope of its principal axis is identical to the slope of the desired 

A plane in RGB space does a  very  good job under  most line. "he angle the  principal axis makes  with respect to the red 
conditions of partitioning the space into road and  non-road  regions. axis (8) determines the red,  green,  and blue color parameters as 
If each point in RGB space can be projected onto a line perpendic- follows: ( r ,  g , b )  = (COS 8, 0, sin 8). 

- -  

ular to this plane, then, the three dimensional feature space is re- 
duced to one dimension. The projection of image points in RGB 
space onto a line is equivalent to taking the dot product of every 
pixel vector with  a vector in the direction of the line  (normal to 
the separating plane). This is accomplished by a tricolor opera- 
tion, a linear weighted combination of the red, green, and blue im- 
ages: 

Z ( i j )  = r R ( i , j )  + g G ( i , j )  + b B ( i j )  (1) 

= (T,g,b)*(R,G$) 
The outcome 4 is a single band "feature  enhanced"  image. The 
vector (r ,g ,b ) represents the red, green, and blue  components of 
the  tricolor  operation. This vector is normal  to  the plane that 
separates road and non-road clusters in the RGB space. The orien- 
tation of this plane is relatively consistent under given  weather  and 
camera  conditions. It can often be chosen by hand at the  begin- 
ning  of  a run and not modified  throughout  the operation of W S .  
However,  we have found that  changing  weather  conditions.  season- 
al changes,  and  the camera color response affect the  optimal plane 
orientation; therefore we would like to dynamically  choose  the 
plane orientation based on current image parameters. 

We have found by experience that the green  band is often 
not  needed for a good segmentation, so we can reduce the  problem 
conceptually to finding the slope of a line in two  dimensional 
Red/Blue  space, rather than  finding the normal of a  plane  in  RGB 
space.  Figure 2(b) shows a scatter diagram of the  red  and blue 
components  of Figure 2(a); th is  can be thought of as a projection 
of the RGB space onto the Red/Blue plane, or as a two dimension- 
al histogram. Road pixels  cluster  nicely, distinct from non-road 
pixels,  and it should be clear that the line drawn in the  figure  will 

The method to dynamically choose color parameters.  then, 
proceeds as follows: sample road points in the image, calculating 
the orientation of the road cluster 8 and then r , g , and b. This 
provides the normal of the plane in RGB space, or  equivalently the 
line in Red/Blue  space,  that  separates the road and non-road  clus- 
ters. 

3.2.1.2.  Threshold  Selection 
Once the color parameters (i.e. the plane normal or line 

slope) axe known (either calculated or preset), the tricolor opera- 
tion is performed,  creating  an image for which each  pixel 
represents the distance  (which  may be positive or negative) from 
the original RGB pixel to the plane rR + gG + bB = 0, or, 
equivalently,  the distance between  a pixel and the origin when 
both are projected along  a line normal to this plane.  Choosing  a 
value h with  which to threshold the new  image,  then, is equivalent 
to translating  the  separating  plane in RGB  space. 

The resulting  binary  image is a  function of the threshold 1, 
which is selected  by  sampling  a population of road  pixels. In the 
original version of VlTS, we did  a histogram equalization of  the 
feature image (the tricolor result) and used a constant threshold to 
segment. This assumed  that  the road occupied a Constant percen- 
tage of the  image  pixels  from image to image. Because this as- 
sumption is not  generally true and because the equalization was 
too  expensive  with oiu hardware,  we opted for a more robust  and 
faster method of czlculating  the  threshold by sampling road pixels. 
The road  sampling  technique is described in the next section. 

The original  threshold  was calculated as the mean of  the 
road cluster plus a constant number of standard deviations. This 
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proved to be very sensitive to the presence of shadows, dirt on the 
road, potholes,  and patches of  new tarmac  used in road repair, 
these often caused the calculated road mean to be unreliable. To 
overcome  some of these  problems,  we  chose the median of the top 
M sampled  values (typically M = 15), rather than the  mean of the 
whole  sample  population, as the nominal threshold  value. ahis 
takes  advantage  of the knowledge  that true road pixels  are  brighter 
in  the feature image  than  most of these  problem  areas  (with  the 
nagging exception of dirt). 

3.2.1.3. Woad Sampling and Power  Windows 
Sampling  road pixels in a  dynamic  environment is not 

straightforward. Our original implementation  sampled  at 125 fixed 
image  locations, as shown in Figure 3(a), assuming that the road 
covered  these points. Because the road changes  position within 
the  field of view  from  frame to frame, the  sampling  windows 
sometimes fell partially off the road, sampling diit or grass. Since 
dirt and grass tend  to fall a b v e  the road cluster  boundary, this 
upset the calculation of the  threshold. 

To prevent  sampling portions of the scene outside of the 
road  boundary, power windowing was developed for road  sam- 
pling. Instkad of  sampling at &ed image  locations,  the  sampling 
window  is  projected onto the predicted road position in the  image. 
Because of vehicle motion, this involves  projecting  a  trapezoid 
representing  the  boundary  of  the road found in the  previous scene 
model  into  world  coordinates and then back  into the new  image 
plane location. This trapezoid, the prediction of the location of the 
road in the new  image, is now the bounding  window for image 
sampling, given the new position and  orientation of the  vehicle. 
This relies on the position update  information  to do the  geometric 
calculations between the previous  and the present  vehicle  positions. 
Figure  3(b) shows the sampling  window  computed as Alvin  travels 
around  a  curve. 

(a) cb) 

Figure 3. (a) original fixed  sampling  points. 
(b) Sampling  window  around sharp curve, 
calculated by power  windowing  module. 

Power  windowing is used  along  with  or  independent of 
padtilt control. Without the panhilt mechanism, it gives  the ALV 
a  software  panning ability; with it, power windowing  provides  fine 
adjustment for road  sampling. In relatively straight portions of 
road terrain,  power  windowing  alone is preferred,  because of the 
time involved in panning the camera.  Even small angular  panning 
is significant because of the acceleration and deceleration times of 

the  pan/tilt  mechanism. 

Because Alvin  may wave1 as much as 18 m between  succes- 
sive scene  acquisitions at  top speeds, the projection of the  old  road 
model into the  new road image  may be small and  fill  only  the 
lower portion of the image. To compensate for this, we use the 
speed from the  previous position update to extend  the top of  the 
window  forward so that it reaches  a  fixed  distance in front of  the 
vehicle. A larger  sample  area reduces the danger of sampling 
solely on a patch of  dirt. shadow or stained  road. 

The segmentation algorithm are  implemented on an  image 
processing  computer  and take advantage of the computer's frame 
rate convolution  and  lookup  table  operations. The feature reduc- 
tion is accomplished  by a tricolor  operation,  a  weighted sum of the 
red, green,  and blue images, as described  above. Typical values 
for ( r ,g  ,&) axe (0.5,0.0,-0.5); hence  the  name "Red minus 
Blue". 

This segmentation  method was originally  motivated  by  not- 
icing that the road appears  darker ban the dirt on  the  road  should- 
er in the red  image md brighter  than  the dirt in the blue image. 
Since the spectral content of the  pavement is "mostly  blue" and the 
dirt bounding the r o d  is "IIIQS~~Y red",  subtracting the images be- 
came an obvious way 60 enhance  the  roadJnon-road  boundary. 

A threshold  value is chosen &om the road statistics to 
diferentiate road  and  non-road  clusters, as discussed  above. The 
resulting  image is then thresholded t~ produce  the biiary 
road/non-road  image,  simply  one  pass of the image  through  a  look- 
up table. 

3.2.3. C O ~ S  Normalization 
Another  clustering  algorithm involves segmenting  a  color 

normalized  image,  rather than the  "Red  minus Blue" feature image. 
In an image of a road with  shadows  falling on it, for example,  the 
color intensities  vary quite a bit within a single surface;  intensities 
from  the  shaded  regions are much smaller than those from  the  the 
sunny  region of the road. Intuitively.  normalizing  the color com- 
ponents  will  allow  both  shaded and sunny  regions to cluster to- 
gether. ahis assumes  that  the  ambient  illumination is identical or 
similar in spectral  content to the incident illumination  of  the scene. 
Gershon et al. [6 ]  discuss this assumption  and  propose  a tool that 
can be used  to  classify  whether discontinuities in an image  are  due 
to material  changes  or  shadows. 

We have found that using  a normalized blue feature image 
enhances  the  pavemenddirt  boundary  and  therefore  gives  a  good 
roadnon-road segmentation. The calculation of this feature  and 
the  resulting  segmentation is described by 

P 

The threshold equation of (2) can be rewritten as 
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hR + hG + (X-l)B < 0 
This can  also be implemented as a  tricolor operation with (r,g ,b) 
equal to ( h, h, h-1 ). This is equivalent to  a  plane segmentation 
of the RGB color space, where the dynamically  chosen  threshold 
actually varies the orientation of the plane, rather  than its transla- 
tion as in the "Red  minus  Blue"  algorithm.  Calculation  of the 
threshold k proceeds as described in Section 3.2.1.2. 

3.2.4.  Shadow  Boxing 
Segmenting the road  using  a single threshold on a  combined 

RGB image supposes that the road cluster is the  only  significant 
cluster in an RGB  half-space. If there are significant non-road re- 
gions inside of the half-space defined by the plane normal (r ,g ,b) 
and the threshold h they  will also be labeled as "road"  and 
perhaps cause faulty scene models to be output.  Figure 4 shows  a 
scatter  diagram of such a  case:  a large region labeled "shaded 
non-road", caused primarily by shadows  of  bushes  and  ditches off 
the  road, falls in the road half-space.  Shadows  that fall on the 
road  are close to this region in the scatter diagram;  the cluster la- 
beled  "shaded road" must be distinguished  from  the  "shaded  non- 
road". 

Figure 4. (a) Original image. (b) Scatter diagram of 
road scene with  shadows. Location of threshold 

line indicates that  "shaded  non-road"  will be 
segmented as "road". 

This could  perhaps be solved by  segmenting  twice, 
corresponding to the two threshold lines in Figure 4(b), and per- 
forming  a logical AND of the resulting binary  images. The 
dynamic  threshold calculation for the  boundary  between the sunny 
and shaded road regions is very sensitive to noise,  however, be- 
cause there is very little information in the shaded regions, even 
when digitized from a camera with  a  reasonably  good  dynamic 
range.  Rather  than  segmenting complete half-spaces,  then,  the 
road  regions are bounded  by  rectangles,  and  only the boxed re- 
gions are segmented and labeled as road. This is particularly help- 
ful in conditions  with  significant shadows; hence the  name  "Sha- 
dow Boxing".  Shadow  boxing is similar to a  dynamic  Bayesian 
classifier [3] with three decision regions and  rectangular decision 
boundaries. The bounding boxes 'are again  motivated  by  the 
current  hardware, as the segmentation can be implemented  quickly 
by  two global  lookup  table operations per  boxed  region. 

3.3. Boundary  Extraction 
The segmentation algorithms produce a binary road/non- 

road  image.  From this image, the road edges are extracted  and 
transformed into three  dimensional coordinates to fill in the scene 
model. The boundary extraction is an  edge-tracking process in 
which the road boundary is found  and then traced  while  keeping 
track of the image locations. 

The initial  task is to find the road/non-road  boundary in the 
image. To facilitate easier boundary  tracing and to avoid  looking 
for the road on or above the horizon,  a false road boundary  is  ad- 
ded  around the image,  creating  an artificial horizon, as in Figure 
5(b) - this prevents  following the road edges up into the sky. In 
order to find  an initial boundary, we start in the bottom quarter of 
the  image  and step upwards until a  boundary is detected. The 
border is then traced in both directions,  using  an  8-neighbor  non- 
road, 4-neighbor  road  connectivity  rule,  and  image  Coordinates of 
boundary  points are saved. The boundary detection and  tracing 
uses preset "skip  factors" in both row and column  directions  to 
speed  processing; this effectively reduces the image size by the 
row  and  column skip factors. The boundary  tracking  method  al- 
lows for reasoning on the  fly - "bubbles" are properly ignored, 
and  globally  non-linear  segments, such as comers of intersections, 
can be detected  and  noted.  When  the  right or left false boundary 
is detected,  the  corresponding road edge is known to be out of the 
camera's field of view.  Figures 5(a) and (b) show the segmented 
road  and  the  boundary  traced for the image of Figure 2(a). 

Figure 5 .  (a) Binary  road image with 
false boundary  added. (b) Road  edges. 

Once the  image  coordinates of both right  and left road edge 
points are found, we choose a small number of points (up to ten) 
on each  edge  to  send to the  geometry module to include in the 
scene model. The row locations of these points are spaced by a 
quadratic  function so that the three dimensional locations of  the 
points  will be approximately  equal distances apart. Also, rather 
than  choosing  distjnct image points,  local edge points  are  averaged 
to  smooth  the road description. 

3.4.  Three  Dimensional  Geometry  Transformations 
Once  road  edge points are selected in the image.  a three di- 

mensional  description, the scene model,,  must be sent to Reasoning 
for  trajectory  calculation. This process of recovering  the  three di- 
mensional  information  projected onto the two dimensional image 
plane is the "inverse optics" problem of vision. As Poggio [l 13 
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and  others have pointed out, this is an under-constrained  (formally 
"ill-posed")  problem  that requires the introduction of generic con- 
straints to anive at a unique solution. In our case, such constraints 
are  assumptions  about the structure of the environment. We call 
the  various  techniques  which result from the  adoption of such con- 
straints solutions to the forward-geometry problem for the ALV. 

VlTS also uses the results of what we call the inverse- 
geometry problem. The inverse-geometry  problem is to determine 
the  location  within the image plane of the  image of a  point  whose 
three  dimensional location is known. Unlike the forward-geometry 
problem,  the  inverse-geometry  problem  has an% exact solution;  no 
assumptions  need to be made in order to constrain the problem  and 
make it well-posed. The combination of the forward-geometry and 
inverse-geometry  processes  allow for frame-to-kame registration of 
features as well as predictions  about, for example, the continuation 
of  the  road. 

The original  forward-geometry  module used in VlTS was 
essentially  a model driven "shape from  contour"  method  developed 
at  the  University of Maryland  [15], based on calculating the van- 
ishing point of parallel lines projected onto the image  plane. Ex- 
periments soon showed  that  assuming  a flat-earth road  model  al- 
lows for a  much  faster  forward-geometry  module  and  performs 
adequately for the roads Alvin  encounters  and  the speeds attained 
through  the 1986 demonstrations. While flat-earth  geometry is 
clearly an assumption  that is very useful in certain circumstances, 
it is not accurate enough for all  road-following  applications. Work 
is proceeding to incorporate  a hill-and-dale geometry  module that 
uses  a fast "shape from  contour"  method to solve the forward- 
geometry  problem. The flatearth and hill-and-dale road  models 
are  discussed in the  following  sections,  preceded by a  description 
of the  relevant  coordinate  systems  and  followed by a  discussion of 
the  inverse-geometry solution and its uses  within W S .  

3.4.1.  Flat-Earth  Geometry  Model 
In the flat-earth geometry  model  we  assume  that  the  road is 

planar,  and  that the plane containing the visible portion of the  road 
is the same plane which is giving support to  the  vehicle. Thus, the 
three  dimensional  location of an edge point found at (col ,row) 
can be determined  by  finding  the  point of intersection of the vector 
from  the focal point of the  camera  through this point  with this 
plane. 

The  flatearth geometry  model  has several advantages  over 
the other forward-geometry  models. First of these is its speed; a 
straightforward calculation gives the three dimensional  location for 
a  given  image  point.  Second, this model can be applied to any 
single image  point, even those  which are not  edges of the road; 
there is no  need for multiple image points as in the  vanishing  point 
geometry  model  [15]. Third, the error in the output  three  dimen- 
sional locations is only  a  function of the extent to  which  the  flat- 
earth  assumption is violated,  and not additionally  a function of the 
goodness of the segmentation. 

In practice there are a  number of problems  which limit the 
applicrtbiity of this technique. First is its sensitivity to inaccura- 
cies in the  assumed  tilt angle formed by the camera to the roa& 
plane.  The  camera is in  a  fixed  position relative to the bady  of the 
ALV, but the body of the vehicle is able  to rock forward  and 
backward on the undercarriage. When traveling  uphill or downhill, 
the vehicle body rocks, decreasing  or  increasing,  respectively,  the 

effective tilt  angle of the camera,  causing parallel road edges to be 
output as converging or diverging  three  dimensional edge seg- 
ments. Because of the problems caused by this rocking  motion of 
the  vehicle, we are  adding sensors which  will  measure the angle 
formed  between the vehicle  body  and undercaniage. 

A second  problem  with  the  flat-earth  model  occurs  at  hills 
and valleys, which cause the description of the road to diverge  and 
converge,  respectively. This problem is addressed  by  the  hill-and- 
dale geometry  model  described  below. 

3.4.2. Hill and Dale  Geometry  Model 
The "hill-and-dale"  geometry  model was developed to ad- 

dress the  problems of converging  and  diverging scene model 
edges. The essence of this technique is to  use  the  flat-earth 
geometry  model for the  two  roadway points nearest the  vehicle in 
the  image, and then to force the road model to move up or down 
from the flat-earth  plane so as to  maintain  a  constant  width. 

Let p(i j )  be the world  coordinates of the  points  which ap- 
pear in the  image as indicated in Figure 6. The first step of the  al- 
gorithm is to use flat-earth  geometry to solve for p(0,l) and 
p(0,2). From this ie i s  possible to compute  the  road  width W ,  
where W = I lp(0,l )-p(O,2) I I .  

Figure 6. Road edge points  to be converted  into 
the vehicle coordinate system. 

One way to maintain  a constant road width in the scene 
model is to intersect the successive pair of edge points (i,l) and 
(i,2)  with  a  different plane than  the  ground  plane. To see this, 
note that the rays  from the camera origin through  the  image loca- 
tions for these  points are diverging;  thus  using  a plane above  the 
plane defined by ho will produce a  narrower  road  than  using  a 
plane  below the plane  defined  by ho. For each successive pair of 
edge points (i.1) and (i,2) we can compute the elevation of a  plane 
containing  these  points,  perhaps  above or below the assumed 
ground  plane, such that the  the road maintains the same  width. 
The elevation is then  used in a  flat-earth g e o m w  calculation  to 
produce scene models for which  the road is of constant  width 
when  measured at paired scene model  points. 
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Testing has shown that this algorithm  produces  more  accu- 
rate scene models than the  flat-earth  algorithm on straight or slight- 
ly  curved roads which go up and down hill  when the segmentation 
is  good.  However  the  algorithm is very dependent upon  a  good 
segmentation, as a slightly wider road segmentation will  cause  the 
road to appear to travel uphill, and  a slightly narrower road seg- 
mentation  will cause the road to appear to travel  downhill. 

A potentially larger drawback to this algorithm is its 
behavior near and in curves and intersections.  Many  curves exhi- 
bit  banking  which this algorithm is unable to reproduce;  the ap- 
parent  location of the lower edge of the  banked  road  will  always 
be too high, and that of the outer edge will  always be too low. 
Also, the selection of opposing  pairs of edge points is critical, 
since the  width  of  the  road is measured  between  these  pairs of 
points. Thus, if the road is curving it is necessary  to select pairs 
of edge p in ts  such that  the  resulting  tiles of the  road  are pie 
shaped.  Finally, it should be noted that the constant width  premise 
of this  algorithm is violated at intersections, and may be violated 
at. other  roadway  areas as well. 

We are currently investigating heuristics for selecting 
matched edge points.  DeMenthon [l] uses  a  "zero-bank''  road 
model  which  addresses this problem by the introduction of addi- 
tional constraints. 

4. DISCUSSION 
The ALV public demonstrations in 1985  and  1986 have 

demonstrated Alvin's road-following and obstacle  avoidance capa- 
bilities. Successful runs have been  made  that  switched  back  and 
forth between  video-based and range-based  road-following  and 
demonstrated obstacle avoidance  based on a fusion of both video 
and range data.  A subset of  the vision system under  development 
at  the  University  of  Maryland  [15] has run Alvin over part of the 
test  area. Current vision efforts are concentrated on speed and 
robustness of road-following, obstacle detection and  location, as 
well as vision for off-road navigation.  Long  term  research  areas 
include object modeling.  landmark  recognition,  terrain  typing, 
stereo, and motion analysis. Researchers at many  groups  are 
currently working on these problems for future ALV  application. 
Their efforts are critical to meeting future demonstration  require- 
ments,  and to the  success  of the program in general. Interaction 
with  these groups has influenced our present system to  a  large de- 
gree. 

To travel at higher vehicle speeds, the vision  system  must 
not  only provide scene models  more  rapidly but also  provide 
longer scene models to allow for the distance needed to stop in 
case of an emergency or to slow down for a  detected  obstacle. 
We  are  presently investigating methods to more accurately  model 
the road at far distances and to extend calculated  road edges based 
on  road history and  assumptions  about road curvature. Because of 
limited  field of view  and  accuracy in the range of the  current  range 
scanner, we are working on fast methods to detect  obstacles at a 
distance using video data [12]. 

Of  the  video  road-following  algorithms  described,  the  "Red 
minus Blue" algorithm has proved to be the most  dependable so 
far.  and it has been used (at differene stages of development) in the 
formal demonstrations to date. The color normalization  algorithm 
performs  well in very sunny conditions  when shadows present  a 
problem  to  "Red minus blue".  "Shadow  boxing"  is  designed  to 
deal  with shadows and  obstacles. It has been tested  but not yet 

used to drive the ALV. 

5. SUMMARY 
Experiments in mobile r o b o t  road-following  prove the im- 

portance of  an evolving, robust vision system to model  the  en- 
vironment for navigation. Such a system must exhibit intelligent 
behavior  under  varying vehicle and environmental conditions: sea- 
sonal variation in scene characteristics, diverse and  changing 
weather  conditions,  unexpected visual information (e.g. obstacles, 
shadows,  potholes),  changes in navigation and control systems,  and 
changing sensor characteristics. Particular conditions that  have 
proven  difficult to handle are the presence of dirt on the  road, 
spectral  reflection  when the sun is at a low angle,  shadows  on  the 
road, and  tarmac  patches (used to repair road segments).  For this 
reason, research in mobile robot vision is largely  an  incremental 
process of hypothesis and test.  Analyzing the failure of a  particu- 
lar test is often much  more informative than  a  success. 

We have presented the vision system for Alvin, the Auto- 
nomous Land Vehicle,  discussing in particular the task of video 
road-following. The system provides an effective level of behavior 
in both speed and  performance. As the  processing  power of  the 
ALV increases  and the performance requirements become  more 
ambitious,  the  system  must  become more robust, faster,  and  more 
"intelligent".  Work is progressing  at  a  number of institutions to 
meet these  goals. 
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