
Conflict Resolution

Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov

The University of Manchester
{korovin|tsiskarn|voronkov}@cs.man.ac.uk

Abstract. We introduce a new method for solving systems of linear in-
equalities over the rationals—the conflict resolution method. The method
successively refines an initial assignment with the help of newly de-
rived constraints until either the assignment becomes a solution of the
system or a trivially unsatisfiable constraint is derived. We show that
this method is correct and terminating. Our experimental results show
that conflict resolution outperforms the Fourier-Motzkin method and the
Chernikov algorithm, in some cases by orders of magnitude.

1 Introduction

In this paper we introduce a new algorithm for checking solvability of systems
of linear inequalities, called conflict resolution. The method works with such
a system S and an assignment to variables σ (initially arbitrary) and refines
the assignment trying to make it into a solution of S. If such a refinement is
impossible, it is due to a pair of inequalities in S of the forms x + p ≥ 0 and
−x+ q ≥ 0 with some properties. In this case we resolve the conflict by adding
a new equation p+ q ≥ 0. The use of this rule makes the method similar to the
Fourier-Motzkin variable elimination.

The first (rather naive) implementation of the method shows that in practice
it normally behaves better, and sometimes orders of magnitude better than the
Fourier-Motzkin method and the Chernikov algorithm. These experiments are
confirmed by some properties of our method proved in this paper, namely, that
it never derives redundant (in some natural sense) inequalities. The conflict
resolution algorithm is well-suited both for proving inconsistency of systems of
linear constraints and for finding satisfying assignments.

It is a bit too early to extensively compare this method to the existing im-
plementations of the simplex or interior point methods since not much is known
about the best strategies, optimisations and modifications of the method but we
hope it can eventually become competitive also with the best previously known
methods. In this paper we only present some initial experimental results.

This paper is structured as follows. Section 2 defines main notions. Section 3
overviews the Fourier-Motzkin variable elimination method. In Section 4 we in-
troduce the conflict resolution and the assignment refinement rules used in our
method and prove some of their properties. Section 5 presents the conflict reso-
lution algorithm CRA. We prove that the algorithm is correct and terminating.

2

In Section 6 we compare our method with the Fourier-Motzkin variable elimina-
tion: we show that our method does not derive redundant inequalities and give
an example of a sequence of systems on which the Fourier-Motzkin method is
exponential while our method is linear independently of the strategy used and
the order of rule applications. In Section 7 we briefly discuss how the method can
be modified to handle strict inequalities and linear programming. Section 8 is
dedicated to the implementation and Section 9 to experiments with our method.
Finally, in Section 10 we mention related work on avoiding redundancy in the
Fourier-Motzkin method.

2 Preliminaries

Let Q denote the set of rationals. Throughout the paper we denote by n a positive
integer and by X a finite set of variables {x1, . . . , xn}. We call a rational linear
constraint over X either a formula anxn+. . .+a1x1+b�0, where � ∈ {≥, >,=, 6=}
and ai ∈ Q for 1 ≤ i ≤ n, or one of the formulas ⊥,>. The formula ⊥ is always
false and > is always true. The constraints ⊥ and > are called trivial. For
brevity, in the sequel we will call such rational linear constraints over X simply
linear constraints. We call a system of linear constraints any finite set of linear
constraints.

In this paper we will describe several algorithms for solving finite sets of ra-
tional linear constraints. Let � be a total order on X. Without loss of generality
we assume xn � xn−1 � . . . � x1. A constraint is called normalised if it is of the
form ⊥, >, xk + q � 0 or −xk + q � 0, where � is as defined above, xk is the max-
imal variable in the respective constraint, and q does not contain xk. Evidently,
every constraint can be effectively transformed into an equivalent normalised
constraint. In the sequel, we assume that all constraints are normalised.

We define an assignment σ over the set of variables X as a mapping from
X to Q, i.e. σ : X → Q. Given an assignment σ, a variable x ∈ X and a value
v ∈ Q, we call the update of σ at x by v, denoted by σv

x, the assignment obtained
from σ by changing the value of x by v and leaving the values of the other
variables unchanged.

For a linear polynomial q over X, denote by qσ the value of q after replacing
all variables x ∈ X by the corresponding values σ(x). An assignment σ is called
a solution of a linear constraint q � 0 if qσ � 0 is true; it is a solution of a system
of linear constraints if it is a solution of every constraint in the system. If σ is
a solution of a linear constraint c (or a system S of such constraints), we also
say that σ satisfies c (respectively, S), denoted by σ |= c (respectively, σ |= S),
otherwise we say that σ violates c (respectively, S). A system of linear constraints
is said to be satisfiable if it has a solution.

For simplicity, we consider only algorithms for solving systems of linear con-
straints of the form q ≥ 0, ⊥ and > and discuss the general case later.

3

3 Fourier-Motzkin elimination

In this section we briefly describe the Fourier-Motzkin elimination method. Con-
sider a system S of linear constraints. The method either determines that S has
no solution, or finds at least one. The method is based on an iterative algorithm
changing S by eliminating a variable at each step. We assume that the variables
are eliminated according to the order �, that is, xn is eliminated first. At each
step, if the maximal variable in the current system of linear constraints is xk, we
denote the current system by Sk, thus Sn = S. When the algorithm terminates,
we obtain a system containing only trivial constraints, we denote this system by
S0.

Let k > 0. The system Sk−1 is obtained from Sk by (i) adding new linear
constraints as follows: for every pair of linear constraints xk+p ≥ 0 and−xk+q ≥
0 in Sk we add to Sk−1 a new constraint p + q ≥ 0 and (ii) removing all linear
constraints containing xk.

One can show that the original system S is unsatisfiable if and only if S0

contains ⊥. If S0 does not contain ⊥, we can build a solution σ of S using the
following observation. An assignment σ satisfies Sk if and only if σ satisfies Sk−1

and

xkσ ∈ [max{−pσ | (xk + p ≥ 0) ∈ Sk},min{qσ | (−xk + q ≥ 0) ∈ Sk}] . (1)

As usual, we assume that the minimum of the empty set is +∞ and the maximum
of it is −∞. Condition (1) essentially says that the value of xk lies in a certain
interval determined by the values of variables x1, . . . , xk−1. One can prove that
this interval is non-empty whenever σ satisfies Sk−1. Thus, we can change any
solution σ of Sk−1 into a solution of Sk by updating σ at xk by an arbitrary value
in this interval. In this way we can build a solution to S = Sn as follows. We
start with an arbitrary assignment σ (which obviously satisfies S0) and update
it at x1, . . . , xn as described above. In fact, all solutions of the initial system can
be derived this way.

Note that the Fourier-Motzkin algorithm applied to a set of linear constraints
always terminates and generates only a finite number of linear constraints. How-
ever, the algorithm is in general exponential.1 In general, the number of linear
constraints in Sk−1 is in the worst case quadratic in the number of constraints
in Sk.

Unlike the Fourier-Motzkin method, our conflict resolution method does not
eliminate variables. It uses the rule deriving p + q ≥ 0 from xk + p ≥ 0 and
−xk + q ≥ 0 but derives new constraints in a more restrictive way.

1 Some papers claim it is double-exponential but we could not find any paper proving
this. Schrijver [10] defines a sequence of systems of the size O(n3) on which the
method generates O(2n) constraints. Some papers refer to [3] as giving an example
of double-exponential behaviour but [3] only repeats the example from [10] verbatim.

4

4 Conflict Resolution

In this section we introduce our conflict resolution method for solving systems
of linear rational constraints.

Let c be a linear constraint. If the maximal variable in c is xk, then we say
that k is the level of c. If c contains no variables, then we define the level of c to
be 0. Note that, since all constraints are assumed to be normalised, a constraint
written in the form xk + p ≥ 0 or −xk + q ≥ 0 is of the level k. The notion of
level induces a partial order on linear constraints, which we will denote also by
�, as follows. For two linear constraints c1 and c2, we have c1 � c2 if and only
if the level of c1 is strictly greater than the level of c2.

We call a state a pair (S, σ), where S is a system of linear constraints and
σ an assignment. Let S = (S, σ) be a state and k a positive integer. We say
that S contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) if (i) both xk + p ≥ 0
and −xk + q ≥ 0 are linear constraints in S and (ii) pσ + qσ < 0. Instead of
“k-conflict” we will sometimes simple say “conflict”. Note that if σ is a solution
of S, then S contains no conflicts.

We will now formulate our method. Given a system S of linear constraints,
it starts with an initial state (S, σ), where σ is an arbitrary assignment and
repeatedly transforms the current state either by either adding a new linear
constraint to S or updating the assignment. We will formulate these rules below
as transformation rules on states S ⇒ S′, meaning that S can be transformed
into S′. Let k be an integer such that 1 ≤ k ≤ n.
The conflict resolution rule (CR) (at the level k) is the following rule:

(S, σ)⇒ (S ∪ {p+ q ≥ 0}, σ),

where (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0).
The assignment refinement rule (AR) (at the level k) is the following rule:

(S, σ)⇒ (S, σv
xk

),

where

1. σ satisfies all constraints in S of the levels 0, . . . , k − 1.
2. σ violates at least one constraint in S of the level k.
3. σv

xk
satisfies all constraints in S of the level k.

We will call any instance of an inference rule an inference. Thus, our algo-
rithm will perform CR-inferences and AR-inferences.

Note that the conflict resolution rule derives a linear constraint violated by
σ:

Lemma 1. Let (S, σ) contain a k-conflict (xk + p ≥ 0,−xk + q ≥ 0). Then
σ 6|= p+ q ≥ 0. o

5

Let us introduce a new notation. For any system S of linear constraints, a
non-negative integer k and an assignment σ denote

L(S, σ, k) def= max{−pσ | (xk + p ≥ 0) ∈ S};
U(S, σ, k) def= min{qσ | (−xk + q ≥ 0) ∈ S};
I(S, σ, k) def= [L(S, σ, k), U(S, σ, k)].

For every set S of linear constraints and a positive integer k, denote by S=k

(respectively, S<k) the subset of S consisting of all constraints of the level k
(respectively, of all levels strictly less than k).

Lemma 2. (i) Condition (2) of the assignment refinement rule implies xkσ 6∈
I(S, σ, k). (ii) Condition (3) of the assignment refinement rule is equivalent to
v ∈ I(S, σ, k). (iii) The interval I(S, σ, k) is non-empty if and only if S contains
no k-conflicts.

Proof. (i) We assume that xkσ ∈ I(S, σ, k) and prove that σ satisfies S=k. Take
any constraint in S=k. Without loss of generality assume that it has the form
xk + p ≥ 0. Since xkσ ∈ I(S, σ, k), we have xkσ ≥ L(S, σ, k), that is, xkσ ≥
max{−pσ | (xk + p ≥ 0) ∈ S}. This implies xkσ ≥ −pσ, hence σ is a solution of
xk + p ≥ 0.

(ii) In one direction, assume v ∈ I(S, σ, k). Note that xkσ
v
xk

= v, so xkσ
v
xk
∈

I(S, σ, k) Using the same arguments as in (i) but with σ replaced by σv
xk

we
can prove σv

xk
|= S=k. In the other direction, assume σv

xk
|= S=k. We have

to prove v ∈ I(S, σ, k), that is, v ≥ L(S, σ, k) and v ≤ U(S, σ, k). We will only
prove the former condition, the latter one is similar. The former condition means
v ≥ max{−pσ | (xk + p ≥ 0) ∈ S}. To prove it, we have to show that for all
constraints of the form xk + p ≥ 0 in S (and hence in S=k) we have v ≥ −pσ.
Since p may only contain variables in {x1, . . . , xk−1} and σ agrees with σv

xk
on

all such variables, we have −pσ = −pσv
xk

, so v ≥ −pσv
xk

. Using xkσ
v
xk

= v, we
obtain xkσ

v
xk
≥ −pσv

xk
, hence σv

xk
is a solution of xk + p ≥ 0, and we are done.

(iii) We will prove that I(S, σ, k) is empty if and only if S contains a k-conflict.
In one direction, assume I(S, σ, k) is empty. Then L(S, σ, k) > U(S, σ, k). Note
that this implies that both L(S, σ, k) and U(S, σ, k) are finite. Since they are
finite, S=k contains two constraints of the form xk + p ≥ 0 and −xk + q ≥ 0
such that −pσ = L(S, σ, k) and qσ = U(S, σ, k). This and L(S, σ, k) > U(S, σ, k)
implies −pσ > qσ, and so 0 > pσ + qσ. Therefore, (xk + p ≥ 0,−xk + q ≥ 0) is
a k-conflict. The proof in other direction is similar. o

The following is a key lemma for our method.

Lemma 3. Let (S, σ) be a state and 1 ≤ k ≤ n. Let σ satisfy all constraints in
S of the levels 0, . . . , k − 1 and violate at least one constraint of the level k. If
I(S, σ, k) is empty, then the conflict resolution rule at the level k is applicable
and the assignment refinement rule at this level is not applicable. If I(S, σ, k) is
non-empty, then the assignment refinement rule at the level k is applicable and
the conflict resolution rule at this level is not applicable.

6

Algorithm 1 The Conflict Resolution Algorithm CRA
Input: A set S of linear constraints.
Output: A solution of S or “unsatisfiable”.

1: if ⊥ ∈ S then return “unsatisfiable”
2: σ := arbitrary assignment;
3: k := 1
4: while k ≤ n do
5: if σ 6|= S=k then
6: while (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) do
7: S := S ∪ {p+ q ≥ 0}; . application of CR
8: k := the level of (p+ q ≥ 0);
9: if k = 0 then return “unsatisfiable”

10: end while
11: σ := σv

xk
, where v is an arbitrary value in I(S, σ, k) . application of AR

12: end if
13: k := k + 1
14: end while
15: return σ

Proof. Suppose I(S, σ, k) is empty. By Lemma 2 (iii) S contains a k-conflict, so
the conflict resolution rule is applicable at the level k. Since I(S, σ, k) is empty,
by Lemma 2 (ii) condition (3) of the assignment refinement rule is violated, so
the assignment refinement rule at this level is not applicable.

Suppose that I(S, σ, k) is non-empty. Then by Lemma 2 (iii) S contains no
conflict, so the conflict resolution rule at the level k is not applicable. Take an
arbitrary value v ∈ I(S, σ, k). By Lemma 2 (ii) condition (3) of the assignment
refinement holds. Conditions (1) and (2) of this rule hold by the assumptions of
this lemma, so the assignment refinement rule is applicable. o

5 The Conflict Resolution Algorithm

The Conflict Resolution Algorithm CRA is given as Algorithm 1.
Let us note that the algorithm is well-defined, that is, the interval I(S, σ, k)

at line 11 is non-empty. Indeed, the algorithm reaches this line if (S, σ) contains
no conflict at the level k (by line 6). Then I(S, σ, k) is non-empty by Lemma 2
(iii).

Example 1. This example illustrates the algorithm. Let S0 be the following set
of constraints.

x4 − 2x3 + x1 + 5 ≥ 0 (1)
−x4 − x3 − 3x2 − 3x1 + 1 ≥ 0 (2)
−x4 + 2x3 + 2x2 + x1 + 6 ≥ 0 (3)

−x3 + x2 − 2x1 + 5 ≥ 0 (4)
x3 + 3x1 − 1 ≥ 0 (5)

7

Assume that the initial assignment σ maps all variables to 0. The algorithm
starts at the level 0. The sets S=0, S=1, S=2 are empty, so the assignment σ
trivially satisfies them. However, it violates constraint (5) and so violates S=3.
The interval I(S, σ, 3) is [1, 5]. It is non-empty, so by Lemma 3 we can apply
the assignment refinement rule at level 3 by updating σ at x3 by any value in
[1, 5]. Let us choose, for example, the value 4. Let σ1 denote the newly obtained
assignment {x4 7→ 0, x3 7→ 4, x2 7→ 0, x1 7→ 0}. Now we move to the next level
4. There is a 4-conflict between constraints (1) and (2) (line 6). We make a
CR-inference between these two clauses deriving a new constraint

− x3 − x2 − 2
3x1 + 2 ≥ 0 (6)

added to the set S at line 7. According to line 8 of the algorithm we set the level
k to the level of the new constraint, that is, to 3. Now there are no more conflicts
on level 3 and we have I(S, σ, 3) = [1, 2]. We should update the assignment at x3

by an arbitrary value in this interval. Suppose, for example, that we have chosen
1 as the value for x3 obtaining {x4 7→ 0, x3 7→ 1, x2 7→ 0, x1 7→ 0} and increase k
by 1 proceeding to level 4. At this moment all constraints at level 4 are satisfied
and the algorithm terminates returning σ. o

Our aim is to prove that the algorithm is correct and terminating.

Theorem 1. The conflict resolution algorithm CRA always terminates. Given
an input set of constraints S0, if CRA outputs “unsatisfiable”, then S0 is unsat-
isfiable. If CRA outputs an assignment σ, then σ is a solution of S0.

This theorem will be proved after a series of lemmas establishing properties of
the algorithm. In these lemmas we always denote the input set of constraints by
S0.

Lemma 4. At any step of the algorithm the set S is equivalent to S0, that is,
S and S0 have the same set of solutions.

Proof. Observe that line 7 is the only line that changes S. It is easy to see that
the application of this line does not change the set of solutions of S since the
constraint p+ q ≥ 0 added to S is implied by S. o

The following lemma is obvious.

Lemma 5. Every constraint occurring in S at any step of the CRA algorithm
belongs to the set of constraints derived by the Fourier-Motzkin algorithm applied
to S0. o

Lemma 6. The assignment σ at lines 4 and 6 satisfies S<k.

Proof. By induction on the number of iterations of the outermost while-loop.
Before the first iteration the property is obvious since k = 1 and ⊥ 6∈ S. So we
assume that the property holds before an iteration of the loop and show it holds
after this iteration. If σ |= S=k at line 5, then by σ |= S<k we have σ |= S<k+1. It

8

remains to consider the case when σ 6|= S=k at line 5. In this case the algorithm
may enter the internal while-loop starting at line 6. It is easy to see that at the
exit of this loop the property is satisfied as well, since k only decreases in the
loop and the new constraint p + q ≥ 0 is at the level k. So it remains to show
that after line 11 we have σ |= S=k. But this is guaranteed by Lemma 2 (ii), so
we are done. o

Lemma 7. Let (S, σ) contain a conflict (xk + p ≥ 0,−xk + q ≥ 0) at line 6.
Then we have (p+ q ≥ 0) 6∈ S.

Proof. By Lemma 6 at line 6 we have σ |= S<k. But we have σ 6|= (p + q ≥ 0),
hence (p+ q ≥ 0) 6∈ S<k. Since the level of (p+ q ≥ 0) is strictly less than k this
implies (p+ q ≥ 0) 6∈ S. o

This lemma means that the same constraint will never be added again to S. In
fact, the algorithm has a much stronger property formulated below in Lemma 8.

Let us now give the proof of Theorem 1.

Proof. We start with proving termination. By Lemma 7 the algorithm never
adds the same constraint twice. By Lemma 5 we can add only a finite number
of different constraints. Therefore, condition on line 6 can hold only a finite
number of times. From the moment this condition becomes permanently false,
k will always increase by 1, so the outermost while-loop will terminate.

Suppose now that the algorithm returns “unsatisfiable”. If this happens at
line 1, then ⊥ ∈ S0, so S0 is unsatisfiable. Otherwise, this happens at line 9.
Then σ 6|= p + q ≥ 0 by Lemma 1. Since k = 0, then the constraint p + q ≥ 0
contains no variables, so this constraint is trivial and unsatisfiable. By Lemma 4,
this constraint is implied by S0, hence S0 is unsatisfiable too.

It remains to consider the case when the algorithm return an assignment σ.
This only can happen at the last line of the algorithm. At this line, k = n + 1.
By Lemma 6, σ satisfies S<n+1. Note that S<n+1 = S, so σ also satisfies S. By
Lemma 4, S is equivalent to S0, hence σ also satisfies S0. o

6 Conflict Resolution and the Fourier-Motzkin Method

We say, that a CR-inference at a level k is redundant w.r.t. a state (S, σ) if the
conclusion of this inference is a consequence of constraints in S<k. Let us prove a
key property that distinguishes our algorithm from the Fourier-Motzkin method.

Lemma 8. Every CR-inference performed by the CRA algorithm is non-redundant.

Proof. Suppose that the algorithm performs a redundant inference adding p+q ≥
0 at line 7. Then by the definition of redundancy p+q ≥ 0 is implied by S<k. By
Lemma 6 we have σ |= S<k, then σ must also satisfy p+ q ≥ 0. This contradicts
to the definition of a conflict. o

9

To illustrate this lemma, let us come back to Example 1. Note that in this
example we have not applied the conflict resolution inference between constraints
(1) and (3). It is easy to see that the conclusion of this inference is implied by
constraints (4) and (5) at smaller levels, therefore this inference would not be
applied independently of the choices of assignments made by the algorithm.

Let us now show that the Fourier-Motzkin algorithm cannot polynomially
simulate our algorithm in a very strong sense. This example is taken from [10]. It
contains all inequalities of the form ±xk±xl±xm ≥ 0, where n ≥ k > l > m ≥ 1.
Evidently, the size of the system is O(n3) and there exists only a single solution
assigning 0 to all variables. It is shown in [10] that the Fourier-Motzkin method
generates exponentially many (in n) inequalities for this example. Let σ be an
arbitrary assignment. Our method will start generating conflicts from level 3
containing 8 inequalities until it updates σ so that x1σ = x2σ = x3σ = 0. After
that it will proceed to level 4, where the interval I(S, σ, 4) will consist of a single
point 0. The assignment refinement will set x4σ to 0 and no conflicts will be
generated. The same will happen with all levels greater than 4, so the algorithm
will terminate in a linear number of steps. Essentially, apart from the initial work
on level 3, the conflict resolution algorithm will only evaluate every inequality
once and so work in time linear in the size of the system, that is O(n3). Note that
this running time does not depend on either the choice of the initial assignment
or the choice of values in the assignment refinement inferences.

7 Extensions

In this section we briefly mention two extensions of the method: one is for working
with strict inequalities and another one for linear programming.

The modification of the algorithm for working with strict inequalities p > 0
is straightforward. First, when we consider the interval

I(S, σ, k) = [L(S, σ, k), U(S, σ, k)]

if any endpoint of this interval corresponds to a strict inequality, we use a semi-
open or an open interval instead. For example, if there is a strict inequality
(xk + p > 0) ∈ S such that −pσ = L(S, σ, k) but no strict inequality (−xk + q >
0) ∈ S such that qσ = U(S, σ, k), then we use the semi-open interval

I(S, σ, k) = (L(S, σ, k), U(S, σ, k)].

Second, the result of the conflict resolution rule is a strict inequality if at least
one of the premises is strict. It is not hard to generalise our method to deal with
disequalities p 6= 0 as well.

To use our algorithm for linear programming, we can use the following trick.
Suppose, for example, that we want to find a maximum of a linear function
p. To this end we assume that the constraint do not contain the variable x1

and add the equality p − x1 = 0. After that we use our algorithm with the
only modification that we always select the maximal possible value for x1 in the

10

assignment refinement rule. A special care should be taken when we have no a
priory upper bound on x1. However, using the method for linear programming
is beyond the scope of this paper.

8 Implementation

In this section we briefly describe details of our implementation of the conflict
resolution algorithm. Our implementation works with linear constraints of the
form q � 0, for � ∈ {≥, >,=}. In order to compare conflict resolution with other
methods for solving systems of linear constraints we also implemented the stan-
dard Fourier-Motzkin algorithm and the Chernikov algorithm [4] using the same
data structures as used in the implementation of CRA.

Informally, the Chernikov algorithm extends the Fourier-Motzkin algorithm,
(see Section 3) with the following restriction on added linear constraints. Let
S = Sn be the set of linear constraints. With each linear constraint we associate
a set of initial constraints used in the derivation of this constraint, called the
index set. Define the index set of an initial constraint c ∈ Sn to be {c}. Let
k > 0. The system Sk−1 is obtained from Sk by removing all linear constraints
containing xk and adding new linear constraints as follows. For every pair of
linear constraints xk + p ≥ 0 and −xk + q ≥ 0 in Sk, with index sets I, J
respectively, we add to Sk−1 a new constraint p + q ≥ 0 with the index set
I ∪ J , if the following conditions (i-ii) hold. Let l be the level of p + q ≥ 0 (see
Section 4), then (i) the cardinality of I ∪J is less than or equal to n− l+ 1, and
(ii) there is no constraint c in Sk−1 of the level l with the index set U ⊆ (I ∪ J).
It is shown in [4] that the original system S is unsatisfiable if and only if S0

contains ⊥.
Our implementation of conflict resolution follows Algorithm 1. There are a

number of key parameters that can be used to fine-tune the CRA algorithm,
namely

1. strategies for selecting conflicts,
2. strategies for selecting values in the assignment refinement rule,
3. order on variables.

Let us briefly describe possible choices for these parameters in our current im-
plementation.

The strategy for selecting conflicts in the current implementation is based on
maximal overlaps, as described below. At the line 7 of Algorithm 1 we select a
k-conflict xk + p ≥ 0 and −xk + q ≥ 0 in S (i.e. pσ + qσ < 0), such that −pσ =
L(S, σ, k) and qσ = U(S, σ, k). To explain the rationale behind this strategy let
us extend our notion of redundancy to constraints. We call a constraint c at a
level k redundant if this constraint is implied by S<k+1 − {c}. One can modify
our algorithm and show that any redundant constraint can be removed2.

2 We cannot remove redundant constraints simultaneously since removal of a redun-
dant constraint can make another previously redundant constraint non-redundant.

11

It is not hard to prove that constraints xk +p ≥ 0 such that −pσ = L(S, σ, k)
are “almost” non-redundant in the following sense.

Lemma 9. Consider the set S+ of all constraints at a level k having the form
xk + p ≥ 0. Consider its subset S′ consisting of all constraints xk + p ≥ 0 such
that −pσ = L(S, σ, k). Then S′ is not implied by S<k ∪ (S+ − S′). o

One can formulate a symmetric property for constraints −xk + q ≥ 0 such that
qσ = U(S, σ, k).

Although our algorithm does not perform redundant inferences, the system
may contain redundant constraints at a level k for two reasons: (i) it may contain
redundant constraints initially; and (ii) addition of new constraints to a level k
may make other constraints at this and higher levels redundant. Choosing a
k-conflict xk + p ≥ 0 and −xk + q ≥ 0 in S (i.e. pσ + qσ < 0), such that
−pσ = L(S, σ, k) and qσ = U(S, σ, k) does not, in general, guarantee, that the
constraints forming the conflict are non-redundant but it guarantees that they
are “almost” non-redundant in the sense of Lemma 9.

We tried several strategies for selecting values in the assignment refinement
rule. One of the strategies is just selection of the middle point in the interval
I(S, σ, k) (line 11). Our experiments show that using this strategy frequently
results in a rapid growth of the sizes of numerators and denominators of rational
values in the assignment. In order to avoid this problem we used the following
strategy for selecting the update values from the interval I(S, σ, k). First, if the
endpoints of I(S, σ, k) coincide, then we select one of them. Otherwise, we select a
rational number n/m in I(S, σ, k) such that (i) m is the least power of 2 among
denominators of all rationals in I(S, σ, k), and (ii) n is such that, n/m is the
closest rational to the middle point of the interval, among all rationals satisfying
(i). It is possible to show that a rational satisfying both (i) and (ii) always exists.
In particular, if I(S, σ, k) contains integer points, then our strategy will select an
integer in I(S, σ, k) closest to the middle point. As our experiments show, such
choice of values considerably simplifies the assignment values and constraint
evaluation.

The last parameter of the CRA algorithm we consider here is the order on
variables. In the current implementation the order on variables is selected ran-
domly before the run of the CRA algorithm. We believe that a careful selection
of the order on variables based on the properties of the input problem can con-
siderably improve the performance of our implementation and we will make
experiments with the order selection in the nearest future.

The CRA algorithm is implemented in C++ using the GMP library for arbi-
trary precision arithmetic 3. Thus, all computations with rational numbers are
done with arbitrary precision. We implemented two different representations of
constraints, one using arrays of the size n to store vectors and one storing only
non-zero coefficients. Not surprisingly, on randomly generated problems the first
implementation is slightly better in both time and space while the second one

3 http://gmplib.org/

12

4000 problems vars 3-12 (unsat/sat)

CRA CVC3 FM Ch

timeout (20s) 0/0 11/9 790/329 149/10

av. time (s) 0/0 0/0 0.4/0.1 0.6/0.1

400 problems vars 13-22 (unsat/sat)

CRA CVC3 FM Ch

timeout (20s) 5/2 21/33 183/144 155/65

av. time (s) 0.2/0.3 0/0 0.1/0.5 1.9/0.6

Table 1. Randomly Generated Problems

can be much faster (and consume much less space) on non-random problems,
where vectors are normally sparse.

Finally, let us note that in the context of satisfiability modulo theories (SMT),
it is desirable for solvers to be incremental and be able to generate explanations
for the unsatisfiability. The CRA algorithm and our implementation can easily
be made incremental: after adding/removing constraints we can always continue
with the current assignment, moreover the CRA never performs redundant in-
ferences and in particular, never performs the same inference twice (unless the
conclusion was removed). Explanations can be generated from the proofs of un-
satisfiability which are easily extractable from runs of the CRA algorithm.

9 Experimental Results

In this section we experimentally evaluate our implementation of the conflict res-
olution algorithm, the Fourier-Motzkin algorithm and the Chernikov algorithm.
We implemented the algorithm in C++ using the GNU Multiple Precision Arith-
metic Library (GMP) for handling arbitrary-precision rationals.

We compare our implementation with CVC3 [1] and Barcelogic [?], which
are well-developed solvers for satisfiability modulo theories (SMT). CVC3 incor-
porates a variant of the Fourier-Motzkin algorithm and Barcelogic incorporates
the simplex algorithm for reasoning with linear arithmetic. Let us note that our
implementation is at a very early stage, no preprocessing was used and crucial
for efficiency heuristics such as selection of suitable variable order are yet to be
implemented. Already for this implementation, our experimental results are very
encouraging, showing that the conflict resolution algorithm is considerably more
efficient in solving linear constraints than the standard Fourier-Motzkin algo-
rithm. For example, an order of magnitude difference occurs already on small
problems.

We evaluated the solvers on two sets of benchmarks4. The first set of bench-
marks consists of randomly generated systems of linear constraints. The second
set of benchmarks consists of systems of linear constraints extracted from real-life
SMT problems [2], using our tool called Hard Reality (HRT) [9]. All experiments
were run on a Linux laptop with CPU 2.8GHz and memory 4Gb.

Results for randomly generated problems are shown in Table 1. The conflict
resolution algorithm can solve all 4000 randomly generated problems with the

4 http://www.cs.man.ac.uk/˜korovink/cra bench

13

304 problems (unsat)

CRA CVC3 FM Ch

timeout (60s) 1 4 44 42

av. time 0.2 0.13 0.1 0.12

Table 2. Hard Reality Problems

2x5 − 3x4 + x3 − 3x2 − 2x1 + 3 ≥ 0
2x5 + x4 − 2x3 − 2x1 + 2 ≥ 0
−x5 + 3x2 + x1 + 2 ≥ 0
−3x5 + 2x3 − 3x1 − 2 ≥ 0
x5 − 2x4 − 2x2 + 3x1 − 2 ≥ 0

−2x5 + 2x4 − 3x3 − x2 + 2x1 + 3 > 0
3x5 − 2x4 + 2x3 + 3x2 + 2x1 + 1 > 0
x5 + 2x1 + 2 > 0

2x4 − x3 − 3x2 − x1 + 3 = 0

Fig. 1. A randomly generated problem

number of variables ranging from 3 to 12 (within the total time of 7 seconds)
and on the problems with the number of variables ranging from 13 to 22 fails
only on 7. The CVC3 implementation of the Fourier-Motzkin algorithm fails
to solve 20 problems and 54 problems respectively. Our implementation of the
Fourier-Motzkin algorithm solves considerably fewer problems than CRA. The
Chernikov algorithm improves over the Fourier-Motzkin but solves considerably
fewer problems than CRA.

Table 2 compares the solvers on the problems extracted from SMT bench-
marks using the Hard Reality Tool. These problems have different structure
than the randomly generated problems, in particular the number of variables
and constraints are considerably higher, most of problems contain several hun-
dred of different variables and constraints.

The CRA also solves more problems in the Hard Reality benchmarks than
any of CVC3, Fourier-Motzkin, and Chernikov algorithms. The average time of
the CRA is a bit higher than of CVC3 due to extra solved problems. Indeed, in
a pairwise comparison on all solved problems in these benchmarks the CRA is
faster than CVC3.

One of the most striking examples showing the difference in performance is
shown in Figure 1. The problem on this figure which was randomly generated
and contains 5 variables and 10 linear constraints.

The standard Fourier-Motzkin algorithm run on this problem generated over
280 million linear constraints, while the conflict resolution algorithm generated
only 21 constraints. However, this example is not outstanding as compared to
our other experiments described above.

14

400 problems vars 13-22 (unsat/sat)

faster same av. time timeout (20s)

Barcelogic 28/29 146/167 0.04/0 0/0

CRA 23/7 146/167 0.2/0.3 5/2

400 problems vars 23-32 (unsat/sat)

Barcelogic 110/67 31/88 0.25/1.0 0/0

CRA 63/41 31/88 0.7/1.6 60/37

Table 3. CRA vs Barcelogic

Compared to the simplex algorithm, the conflict resolution shows promising
potential. In Table ?? the CRA is compared to Barcelogic. Already our non-
optimized implementation is faster than Barcelogic on a number of problems,
although Barcelogic can solve more problems than CRA within 20 seconds.

To summarise, our experiments show that a naive implementation of the
conflict resolution algorithm outperforms the Fourier-Motzkin and Chernikov
algorithms in solving systems of linear constraints and has promising potential
compared to the simplex algorithm. For the future work we are planning to
extend the CRA algorithm with various heuristics for choosing conflicts, order
on variables, values in the assignment update rule and methods for avoiding
unnecessary re-evaluation of constraints.

10 Related Work

In this section we compare various modifications of the Fourier-Motzkin method
with the conflict resolution method.

Most of modifications of the Fourier-Motzkin method aim at identifying po-
tentially redundant constraints by providing some easy-to-check sufficient con-
ditions for redundancy. One of the most prominent methods for restricting gen-
eration of redundant constraints was suggested by Chernikov [4]. His idea is to
associate with each constraint some bookkeeping information on how this con-
straint was derived. Under certain conditions a newly derived constraint can be
shown to be redundant based on this information (see Section 8). There are a
number of extensions and modifications of this and other ideas developed over
the past decades (e.g., [5, 8, 6, 7]). Our notion of redundancy seems to be or-
thogonal to that of Chernikov and the others, in particular it is based on the
ordering on constraints and semantic entailment from the smaller constraints.
One of important properties of the conflict resolution algorithm is that it never
performs redundant inferences as defined in this paper. As a future work, we
will investigate whether it is possible to combine our notion of redundancy with
restrictions used by other methods.

15

11 Conclusions

We presented a new algorithm for solving systems of linear constraints, called
conflict resolution. The method successively refines an initial assignment with
the help of newly derived constraints until either the assignment becomes a
solution of the system or the inconsistency of the initial system is proved. We
have shown that this method is correct and terminating. The conflict resolution
method has a number of attractive properties such as blocking of redundant
inferences. We implemented our method and experimental results show that on
the majority of problems we tried conflict resolution considerably outperforms
well-developed methods such Fourier-Motzkin and Chernikov algorithms. We are
currently working on improving our implementation and integration of crucial for
efficiency heuristics such as various strategies for conflict selection, assignment
refinement and variable order.

References

1. C. Barrett and C. Cesare Tinelli. CVC3. In W. Damm and H. Hermanns, editors,
CAV ’07, volume 4590 of LNCS, pages 298–302. Springer-Verlag, 2007. Berlin,
Germany.

2. C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2008.

3. V. Chandru. Variable elimination in linear constraints. Comput. J, 36(5):463–472,
1993.

4. S.N. Chernikov. Linejnye Neravenstva. Nauka, Moscow, 1968. (In Russian).
5. R.J. Duffin. On Fourier’s analyse of linear inequality systems. Mathematical Pro-

gramming Study, 1:71–95, 1974.
6. JL. Imbert and P. Van Hentenryck. A note on redundant linear constraints. Tech-

nical Report CS-92-11, CS Department, Brown University, 1992.
7. Joxan Jaffar, Michael J. Maher, Peter Stuckey Roland, and Roland H. C. Yap.

Projecting CLP(R) constraints. New Generation Computing, 11, 1993.
8. D.A. Kohler. Projection of Convex Polyhedral Sets. PhD thesis, University of

California, Barkaley, 1967.
9. K. Korovin and A. Voronkov. Hard Reality Tool. Submitted, available at

http://www.cs.man.ac.uk/˜korovink/hr, 2009.
10. R. Nieuwenhuis and A. Oliveras. Decision Procedures for SAT, SAT Modulo

Theories and Beyond. The BarcelogicTools. (Invited Paper). In G. Sutcliffe and
A. Voronkov, editors, 12h International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture Notes in
Computer Science, pages 23–46. Springer, 2005.

11. A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons,
1998.

