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Motivation The security of software is increasingly more
critical for consumer confidence, protection of privacy, pro-
tection of intellectual property, and even national security.
As threats to software security have become more sophisti-
cated, so too have the techniques developed to ensure secu-
rity. One basic technique that has become a fundamental
tool in static security analysis is symbolic execution. There
are now a number of successful approaches that rely on
symbolic methods to reduce security questions about pro-
grams to constraint satisfaction problems in some formal
logic (e.g., [4, 5, 7, 16]). Those problems are then solved au-
tomatically by specialized reasoners for the target logic. The
found solutions are then used to construct automatically se-
curity exploits in the original programs or, more generally,
identify security vulnerabilities.

In the last few years, solvers based on Satisfiability Mod-
ulo Theories (SMT) techniques have become a natural choice
in such approaches to security because of: (i) their superior
performance and level of automation compared to more tra-
ditional theorem provers; and (ii) their greater generality
with respect to ad-hoc tools and propositional satisfiability
solvers. The most powerful SMT solvers integrate a fast
propositional engine with several theory solvers, each spe-
cialized on a theory of interest such as, for instance, linear
arithmetic, bit-vectors, or arrays.

Security analyses are frequently required to reason about
constraints over character strings. Program inputs, espe-
cially in web-based applications, are often provided as strings
which are then processed using string operations such as
matching against regular expressions, string concatenation,
and substring extractions or replacement. In general, both
safety and security analyses can benefit from automatic solv-
ers capable of checking the satisfiability of constraints over
a rich set of data types that includes character strings.

Major challenges A major difficulty in reasoning about
strings is that any reasonably comprehensive theory of char-
acter strings is undecidable [3]. However, several more re-
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stricted (but still quite useful) theories of strings do have
a decidable satisfiability problem. These include any the-
ories of fixed-length strings, which are trivially decidable
for having a finite domain, but also some fragments over
unbounded strings (e.g., word equations [15]). The satisfi-
ability problem in most of these fragment has high worst-
case time complexity (from NP to PSPACE [18]). Recent
research has focused on identifying decidable fragments suit-
able for program analysis and, more crucially, on developing
efficient solvers for them.

Previous state of the art Until recently, satisfiability
solvers for strings were standalone tools that could reason
only about some fragments of the theory of strings and reg-
ular expressions, sometimes with strong restrictions on the
expressiveness of their input language such as, for instance,
the imposition of exact length bounds on all string vari-
ables [10]. These solvers were based on reductions to satisfia-
bility problems over other data types such as bit vectors [10],
arrays [11], or integer arithmetic [3], or on reductions to au-
tomata decision problems [8, 9, 6]. General multi-theory
SMT solvers have emerged as overall more powerful tools
when reasoning over several datatypes is required. Thus in-
corporating native string support into an SMT solver has the
potential to open a wide range of opportunities for security
analyses, which normally need to consider programs with
more than just string operations. Yet, so far SMT solvers
have had minimal or no native support for handling strings,
mostly due to the complexity of string solving.

Presented work This poster summarizes our recent work
aimed at addressing the issues discussed above and pub-
lished in a number of recent or upcoming papers [12, 14,
13]. The presented work has been developed with input and
feedback from security experts at Carnegie-Mellon Univer-
sity. Our implementation within the SMT solver CVC4 [2]
is being used at CMU for the analysis of Python programs.
Several other users worldwide are now using the solver for
a variety of safety and security analyses of programs that
process strings in combinations with other datatypes.

Contribution and significance We present a set of al-
gebraic techniques for solving constraints over a rich theory
of unbounded strings natively, without reduction to other
problems. These techniques can be used to expand SMT
solvers with capabilities to reason over strings, in the context
of the DPLL(T ) architecture used by most state-of-the-art
SMT solvers [17].
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Formally, we have devised a new calculus for reasoning
about quantifier-free constraints over a theory of unbounded
strings with length constraints, regular language member-
ship constraints, and common string manipulating functions.
We implemented a proof procedure for this calculus within
CVC4 as a theory solver for strings, thus expanding CVC4’s
already large set of built-in theories. This work makes CVC4
the first SMT solver that is able to handle mixed constraints
over strings, integers/reals, bit-vectors, arrays, and algebraic
data types.1

Theoretical results We proved that our calculus is so-
lution sound and refutation sound [13]. That is, when our
solver returns a solution we can trust that it is indeed a so-
lution (solution soundness). If our solver concludes there is
no solution to an input instance we can trust this conclusion
too (refutation soundness).

We obtained decidability results on some expressive frag-
ments of our theory of strings by showing that our calculus
can be turned into a decision procedure for those fragments.
In particular, we devised a decision procedure for unbounded
strings with regular expression membership and length con-
straints. [14]

Experimental evaluation We evaluated the the perfor-
mance of our solver by comparing it against a legacy string
solver, Kaluza [19], and more recent ones based on simi-
lar approached to ours: Z3-str [21], S3 [20], and Norn [1].
These solvers, which have also been used in security analy-
sis applications, were chosen for being publicly available and
having an input language that largely overlaps with that of
our solver.

We ran experiments on a large set of about 50K bench-
marks, coming from real-life web-security applications. They
were generated by Kudzu, a symbolic execution framework
for Javascript, and are available on the Kaluza web site2.
The experimental evaluation shows that on string problems
our approach is highly effective – overall it outperforms the
other string solvers in terms of correctness, precision, and
run time.
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