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Abstract. The conflict resolution method, introduced by the authors in [1] is a
new method for solving systems of linear inequalities over the rational and real
numbers. This paper investigates various heuristics for optimisation of the method
and presents experimental evaluation. The method and heuristics are evaluated
against various benchmarks and compared to other methods, such as the Fourier-
Motzkin elimination method and the simplex method.

1 Introduction

In this paper we present an evaluation of our conflict resolution method [1] for checking
solvability of systems of linear inequalities.

Conflict resolution is a solution driven method. Given a system of linear inequalities
and an arbitrary initial assignment on variables, the method iteratively modifies the
assignment aiming at obtaining a solution. During this process a conflict can arise when
the current assignment cannot be directly modified to satisfy the system of inequalities.
In this case there exists at least one pair of conflicting inequalities which impedes the
refinement. Such a conflict is resolved by deriving a new inequality from the conflicting
pair and adding it to the current system of inequalities. The process continues until
either the assignment is refined into a solution, or a trivially unsatisfiable inequality is
derived, showing unstaisfiability of the initial system of inequalities. In [1] the conflict
resolution method is shown to be sound, complete and terminating.

The performance of the method can be improved by using various strategies for
selecting conflicting pairs, refinement of assignments, and choosing the order on vari-
ables. In this paper we introduce a number of heuristics and strategies for the con-
flict resolution method. We evaluate them on various benchmarks and compare to other
methods for solving systems of linear inequalities such as the Fourier-Motzkin elimina-
tion method and the simplex method.

This paper is structured as follows. In Section 2 we give some preliminary no-
tations. Section 3 briefly overviews the conflict resolution method. In Section 4 we
present heuristics whose performance is studied in the paper. Section 5 describes the
set of benchmarks used for the experimental evaluation. In Section 6 we describe pre-
processing methods used in the evaluation. . The results of experiments are discussed in
Section 7. In Section 8 we summarise the presented work and discuss further research
directions.
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2 Preliminaries

Let Q denote the set of rationals, and X be a finite set of variables {x1, . . . , xn} where
n is a positive integer. We call a rational linear constraint over X either a formula
anxn + . . .+ a1x1 + b � 0, where � ∈ {≥, >,=} and ai ∈ Q for 1 ≤ i ≤ n, or one of
the formulas ⊥,>. The formula ⊥ is always false and > is always true. The constraints
⊥ and > are called trivial.

We introduce an order on variables, without loss of generality we can assume: xn �
xn−1 � . . . � x1. For simplicity, we consider all constraints throughout the paper to
be normalised, i.e. be of one of the forms: ⊥, >, xk + q � 0 or −xk + q � 0, where
� ∈ {≥, >,=}, xk is the maximal variable in the respective constraint, and q does
not contain xk. Evidently, every constraint can be effectively changed to an equivalent
normalised constraint. We introduce a notion of the level of a constraint as follows: if the
maximal variable in a constraint c is xk, then we say that k is the level of c. If c contains
no variables, then we define the level of c to be 0. Note that, since all constraints are
assumed to be normalised, a constraint written in the form xk + p ≥ 0 or −xk + q ≥ 0
is of the level k.

We define an assignment σ over the set of variables X as a mapping from X to Q,
i.e. σ : X → Q. Given an assignment σ, a variable x ∈ X and a value v ∈ Q, we call
the update of σ at x by v, denoted by σv

x, the assignment obtained from σ by changing
the value of x by v and leaving the values of all other variables unchanged.

For a linear form q over X , denote by qσ the value of q after replacing all variables
x ∈ X by the corresponding values σ(x). An assignment σ is called a solution of a
linear constraint q�0 if qσ�0 is true; it is a solution of a system of linear constraints if it
is a solution of every constraint in the system. If σ is a solution of a linear constraint c (or
a system S of such constraints), we also say that σ satisfies c (respectively, S), denoted
by σ |= c (respectively, σ |= S), otherwise we say that σ violates c (respectively, S). A
system of linear constraints is said to be satisfiable if it has a solution.

For simplicity, we consider only algorithms for solving systems of linear constraints
of the form q ≥ 0, ⊥ and >.

We define a state as a pair (S, σ), where S is a system of linear constraints and σ an
assignment. Let S = (S, σ) be a state and k a positive integer. We say that S contains
a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) if (i) both xk + p ≥ 0 and −xk + q ≥ 0 are
linear constraints in S and (ii) pσ + qσ < 0. Instead of “k-conflict” we will sometimes
simple say “conflict”. Note that if σ is a solution of S, then S contains no conflicts.

3 The Conflict Resolution Algorithm

We will now formulate our method. Given a system S of linear constraints, it starts with
an initial state (S, σ), where σ is an arbitrary assignment, and repeatedly transforms the
current state by either adding a new linear constraint to S or updating the assignment.
We will formulate these rules below as transformation rules on states S⇒ S′, meaning
that S can be transformed into S′. Let k be an integer such that 1 ≤ k ≤ n.
The conflict resolution rule (CR) (at the level k) is the following rule:

(S, σ)⇒ (S ∪ {p+ q ≥ 0}, σ),
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Algorithm 1 The Conflict Resolution Algorithm CRA
Input: A set S of linear constraints.
Output: A solution of S or “unsatisfiable”.
1: if ⊥ ∈ S then return “unsatisfiable”
2: σ := arbitrary assignment;
3: k := 1
4: while k ≤ n do
5: if σ 6|= S=k then
6: while (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0) do
7: S := S ∪ {p+ q ≥ 0}; . application of CR
8: k := the level of (p+ q ≥ 0);
9: if k = 0 then return “unsatisfiable”

10: end while
11: σ := σv

xk
, where v is an arbitrary value in I(S, σ, k) . application of AR

12: end if
13: k := k + 1
14: end while
15: return σ

where (S, σ) contains a k-conflict (xk + p ≥ 0,−xk + q ≥ 0).
The assignment refinement rule (AR) (at the level k) is the following rule:

(S, σ)⇒ (S, σv
xk
),

where

1. σ satisfies all constraints in S of the levels 0, . . . , k − 1.
2. σ violates at least one constraint in S of the level k.
3. σv

xk
satisfies all constraints in S of the level k.

We will call any instance of an inference rule an inference. Thus, our algorithm will
perform CR-inferences and AR-inferences. Note that the conflict resolution rule derives
a linear constraint violated by σ.

In the description of the conflict resolution algorithm we use the following notation.
For every set S of linear constraints and a positive integer k, denote by S=k (respec-
tively, S<k) the subset of S consisting of all constraints of the level k (respectively, of
all levels strictly less than k). For any system S of linear constraints, a non-negative
integer k and an assignment σ denote

L(S, σ, k)
def
= max{−pσ | (xk + p ≥ 0) ∈ S};

U(S, σ, k)
def
= min{qσ | (−xk + q ≥ 0) ∈ S};

I(S, σ, k)
def
= [L(S, σ, k), U(S, σ, k)].

Informally, the interval I(S, σ, k) will be used in our main algorithm to define the
range of admissible values of the variable xk for the assignment refinement rule.

The Conflict Resolution Algorithm CRA is given as Algorithm 1. CRA is shown to
be sound, complete and terminating in [1].
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The algorithm can be parametrised by various strategies for (i) selection of conflict-
ing pairs: we can choose any conflicting pair (at line: 6), (ii) refinement of assignments:
we can choose any value v inside the interval I(S, σ, k) (at line: 11) and (iii) selection
of the order on variables �. We consider these strategies in the next section.

4 Strategies for Conflict Resolution

In this section we discuss strategies and heuristics used for fine-tuning the conflict res-
olution method. First we consider strategies based on the main parameters of the CRA
algorithm:

1. strategies for selecting conflicts,
2. strategies for selecting values in the assignment refinement rule,
3. strategies for selecting the order on variables.

Then we discuss optimization-related strategies for: i) reducing the number of de-
rived constraints, ii) dealing with half-bounded levels and iii) reducing coefficients in
the constraints.

For each of the heuristics we introduce short namings and then combine them to
address particular set of heuristics in our experiments and discussions.

4.1 Strategies for Selecting Conflicts

The issue of selecting a conflicting pair of constraints arises naturally when more than
one conflicting pairs occur on a level. We implemented a number of various strategies.
To illustrate these strategies, we will use the following example:

x4 − 2x3 + x1 + 5 ≥ 0 (1)
x4 − x3 + x2 + 2 ≥ 0 (2)
−x4 + x3 + 2x1 − 4 ≥ 0 (3)
−x4 − x3 + + x1 + 1 ≥ 0 (4)

x3 + x1 − 1 ≥ 0 (5)
− x3 + x2 − 2x1 + 5 ≥ 0 (6)

We consider order on variables x4 � x3 � x2 � x1 and initial assignment σ : {x4 7→
0;x3 7→ 0;x2 7→ 0;x1 7→ 0}. To illustrate the algorithm, we will split all inequalities
into subsets corresponding to their levels. This initially gives two non-empty levels as
shown bellow:

Level 4

(1) 2x3 − x1 − 5 ≤ x4 x4 ≤ x3 + 2x1 − 4 (3)
(2) x3 − x2 − 2 ≤ x4 x4 ≤ −x3 + + x1 + 1 (4)

Level 3

(5) − x1 + 1 ≤ x3 x3 ≤ x2 − 2x1 + 5 (6)
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CRA starts with level 3. At this level σ 6|= S=k and the interval I(S, σ, 3) = [1; 5] is
non-empty, thus AR rule is applicable. AR refines the assignment σ := σv

x3
, updating

the value of the variable x3 by v, where v is an arbitrary value in I(S, σ, 3). Let v = 4.
CRA moves to level 4 with σ : {x4 7→ 0;x3 7→ 4;x2 7→ 0;x1 7→ 0} and σ |= S<4. At
level 4 the interval I(S, σ, 4) is empty [3;−3] and CRA detects 4 conflicts (indeed, all
pairs of constraints of different signs are conflicting). To proceed, CRA selects one of
the conflicts.

In the following we discuss our strategies for selecting conflicts.
Algebraic or Maximal Overlap approach (MO). One of the strategies we tried is
based on maximal overlaps, defined as follows. We select a k-conflict xk + p ≥ 0 and
−xk + q ≥ 0 in S (i.e., pσ + qσ < 0), such that pσ = L(S, σ, k) and qσ = U(S, σ, k).
To explain the rationale behind this strategy we refer to the notion of ‘almost’ non-
redundant constraints, defined in [1]. For readers’ convenience we recall this notion
here.

Lemma 1. Consider the set S+ of all constraints at a level k having the form xk+p ≥
0. Consider its subset S′ consisting of all constraints xk + p ≥ 0 such that −pσ =
L(S, σ, k). Then S′ is not implied by S<k ∪ (S+ − S′). o

Based on this definition, choice of a conflict with maximal overlap guaranties that the
constraints xk + p ≥ 0 and −xk + q ≥ 0 are ‘almost’ non-redundant in the above
sense. In our example the maximal overlap [3;−3] is obtained for the conflict: ((1), (4)).
Resolvent of the conflict x3 ≤ 2

3x1 +2 is added to level 3. New bounds on the variable
x3 define a non-empty interval I(S, σ, 3) = [1; 2] which does not contain the current
value of x3 = 4. The assignment refinement rule is applied. Let the new value of x3 be
1. Moving to level 4, the algorithm detects the only conflict ((2), (3)) giving the empty
interval I(S, σ, 4) = [−1;−3]. This time resolvent of the conflict −2x1 + 2 ≤ x2 is
added to level 2. Having the only constraint at level 2 the interval I(S, σ, 2) is half-
bounded [2; +∞) and the current value of x2 = 0 lies outside it. Again, the assignment
refinement rule updates σ by assigning x2 a new value from the interval, suppose this
value is 2. One can easily check that following up to level 3 and level 4 no more conflicts
are formed and no assignment refinement is needed. Thus, the system is satisfiable and
σ : {x4 7→ 0, x3 7→ 1, x2 7→ 2, x1 7→ 0} is a solution.
Geometric or Relaxation Method approach (RM). Another strategy for selecting a
conflict comes from the geometrical ideas behind the relaxation method, (see, e.g., [8]).
As we know, an assignment σ represents a point M in the n-dimensional space and
the system of linear inequalities S defines a polyhedron in this space. The relaxation
method iteratively changes the assignment trying to get inside the polyhedron defined
by S. New assignment is chosen by reflecting M over a hyperplane that (i) is defined
by a constraint in S that is violated by M , i.e., M is outside the feasible area defined by
a hyperplane of one of the facets of the polyhedron and (ii) is on the maximal distance
from M . A constraint defining such a hyperplane is called the most violated constraint.
The original relaxation method has a substantial drawback – each iteration leads to
solving of a new problem. Moreover the relaxation method does not always terminate,
producing approximations converging to a solution but never achieving it.

However, the idea of reflection over the hyperplane of the most violated constraint
is itself geometrically attractive. We integrated this idea into our algorithm as a conflict
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selection criterion: choose a conflicting pair of constraints with the most violated resol-
vent. In contrast to the relaxation method our algorithm with the same conflict selection
criterion does not require solving a new problem after each iteration, and moreover
guarantees termination.

Let us show how CRA selects a conflict using the geometric approach. Let us return
to level 4 with the refined assignment σ : {x4 7→ 0;x3 7→ 4;x2 7→ 0;x1 7→ 0}. As
mentioned above, all pairs are conflicting at this stage. Assignment σ corresponds to the
point M(0, 4, 0, 0) which is outside the solution space. To use the geometric approach,
CRA searches for the hyperplane which is defined by one of the resolvents of these
conflicts and is the furthermost to M . The distance from a point P = (pn, . . . , p1) to a
hyperplane corresponding to the constraint anxn+ . . . a1x1+ b ≥ 0 is calculated using
the formula:

|anpn + . . . a1p1 + b|√
a2n + . . .+ a21

Since we need the maximal distance we compared squares of the distances to avoid
calculations with roots. It is easy to see, that the furthermost hyperplane toM is defined
by the resolvent of the conflict ((2), (4)) : x3 ≤ 1

2x2 + 1
2x1 + 3

2 . This constraint is
of level 3. The interval I(S, σ, 3) becomes [1; 3

2 ] and the assignment can be refined by
updating the value of x3. Let σ := σ1

x3
. Moving to level 4, we find that the interval is

empty I(S, σ, 4) = [−1;−3] and the only conflicting pair of constraints is ((2), (3)).
The resolvent of this conflict−2x1+2 ≤ x2 is added to level 2. This constraint defines
a half-bounded interval for the values of I(S, σ, 2) = [2;+∞) which does not contain
the current value of x2. Let us update the assignment by setting x2 := 2. Following the
algorithm it is easy to check that all constraints at level 3 and level 4 are satisfied, thus
the system is also satisfied and σ : {x4 7→ 0;x3 7→ 1;x2 7→ 2;x1 7→ 0} is a solution.
Take the first conflict (FC). The next strategy we tried simply takes the first detected
conflict. It saves the calculation time needed for computing all conflicts at a level. The
first conflict detected in our example is ((1), (3)). Its resolvent x3 ≤ 3x1 + 1 is of
level 3 and narrows the interval I(S, σ, 3) to [1; 1]. Thus x3 := 1. Moving to level 4
with a refined assignment σ : {x4 7→ 0, x3 7→ 1, x2 7→ 0, x1 7→ 0} CRA detects the
only conflict ((2), (3)). Obtained resolvent −2x1 + 2 ≤ x2 sets bounds on the variable
x2 at level 2: I(S, σ, 2) = [1;+∞). By setting x2 := 2 one can check that CRA passes
all remaining levels without any conflicts and changes in the assignment.
Random choice of conflict approach (RC). The last conflict selection heuristics we
implemented is randomly choosing a conflict with an equal probability. Assume that
the randomly selected conflict is ((2), (3)). The derived constraint−2x1+2 ≤ x2 is of
level 2 and the bound on x2 forms a half-bounded interval I(S, σ, 2) = [2;+∞). If the
value of x2 is set to 2, we move to level 3 and pass it without refining an assignment.
At level 4 CRA detects that only the selected conflict ((2), (3)) is resolved, and three
other conflicts are remained. Let us select the conflict randomly again, and assume it is
((1), (4)). Its resolvent x3 ≤ 2

3x1 + 2 narrows the interval for x3 to [1; 2] and forces
the value of x3 to be updated. Let x3 := 2. One can check that all constraints at level 4,
and thus in the initial system, became satisfied.

As we see each of the conflict selection strategies results in a different behaviour of
the algorithm. The running time of the algorithm depends significantly on the choice of
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values for the variables in the assignment refinement rule. In the following, we discuss
the strategies for assignment refinement used in our experiments.

4.2 Strategies for Assignment Refinement

We tried several strategies for selecting values in the assignment refinement rule, we
list them bellow.
Minimal (Maximal) point (MIN/MAX). Select always the minimal (or always the
maximal) endpoint of the interval I(S, σ, k). As we saw from the examples of using
strategies for selecting conflicts, the course of the algorithm and its performance can be
significantly affected by the choice of the values of variables. For instance, if the value
of the variable x3 selected from the interval [1; 5] for the first time is 1 and not 4 the
algorithm avoids derivation of a conflict needed to adjust the value of x3.
Interleaved (swapped minimal and maximal) points (SW). A natural extension of the
previous strategy is to interleave the selection of the maximal and the minimal endpoints
of the interval I(S, σ, k) each time the interval is updated.
Random assignment value choice (RA). Another strategy is a random choice of the
assignment value within the interval I(S, σ, k).
Middle point. Select the middle point of the interval I(S, σ, k).

Our experiments show that these strategies can result in a rapid growth of the sizes
of numerators and denominators of rational values in the assignment, which in turn
leads to heavy calculations. The next strategy is aimed at reducing sizes of rational
numbers used in the assignment values.
Closest binary to the middle point (BMP). If the endpoints of I(S, σ, k) coincide, we
select this point. Otherwise, we select a rational number n/m in I(S, σ, k) such that (i)
m is the least power of 2 among denominators of all rationals in I(S, σ, k), and (ii) n
is such that, n/m is the closest rational to the middle point of the interval, among all
rationals satisfying (i). It can be shown that a rational satisfying both (i) and (ii) always
exists. In particular, if I(S, σ, k) contains integer points, then our strategy will select an
integer in I(S, σ, k) closest to the middle point. As our experiments show, such choice
of values considerably simplifies the assignment values and constraint evaluation.

4.3 Strategies for Selecting the Order on Variables

We implemented the following strategies for selecting the order on variables.
Random order (RO). The first strategy we tried sets the order on variables randomly
before running the CRA algorithm.
Length-based order (LO). The second strategy orders variables giving preference to
variables occurring in short constraints. For simplicity, we formalise the second strategy
as follows. To each variable x we associate a pair of integers (l(x), t(x)), where l(x) is
the length of the shortest constraint containing variable x and t(x) is a number of such
constraints. We define the ordering on variables � as follows: for two variables x, y we
have x � y if (i) l(x) > l(y) or (ii) l(x) = l(y) and t(x) > t(y). That is, we try to put
variables occurring in shortest constraints on lower levels.



8

4.4 Optimization-related strategies

There are also other heuristics that we considered interesting to study. One of them
concerns adding resolvents to the current system at run-time.
Adding resolvents. In general, adding a derived constraint to its level may result in new
conflicts at this level. Thus resolving one conflict may result in a cascade of conflicts in
lower levels. Adding all such consecutive resolvents may result in a quick expansion of
the system. Based on this we studied the following heuristics:

1. add all resolvents derived during the run-time of the algorithm;
2. do not add a resolvent if it results in a new conflict at its level, rather keep resolv-

ing conflicts without adding them until a resolvent is derived which results in no
conflicts (backjumping – BJ).

The latter heuristic describes a process of ‘backjumping’ to the lowest level (the first
non-conflicting level) and adding only the last resolvent to the system.

Two other heuristics concern the issues of (i) dealing with half-bounded intervals
in the AR rule and (ii) reducing constraints by the greatest common divisor of their
coefficients.
Dealing with half-bounded intervals in the AR rule. In our experiments half-bounded
intervals in the assignment refinement rule occur very frequently. We deal with such
cases by introducing an artificial bound on the intervals. If during the run-time CRA
returns to a level with a half-bounded interval considerably often, we considered in-
creasing the size of the interval consecutively. We tried two heuristics for dealing with
half-bounded intervals:

1. increase the size of an artificial interval exponentially each time CRA returns to the
corresponding level; in the experiments we tried this strategy with increasing by
powers of 2 (pow2);

2. keep the size of artificial intervals constant, in the experiments fixed to 10 (const10).

Reducing constraints by gcd. The last implemented heuristic corresponds to the prob-
lem of decreasing size of numerators and denominators of rational numbers during the
calculations. Namely, if all coefficients in a constraint have the greatest common divisor
different from 1 than the constraint can be reduced by dividing its coefficients by their
greatest common divisor. This simple idea yields the heuristics:

1. always reduce constraints by gcd (gcd);
2. never reduce constraints by gcd.

We studied various combinations of all presented heuristics and integrated them into
the CRA algorithm. We call major heuristics the ones (i) for selecting conflicts, and (ii)
for selecting assignment values. The heuristics (a) for dealing with half-bounded inter-
vals in the assignment refinement rule and (b) for reducing constraints by gcd of their
coefficients are general in their nature and can be combined with any major heuristic
mentioned above.
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5 Benchmarks

This section describes the benchmarks used in our experiments. We evaluated our solver
on two types of benchmarks: randomly generated benchmarks and benchmarks ex-
tracted from real-life problems. The real-life benchmarks consist of systems of linear
constraints extracted from SMT-LIB problems [3].

Real-life problems are substantially different from randomly generated ones. They
differ not only by their size but also by their structure. In real-life problems the number
of variables and constraints is considerably higher and most of the problems contain
hundreds of variables and constraints. In addition, real-life problems often have sparse
matrices and relatively simple coefficients.
Benchmarks with randomly generated problems. We used random benchmarks with
integer coefficients generated by the GoRRiLA tool [5]. GoRRiLa is a generator of
random problems for propositional logic and for systems of linear constraints over the
rational or integer numbers. GoRRiLA can generate random problems of a given num-
ber of variables, so that each constraint has the number of variables in a certain range
(for example, between 3 and 5 variables).

We evaluated CRA on two sets of random benchmarks.

1. The first set consists of 1600 problems with a number of variables ranging from 11
to 18;

2. The second set consists of 400 problems with a number of variables ranging from
19 to 26.

Benchmarks Extracted From SMT-LIB. In order to study the performance of our
solver on real-life problems we ran a series of experiments with real-life benchmarks
extracted from the SMT-LIB library. We used the benchmarks from the QF LRA divi-
sion of the SMT-LIB: these benchmarks contain quantifier-free SMT problems in the
theory of linear real arithmetic.

We obtained real-life benchmarks using the Hard Reality Tool (HRT) [6]. HRT al-
lows randomly extracting hard and realistic theory problems from SMT problems. The
extracted theory problems are given as a conjunction of constraints from this theory.

We used two sets of real-life benchmarks generated by us with the Hard Reality
Tool (HRT) [6]. The difference between these sets is in their difficulty levels which
reflect the time needed to solve the problem by the best solver. The sets contain both
satisfiable and unsatisfiable problems.

1. The first set consists of 305 problems with a number of variables ranging from 37
to 1416.

2. The second set consists of 128 problems of considerable higher difficulty level with
a number of variables ranging between 251 and 1067.

6 Preprocessing

Our real-life benchmarks contained several hundreds of variables and constraints. On
many instances we observed that our solver was continuously passing a considerable
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number of levels, adding new constraints to them and expanding the system without
any contribution to the solving process. We used the following preprocessing of the
input system which considerably improved the performance on such problems.
Eliminating Half-Bounded Variables. Let us note, that if all occurrences of a variable
x in the system are of the same sign, than x will never be eliminated with the CR rule.
Moreover, if a derived constraint contains a variable x, its coefficient in this constraint
will be of the same sign too. This means, the levels of half-bounded variables may
expand during the run-time of the CRA algorithm but never give a bounded interval for
the corresponding variables.

In such instances the conflict resolution algorithm would run along half-bounding
levels never obtaining both bounds for the variables. To avoid this we can remove from
the system all constraints containing such a half-bounded variables. Solve the system
of remained constraints, if it has no solutions, than the original system has no solution
either. Otherwise, we assign a value to all such removed variable based on the values
of the variables in the obtained solution. Since the intervals for the removed variables
were half-bounded such an assignment always exists.

Consecutively removing all such variables from the system reduces the number of
variables in the system, the number of initial constraints, and the number of constraints
derived at the run-time.
Eliminating unit-half-bounded variables. We extend the above preprocessing by con-
sidering unit-half-bounded variables. The difference between unit-half-bounded vari-
ables and half-bounded variables is in allowing unit constraints to bound the variable.
A constraint is called unit constraint, if it contains only one variable. Consider a unit
constraint such that either (i) an equality x = a (where a ∈ Q) or (ii) an inequality that
has the coefficient of the variable of the sign opposite to the sign of the coefficients of
this variable in the rest of the constraints.

If (i) holds, then the unit constraint, of the form x = a, explicitly assigns a value
to the variable x. We can directly eliminate x from the system by simply substituting
all occurrences of x by a. Obviously, this brings us to the equivalent system with one
variable less. If the modified system has a solution, the solution of the initial system can
be easily obtained by expanding the assignment with the value a for the variable x.

Note, that we can eliminate from the system all such variables one after another,
thus reduce the dimension of the system.

Case (ii) also allows elimination of the variable x from the system. We can eliminate
the variable x from the system by simply summing the unit constraint with the rest of the
constraints containing x. Obviously, this operation also results in an equivalent system
of constraints by solving which we can easily obtain a solution to the initial system – we
build it by extending the solution of the derived system for the variable x. The value for
the variable x is obtained from the interval defined by the initial constraints containing
x, by simply substituting the values of the other variables. If the derived system has no
solutions, the initial system has no solutions either. Similarly to the previous cases, it is
possible to eliminate all such variables one after another, reducing the dimension of the
system this way. Let us note that after eliminating a variable new variables may become
eligible for the preprocessing, We apply this preprocessing exhaustively, i.e., until no
eligible variables remains.
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List of Strategies
Selecting Conflict Selecting Assignment Optimisation-related

Abbreviation Strategy Abbreviation Strategy Abbreviation Strategy
FC First Conflict BMP Binary Middle Point BJ Back Jumping
MO Maximal Overlap MAX Maximal Endpoint RO Random Order
RC Random Conflict MIN Minimal Endpoint LO Length-based Order
RM Relaxation Method SW Swap Endpoints pow2 Exp. Half-bounded

RA Random Assignment const10 Const. Half-bounded
gcd Reduction by gcd
prep Preprocessing

Table 1. Abbreviation of Strategies

7 Experimental Evaluation

We run our experiments on Intel Xeon Quad Core machines with 2.33 GHz and 12 GB
of memory.

For readers’ convenience we name heuristics based on the abbreviation of major
strategies for selecting conflicts (see Section 4.1) and assignment refinement (see Sec-
tion 4.2) together with other general heuristics (see Section 4.4). For example in a
heuristic MO MAX pow2 we use the maximal overlap strategy for conflict selection,
the maximal point strategy for assignment refinement and increase half bounded inter-
vals by powers of two. We present a full list of abbreviations used throughout the paper
in Table 1.

We determine the best choice of combination of heuristics for both random and
real-life benchmarks.

First we select the best set of general heuristics for each major heuristic. Then we
compare selected combinations of heuristics between each other.

7.1 Randomly Generated Benchmarks

On randomly generated problems all implemented strategies had certain similarities in
performance and behaviour.

– In the problems with the number of variables ranging between 11 and 18 all heuris-
tics showed an insignificant difference in the number of solved problems and in
performance.

– The difference in the number of solved problems became more significant as the
number of variables in the problems increased ranging between 19 and 26.

Experiments showed that the reduction of constraints by gcd is almost always ben-
eficial. A better performance was also observed when we increased half bounded inter-
vals by powers of two.

We plotted all major heuristics combined with the best choices of general heuristics
for them on Fig. 1. A point (x, y) on the chart indicates that x problems were solved in
y time or less.
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Fig. 1. CRA: major heuristics on randomly generated problems (all using reduction by gcd).
Heuristics are labelled from right to left.

As wee see, the best heuristic appeared to be MO BMP BJ pow2, followed by
MO BMP pow2 and then by RM BMP pow2, all close to each other. This chart shows
that our non-random heuristics considerably outperform the random ones.

7.2 Real-Life Benchmarks

For real-life benchmarks we added preprocessing, as discussed in Section 6, and plotted
results of our experiments for the combinations of heuristics that were more represen-
tative, see Fig. 2. As we see, the top performances were shown by MO BMP pow2,
FC pow2, and RM BMP pow2.

In our experiments, the performance of various bundles of heuristics of the CRA
algorithm was different on randomly generated benchmarks and real-life benchmarks.
On both types of problems we have large difference in performance based on different
choices of heuristics. This indicates that the good choice of heuristics is crucial for the
performance of CRA.

Regarding the best performances, for both randomly generated and real-life prob-
lems, almost always combinations of the following major heuristics were showing the
top three performances: maximal overlap (MO) and relaxation method (RM) strategies
for conflict selection, combined with the binary middle point strategy (BMP) for the
assignment refinement and also with the back jumping (BJ).

In combination with most major heuristics reduction by gcd as well as exponential
increase of half-bounded intervals was effective, for many problems, but with some it



13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 290  295  300  305  310  315  320  325  330

C
P

U
 t

im
e
 (

s)

Number of solved benchmarks

MO_BMP
FC_BMP

RM_BMP
MO_BMP_BJ

MO_MIN
RC_BMP
MO_RA
MO_SW

MO_MAX

Fig. 2. CRA: major heuristics on real-life problems (all using preprocessing and gcd pow2 strat-
egy). Heuristics are labelled from right to left.

had insignificant improvement. Overall, the use of reduction by gcd and exponential
increase of artificial bound of intervals were almost always beneficial.

7.3 CRA vs state-of-the-art SMT solvers

For further experiments we used the implementation of the CRA algorithm that uses
one of the best combinations of the heuristics listed in the previous sections, and incor-
porates the preprocessing discussed earlier in Section 6 and the length-based variable
ordering. Namely, we used a strategy MO BMP pow2 gcd LO prep which incorpo-
rates preprocessing, the length-based order on variables and following strategies: max-
imal overlap strategy for selecting the conflict, closest binary middle point strategy for
the assignment refinement, reduction of constraints by gcd and exponential increase of
half-bounded intervals.

In the following we present results of comparison of this implementation of CRA
to other linear arithmetic solvers incorporated in the state-of-the-art SMT solvers. On
Fig. 3 we compared on real-life problems different solvers: Barcelogic, CVC3, Z3, and
CRA incorporating preprocessing and the length-based order on variables.

On studied real-life benchmarks CRA considerably outperforms the Fourier-Motskin
elimination based CVC3 solver, and shows a competitive behaviour compared to the
simplex based Barcelogic and Z3. In our experiments with random problems CRA out-
performs CVC3 on almost all problems and in some cases CRA is about twice as faster
as Barcelogic and Z3.
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Heuristics are labelled from right to left.

CRA Faster Same Slower
Barcelogic 165 119 148
CVC3 157 274 1
Z3 18 48 366

Table 2. CRA (MO BMP pow2 LO prep) vs Barcelogic, CVC3, Z3 on real-life benchmarks.

The results of the experiments with real-life benchmarks are presented in the Ta-
ble 2.

CRA with implemented preprocessing is faster than CVC3 on about one third of
the problems and has the same performance for almost all other problems. Compared
to Barcelogic, CRA performs better again on about one third of the problems, has the
same performance on the second third, and Barcelogic is faster than CRA on the other
third of the problems. As for Z3, on both sets of real-life problems CRA showed a com-
petitive performance – on about 85% of the problems it showed similar performance,
outperformed Z3 on about 4% of the problems, and was slower than Z3 on about 11%.
As we see, the CRA algorithm not only outperforms the Fourier-Motzkin algorithm but
is also highly competitive with the simplex method.
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8 Summary

Our experiments showed that choosing various parameters has a significant impact on
the performance of the CRA solver. Also, depending on the nature of the problem dif-
ferent heuristics may appear preferable. Let us outline the strategies behaving the best
in general.

In selecting a conflicting pair the best two choices turned out to be the maximal
overlap strategy and the relaxation approach. For selecting the assignment one could
overall recommend taking the middle point (based on the binary approximation). In-
terestingly, using the boundary value assignments may also appear successful in some
special cases.

Among the general heuristics, the reduction by gcd and exponential increase in the
case of of half-bounded intervals turned out to improve the performance nearly in all
cases.

The algorithm appeared to be sensitive to the implemented combination of heuris-
tics and preprocessing. Integrating effective preprocessing to the CRA algorithm and
more strategies for selecting appropriate ordering on variables may also result in a sig-
nificant benefit. This problem needs further detailed studies.

On the whole, considering that we used some of the best SMT solvers for compar-
ison, conflict resolution showed itself to be potentially competitive with the simplex
method, and definitely outperforms the Fourier-Motzkin method with modifications.
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