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Abstract—Integrated circuits (ICs) are now designed and fabricated
in a globalized multi-vendor environment making them vulnerable to
malicious design changes, the insertion of hardware trojans/malware
and intellectual property (IP) theft. Algorithmic reverse engineering of
digital circuits can mitigate these concerns by enabling analysts to
detect malicious hardware, verify the integrity of ICs and detect IP
violations.

In this paper, we present a set of algorithms for the reverse engineer-
ing of digital circuits starting from an unstructured netlist and resulting
in a high-level netlist with components such as register files, counters,
adders and subtractors. Our techniques require no manual intervention
and experiments show that they determine the functionality of more than
45% and up to 93% of the gates in each of the test circuits that we
examine. We also demonstrate that our algorithms are scalable to real
designs by experimenting with a very large, highly-optimized system-
on-chip (SoC) design with over 375,000 combinational elements. Our
inference algorithms cover 68% of the gates in this SoC. We also
demonstrate that our algorithms are effective in aiding a human analyst
detect hardware trojans in an unstructured netlist.

1 INTRODUCTION

Contemporary integrated circuits (ICs) are designed and fab-

ricated in a globalized, multi-vendor environment due to

which ICs are vulnerable to malicious design changes and

the insertion of hardware trojans and malware. The possibility

that malicious chips might be used in sensitive locations

such as military, financial and government infrastructure is a

serious and pressing concern to both the users and design-

ers of contemporary ICs [8, 15, 28, 1, 17]. For example,

the DARPA IRIS program seeks to develop techniques for

reverse engineering digital, analog and mixed-signal ICs to

determine their integrity for use in sensitive installations [5].

Algorithmic approaches to reverse engineering chips can aid

in the detection of hardware trojans, malicious design changes
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and in verifying the integrity of untrusted design components

for which trustworthy source code may not be available.

Reverse engineering is also important in detecting intellectual

property violations, considered a “serious concern” for the

semiconductor industry [7].

In this paper, we study a portfolio of fully algorithmic

approaches to reverse engineer digital circuits. We analyze

an unstructured netlist with the objective of inferring a high-

level netlist with components such as register files, adders

and counters. The key challenge in analyzing an unstructured

netlist is that we have no information about the boundaries
of the modules contained in the netlist. Therefore, we tackle

the reverse engineering problem through a variety of algo-

rithms that “carve out” portions of the netlist to generate
potential/candidate modules and employ techniques similar to

those used in design synthesis and verification to determine the

functionality of these modules. In particular, this paper focuses

on algorithmic reverse engineering of datapath components in

an unstructured netlist. The objective is to aid a human analyst

understand the functionality of an unstructured netlist by

algorithmically identifying as many components as possible.1

1.1 Related Work
Fully algorithmic reverse engineering is a relatively new field

of research. Previous work primarily suggests strategies of

attack for a human analyst [9, 29]. For example, in their

investigation of the ISCAS ’85 benchmarks, Hansen et al.

analyze replicated structurally isomorphic blocks [9]. The cut-

based Boolean matching and aggregation algorithms presented

in §2.1 and §2.2 are generalizations of this idea.

A recent attempt at addressing the reverse engineering prob-

lem algorithmically is by Li et al. [14]. They present a method

for behavioral matching of an unknown sub-circuit against

a library of abstract components but assume that methods

are available to generate sub-circuits from the unstructured

netlist. Therefore, our set of solutions is complementary to

theirs because: (a) we target different kinds of components

for reverse engineering and (b) we analyze an unstructured

netlist as opposed to sub-circuit matching.

1. Note that 100% identification will not be possible because of the focus
on datapath components. This is not a serious limitation as discussed in §5.4
and §6.
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An alternative approach to malware detection relies on

comparing side channel signals such as power and timing

between the trusted design and untrusted versions of the

designs. For instance, Agrawal et al. compare “fingerprints”

consisting of measurements of power, electromagnetic and

thermal emissions [2]. Wang et al. use differences in current

measurements to detect trojans [31]. Jin et al. compare path

delay measurements [11]. These approaches assume that a

trusted (”known good”) version of the chip is available for

experimentation, something that may not be true when un-

trusted component IPs are used, the foundry itself is untrusted

or when it is not possible to determine trustworthy chips by

destructive examination.

Architectural approaches to trojan detection and avoidance

have also been proposed. Hicks et al. [10] proposed an analysis

that detects pairs of circuit nodes that are not exercised by

design verification tests. They suggested that these nodes could

potentially be used to hide trojans and proposed an architec-

tural technique that eliminates such nodes from the circuit

and emulates their designed functionality through software.2

Waksman et al. [30] proposed a set of transformations that

permute module inputs, the order in which inputs are applied,

and obfuscate reset sequences in order to prevent Trojan

activation. Both proposals assume availability of RTL source

and design verification tests for the design being analysed.

Trojan detection through algorithmic reverse engineering

does not rely on any of these assumptions. Hence, it can

detect a wider range of malware, including, for example,

bugs/malware introduced by design automation tools. This

additional coverage comes at a cost, which is that traditionally

reverse engineering has been a labor-intensive process. We

show that fully algorithmic reverse engineering is both feasible

and effective even for very large designs. A comparison of the

differences in assumptions of availability and threat models for

the techniques discussed above is shown in Table 1.

This paper builds upon our past work in the area of

algorithmic reverse engineering in [26] and [13]. A detailed

discussion of the differences between these past efforts and this

paper is deferred to Section 6.2.5. The problem of deriving a

gate-level netlist from a physical chip is outside the scope of

this work. This has been studied in [29, 19, 27, 20, 12]. Nohl et

al. derive a gate-level netlist of an RFID tag and examine it for

cryptographic vulnerabilities [20]. Kömmerling et al.describe

techniques for obtaining gate-level descriptions of smartcard

processors [12]. Tarnovsky used electron microscopy and bus-

level probing to reverse engineer an Secure Infineon Processor

which included mesh shielding inserted in order to thwart

reverse engineering [27] .

1.2 Solution Overview

In this subsection, we describe the assumptions and objectives

underlying this work and then provide an overview of our

solution.

2. We note that this technique has been defeated [24].

1.2.1 Assumptions
We tackle the problem of reverse engineering a gate-level

netlist under the following assumptions. First, we assume

that register transfer language (RTL) source code for the

test article being analyzed is not available. We also assume

that micro-architectural information as well as design-specific

information pertaining to the test article being analyzed is also

not available. We only assume availability of “datasheet-level”

information which usually consists of a high-level description

of the functionality of the test article and a description of its

input/output pin interface.

1.2.2 Objective
Given these assumptions our target is to algorithmically derive

information about high-level components present in the test

article by analyzing the gate-level netlist.

1.2.3 Discussion of Assumptions and Objectives
In both the (a) trojan-detection and (b) intellectual property

infringement usage scenarios, our assumptions correspond to

an external analyst examining a test article to determine if it (a)

contains hardware trojans or (b) infringes relevant intellectual

property. Note that the analyst does not have access to source

code for the design. Therefore, traditional techniques for trojan

detection [2, 31, 11] are not applicable. Furthermore, the

only plausible alternative to algorithmically assisted reverse

engineering is full manual inspection of the netlist.

In case the assumptions for trojan detection scenario are

weaker than ours, we note that our techniques are complemen-

tary to the other trojan detection techniques discussed in the

previous section. For example, when considering the threat of

trojans inserted in the RTL or by design automation tools, anal-

ysis techniques like UCI [10] can be synergistically applied

along with algorithmic reverse engineering of the gate-level

synthesized netlist and correlating identified components with

those expected to be present. Note UCI itself cannot detect

trojans inserted by design automation tools. Furthermore, all

techniques studied in this paper rely on a “static” analysis of

the netlist and do not consider information derived from sim-

ulations. Combining these algorithms with simulation-based

“dynamic” analysis techniques will likely yield interesting

results because these approaches are complementary.

Our algorithms focus on identifying datapath components.

The are three reasons for this design choice. First, any attack

model that is based on triggering malicious behavior through a

rare input sequence will necessarily involve some manipulation

of the datapath. In fact, as illustrated in §5.4, it is likely that

this malicious logic will manifest as a collection of datapath

components such as counters, decoders and multiplexers. Thus

identifying such components will help an analyst quickly

zero-in on problematic parts of the netlist. Second, datapath

components exhibit regularity and structure and are amenable

to algorithmic analysis. Finally, the majority of the gates

in processor-like circuits are in the datapath. The focus on

datapath components means that it will not be possible to

reverse-engineer 100% of the gates in the design. However,

as will be shown in §5.4, this is not a major limitation for

detecting hardware trojans.
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TABLE 1
Comparing Techniques for Trojan Detection With This Work.

Detection
Technique

Trojan
Threat
Model

Availability
Assump-
tions

Automation Paper Description

Side-channel
analysis

Malicious
foundry

Known good
chips full

Agrawal et al. [2] Statistical comparison of power measurements with good chips.
Jin et al. [11] Statistical comparison of path delays with good chips.
Wang et al. [31] Statistical comparison of current measures with good chips.

RTL and test
case analysis

Malicious
RTL

RTL source,
design
verification
tests

partial Hicks et al. [10] Identify and eliminate circuit nodes never exercised by verifica-
tion tests.

partial Waksman et al.
[30]

Obfuscate inputs, time order of inputs and reset sequences to
prevent trojan activation.

Algorithmic
reverse
engineering

Malicious
RTL, design
tools,
foundry

Gate-level
netlist

partial This work. Algorithmic reverse engineering followed by manual analysis.

It is important to note that this work develops a set of algo-

rithms that aid trojan detection. By providing a human analyst

with an abstracted netlist containing high-level components, it

makes the job of the analyst much easier than if the analyst

were to individually examine hundreds and thousands of gates

and latches. The tool itself does not perform trojan detection.

1.2.4 Solution

The objective of our work is to infer a useful high-level

description from an unstructured gate-level netlist. In partic-

ular, we focus on reverse engineering datapath elements in

digital circuits. Even when focusing primarily on the datapath,

reverse engineering is still a very hard problem because we are

starting with a sea of gates for the complete chip, including

the datapath as well as the control logic, and it is not obvious

how to go about finding some meaningful subset of the

gates/latches for algorithmic analysis. Hence, our approach

integrates a number of different techniques tackling different

aspects of the problem. Figure 1 shows the techniques we

introduce and their inter-relationships.

Our strategy is to attack the problem in two stages. The first

stage identifies potential module boundaries using topologi-

cal/functional analyses. The second stage functionally analyzes
potential modules to understand their behavior.

The reverse engineering algorithms introduced by this paper

are as follows:

1) We present a novel application of cut-based Boolean

matching to find replicated bitslices3 in the netlist. This

analysis helps us find circuit nodes that correspond to

functions such as 1-bit adders and 1-bit multiplexers.

2) We present algorithms that topologically analyze the

results of bitslice matching to aggregate multibit com-

ponents such as multiplexers, adders and subtractors.

3) Analyzing aggregated modules helps identify bits which

are operated upon simultaneously, allowing us to infer

words. These inferred words are then used in our word

propagation algorithm to generate additional words.

4) Our module generation algorithm analyzes words which

are structurally connected to generate candidate unknown

3. We define a bitslice as a Boolean function with one output and a small
number of inputs that is replicated to construct multibit datapath operators.

netlist

K-cut analysis1

aggregation2

word propagation3

module generation4

library matching4

common support-

based analysis5

register analysis6

ram analysis7

counter analysis8

shift reg. analysis9

overlap resolution10

bitslices

multibit structures initial words

initial and propagated words

candidate modules

registers

RAMs

counters

shift regs

decoders

output inferred modules

Fig. 1. Portfolio of the reverse engineering techniques
introduced in this paper. Superscripts refer to items in
our list of reverse engineering algorithms introduced by
this work. Algorithms 1-5 identify combinational modules
while algorithms 6-9 identify sequential modules.

modules. These are potential operators with word argu-

ments and results and are matched against a component

library using a Quantified Boolean Formula (QBF) for-

mulation.

5) We present an alternate strategy to infer combinational

modules like decoders using a BDD-based analysis of

nodes with common inputs.

6,7) We present novel algorithms that identify word-level

registers, as well register array structures like register files
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and RAM arrays using a BDD-based functional analysis.

8,9) We present algorithms to identify counters and shift

registers using topological analyses combined with a

satisfiability (SAT) checking formulation.

10) Modules inferred by the above-mentioned portfolio of

algorithms may “overlap”, i.e., cover the same elements.4

These overlaps are resolved by formulating an integer lin-

ear program (ILP) that selects a non-overlapping subset of

inferred modules that optimizes a set of desired metrics.

TABLE 2
Netlists Used in Experiments.

Design Chip Chip Gates Latches Notes
Inputs Outputs Flip-flops

router 35 26 896 182 on-chip router
eVoter 31 15 1360 108 voting machine [25]
Open8† 19 26 1807 237 Open CPU
cpu8080† 12 29 2258 243 8080 CPU
ae18† 32 64 3466 1094 ae18 CPU
MIPS16† 1 8 6986 4380 16b MIPS-like core
oc8051† 86 78 8164 2748 8051 μcontroller
RISC FPU 35 66 14291 3097 RISC FPU

The contributions of this paper include the reverse engi-

neering algorithms listed above as well as the analysis flow

shown in Figure 1. We also present a detailed evaluation of our

algorithms by experimenting with eight unstructured netlists,

details of which are shown in Table 2. The netlists marked

with a dagger (†) were obtained by synthesizing designs from

opencores.org. Results show that our inference algorithms

determine the functionality of more than 45% and up to 93%

of gates in the designs in a fully automated manner.

Furthermore, we present a case study of algorithmic reverse

engineering of a large highly-optimized system-on-chip (SoC)

design consisting of over 375,000 combinational elements. We

show a large design like this can be analyzed through logic

simplification and module partitioning. Our results show that

68% of the gates left after simplification in this SoC were

covered by our inference algorithms. We believe our work is

the first effort to algorithmically reverse engineer the majority

of the gates in a design of this scale.

A final important contribution of our work is a case study

of how our algorithms could aid the detection of hardware

trojans. We inject trojans into two test articles and discuss

how algorithmic reverse engineering helps a human analyst

detect this malicious circuitry.

The rest of this paper is organized as follows. Section 2

describes our algorithms for identifying combinational com-

ponents. Section 3 describes our algorithms for identifying

sequential components. Section 4 describes how possibly

conflicting inference results from different algorithms can be

resolved to produce the final set of inferred modules. Section 5

presents the experimental evaluation of these algorithms. Sec-

tion 6 discusses limitations and avenues for further analysis.

Section 7 provides some concluding remarks.

4. We use the term element to refer to gates, latches and other circuit nodes
in the input netlist.

2 IDENTIFYING COMBINATIONAL MODULES

The section describes algorithms to identify fully combina-

tional modules. Our first algorithm is based on the observation

that many datapath elements consist of replicated bitslices

connected in a specific topology and is described in §2.1

and §2.2. We then present algorithms for identifying word-

level modules in §2.3 and §2.4. Finally, §2.5 presents a third

attack on combinational modules using a specific topological

property.

2.1 Bitslice Identification

The goal of bitslice identification is to identify all nodes in

the circuit that match functions from a bitslice library. For

instance, we might be interested in finding all nodes that match

the full adder carry function f(a, b, c) = ab+bc+ca, this might

help identify multibit adders. We adopt a functional matching

approach, which matches based on the function implemented

by a set of gates instead of matching structural patterns.

This uses cut-enumeration and Boolean matching, which was

initially introduced for technology mapping [4, 3].

A feasible cut of a circuit node G is defined as a set of

nodes in the transitive fan-in cone of G such that a consistent

assignment of truth values to each node in the set completely

determines the value of G [3]. A cut is said to be k-feasible
if it has no more than k inputs. The trivial cut {G} is always

k-feasible. The set of k-feasible cuts for a gate is recursively

computed by enumerating the union of all k-feasible cuts of

the gate’s inputs such that this union has k or fewer inputs.

Our tool enumerates all 6-feasible cuts. We found that the

average number of 6-feasible cuts per gate is between 15 and

35. The number of cuts for k > 6 is significantly higher.5

Although we are restricted to bitslices with six or fewer inputs,

this is not a major limitation as most common bitslices have

less than six inputs; e.g., a full adder bitslice has 3 inputs.

Once all cuts are identified, they are grouped into equiva-

lence classes using permutation-independent Boolean match-

ing. For example, nodes matching the function f(a, b, c) =
ab+c and nodes matching f(a, b, c) = bc+a are grouped into

the same class. Each equivalence class may match a known

library function.

2.2 Aggregation to Multibit Components

Now that we have all the nodes that match a particular

function, the next step is to look for matching nodes connected

in interesting patterns. Aggregating replicated bitslices which

are connected in specific patterns is our first technique for

identifying combinational modules. The following subsections

expand on our aggregation algorithms.

2.2.1 Common Signals in Replicated Bitslice
This algorithm considers all bitslices that match a particular

function and groups them using common input signals. For

instance, consider the function that represents a 2:1 multi-

plexer: f(a, b, s) = sa + ¬sb. Here we group all matching

5. These results are in line with published work on cut enumeration [3].
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bitslices which have a common6 select signal (s in this

example). Common signal aggregation finds 59 decoders and

140 multiplexers in the RISC FPU test article.

Besides aggregating functions in the bitslice library such

as multiplexers and decoders, we can also aggregate unknown

functions connected by a common signal to generate candidate

unknown modules. These modules may be analyzed either by

a human analyst or by a permutation and phase independent

matching algorithm such as [18].

2.2.2 Propagated Signal(s) in Replicated Bitslices
In this case, the algorithm considers all bitslices matching a

particular function such that the output of one bitslice is the

input of another (e.g., carry chain in a ripple carry, parity tree).

Propagated signal aggregation finds 37 adders/subtractors and

10 parity trees in the RISC FPU test article.

2.3 Word Identification and Word Propagation
Aggregated bitslices tell us about circuit nodes that are oper-

ated upon simultaneously. These nodes are likely to form part

of same word. Our tool groups the bits that are inputs/outputs

of aggregated modules into “word” data structures.

2.3.1 Symbolic Word Propagation
Once some words are identified, more words can be generated

by propagating them across gates. The idea is, given a word

w, find conditions under which its value is propagated to a

new word w′, for every possible value of w.

Consider the circuit in Figure 2. Note that the circuit

behaves as a selector between the bitwise negation of the

word u1, u2, u3 and the bitwise negation of the word v1, v2, v3
depending on the value of c. Hence, the negated value of

u1, u2, u3 gets propagated to w1, w2, w2 if c = 0, and the

negated value of u1, u2, u3 gets propagated to w1, w2, w2,

otherwise. These are the kind of claims produced by the word

propagation algorithm.

For efficiency reasons, we use symbolic simulation, which

allows consideration of all possible values of w simultane-

ously in a single run. Similar to Roth’s D-calculus [22], we

redefine functions of logic gates in the circuit operating on

the expanded domain {0, 1, D, D̄,X}, where D represents a

symbolic value in {0, 1}, D̄ is the negation of D, and X
represents an unknown value. Some examples of symbolic

evaluation are: and(D, 1) = D, and(D, 0) = 0, and(0, X) =
0, not(X) = X , and not(D) = D̄.

Our word propagation algorithm follows a “guess and

check” approach. Given an initial word w, the guessing stage

consists on finding a set S of potential “target words” for the

propagation. Such set S is computed by grouping the outputs

of the gates driven by the signals in w by gate type and port

they connect to. Then, for each target word w′ ∈ S, a set C
of control wires is computed as the set of wires lying in the

intersection of the fanins (up to a small depth k) of the gates

whose output is in w′. The checking stage consists on running

several symbolic simulations of the local netlist that is relevant

6. A simple structural analysis is used to find functionally equivalent nodes.

Fig. 2. Example: Word propagation

to the propagation that is being checked. In such simulations,

the inputs of such local netlist are initialized as follows.

• Each bit of w is set to the symbolic value D.

• For each combination of 3 wires taken from the set of all

control wires, all possible binary values are evaluated.

• The rest of the inputs of the local netlist are assigned X .

A simulation with a particular partial assignment σ to the

control wires succeeds if all wires in the target word evaluate

to either D or D̄. In that case, w propagates to w′ under σ
and w′ can be tested for further propagation.

An analogous approach in which w′ is guessed among the

structural predecessors of w and it is checked whether w′ can

be propagated to w allows to test for backward propagation.

2.4 Module Identification and Matching
The two main limitations of bitslice identification are: (i) we

are limited to bitslices with a maximum of 6 inputs due to

the k ≤ 6 limitation on cut-enumeration and (ii) it is difficult

to identify combinational structures that do not have a clean

interconnection pattern. Our second approach overcomes these

limitations by constructing entire modules and then matching

them against a component library.

The intuition here is that since datapath circuits operate on

word inputs and produce word outputs, cutting out portions of

the circuit that exist between words may find interesting can-

didate modules. Our module identification algorithm identifies

combinatorial candidate unknown modules operating on words

and checks equivalence against a set of predefined reference

modules implementing common operations such as addition,

subtraction, boolean operations, and shifting/rotation.

For example, consider words w1, w2, w, and the largest

combinatorial sub-circuit C having w1 and w2 as inputs and

w as output. Additionally, C may have additional inputs, to

which we refer as side inputs. Let Y be the set of all side inputs

of C. Due to optimizations introduced during the synthesis

process or simply a design decision, the function implemented

by C might not be unique since the values of some of the

wires in Y determine the operation implemented by C, e.g,

addition or subtraction. For this reason, given a reference
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module C ′ we model our equivalence checking as a 2QBF7

satisfiability question: is there any value for the wires in Y
such that, for every value of the inputs w1, w2, C and C ′

give the same output? More concretely, we construct a miter

formula Φ(X,Y ) from C and C ′ by inserting a comparator

between their respective outputs. Then, using a state-of-the-art

QBF solver, we find values for the side inputs in Y for C to

match the function implemented by C ′.

Reference Circuit

=

module

Y
side inputs

X Φ

∃Y ∀XΦ(X,Y )

Fig. 3. QBF formulation showing Miter construction.

The module matching algorithm was able to identify the 8-

bit ALU performing addition, subtraction, rotation and nega-

tion in the oc8051 test article. Each operation is performed for

a different setting of the side inputs, so this module cannot be

detected through bitslice aggregation. The ability to create and

identify word-level modules was key here.

2.5 Analyses Based on Common Support

In this section we introduce an algorithm that detects modules

that do not necessarily have word inputs or outputs or consist

of small replicated bitslices. This analysis technique can

be used to detect combinational modules with the specific

property that each of the outputs of the module depend on

the same set of inputs.

Examples of modules which satisfy this property are de-

coders, demultiplexers and population counters. Note that

modules like adders and multipliers do not satisfy this prop-

erty. Output bit 0 of an adder only depends on the two least

significant bits of the addend and the augend, while output bit

k of the adder depends on the k least significant bits of the

addend and the augend respectively.

2.5.1 Identifying Output Nodes with Identical Supports
Consider the full combinational fanin cone of a combinational

node in the circuit. The inputs of this cone are the chip inputs

and latch outputs. Suppose two combinational nodes in the

circuit are computed using the same set of circuit nodes, it is

clear that the inputs of the full combinational fanin cone of

these nodes will also be the same.

Therefore, we can group nodes into equivalence classes in

the following way. Two nodes are placed in the same class iff

the inputs of their full combinational fanin cones are the same.

These equivalence classes can computed efficiently using a

union-find data structure and give us candidate output nodes

with the property that they are fully determined by the same

set of inputs.

7. 2QBF is the problem of evaluating a Quantified Boolean Formula (QBF)
with two levels of quantification [21].

module 1

x1x2x3x4x5x6x7x8x9

slice 1

z1

slice 2

z2

candidate

module

boundary

y2y1

chip inputs and latch outputs

Fig. 4. Nodes with common support.

Consider the example shown in Figure 4. Nodes z1 and z2
will be grouped in the same equivalence class because they

are completely determined by the same set of chip inputs and

latches: x1 . . . x9. Such nodes (z1 and z2) will form the

outputs of the candidate module.

However, to determine the module boundary we still need

to find the inputs of the module, i.e., nodes y1 and y2 in

Figure 4. The module boundary is given by the set of nodes

in the full combinational fanin cone of the candidate outputs

which are not present in the intersection of each of these fanin

cones. It is visually clear from the figure that intersection

of the combinational fanin cones contains only module 1,

so the nodes in the fanin cone which are not present in the

intersection leaves us with correct module boundary.

2.5.2 Verifying Module Properties
We use a BDD-based formulation to verify the properties of

the modules generated by the algorithm in §2.5.1.

To verify whether a potential module is a decoder or

demultiplexer, all that needs to be done is to prove that each

output is satisfiable and that no two outputs of the module are

simultaneously high.8 This can be verified in a straightforward

manner using a BDD-based analysis.

A population counter can be detected using a similar

algorithm which uses BDD-based matching to compare the

function of each output node against the function representing

each output bit of a population counter.9

2.6 Post-Processing of Combinational Modules
Modules generated by the inference algorithms described in

this section are subject to a post-processing step that “fuses”

certain types of modules to generate larger modules. This

increases the level of abstraction of the inferred modules and

makes the inference output easier to understand. For example,

2:1 muxes, 3:1 muxes and 4:1 muxes which are adjacent to

each other are fused to form larger n:1 muxes. Similarly,

8. Assuming the decoder outputs are active-high. The case when the
decoders outputs are negated is handled using a symmetric algorithm.

9. Although we verified that the population count algorithm works on
artificially constructed circuits with popcnt modules in them, we could not
find any population counters in the test circuits we experimented with.
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decoders whose outputs drive the select inputs of muxes are

fused with the muxes to form routing structures. Module types

which can be fused in this manner are said to be compatible.

Module fusion is performed by first constructing a module

fusion graph. The nodes in the graph are modules and an

edge between Module A and Module B exists in the graph

if and only if all the outputs of module A are inputs of

module B and respective module type are compatible. Once

the module fusion graph is constructed, connected components

in the graph are fused to form a larger combinational module

and the resulting module is added to collection of inferred

modules. The constituent modules which were the “inputs”

of the fusion are not eliminated at this stage. The overlap

elimination algorithm (see §4) determines which of these

modules (fused vs. constituents) is included in the output.

3 IDENTIFYING SEQUENTIAL COMPONENTS

A reverse engineering solution must identify commonly occur-

ring sequential components such as RAM arrays, register files,

counters and shift registers because these cover a significant

number of gates in circuits and also give insight into func-

tionality of the circuit. The challenge here is again in finding

meaningful module boundaries for these components given

the unstructured netlist. Our strategy is to devise topological

analyses to find circuit nodes that are potential counters,

RAM outputs or shift registers. We then formulate functional

analyses using SAT and BDDs that verify correctness of the

“guess” made by the topological analysis. The rest of this

section presents algorithms to identify RAM arrays/register

files, counters, shift registers and multibit registers.

3.1 Counter Identification

The specific problem in counter identification is to identify sets

of latches in the unstructured netlist that behave like counters.

The difficulty here is twofold. First, given a set of latches

that we suspect to implement a counter, we need a functional

analysis that can verify its properties. Second, we need an

efficient algorithm to enumerate candidate counters. Simply

considering all subsets of latches is computationally infeasible.

Based on this observation, our analysis is performed in two

stages. First, potential counters are generated by finding sets

of latches whose interconnections match the counter topology

shown in Figure 5. The intuition for this topology is that bit i
of a n-bit up counter toggles when the lower order bits 1 . . . i−
1 are all high. Therefore, there needs to be a combinational

path from the outputs of these latches to the input of bit i,
leading to the topology shown in the figure.

The next step uses a SAT-based functional analysis to verify

whether the functions at the inputs of the latches in the counter

satisfy the following conditions: (i) each latch toggles either

when all the low-order latches are 1 (up counter) or all the

low-order latches are 0 (down counter) and (ii) the conditions

that control when the counter is enabled/reset are the same for

all the bits of the counter.

3.1.1 Topological Check Using the LCG

The latch connection graph (LCG) is an unweighted graph

G = (V,E) which formalizes the notion of information flow

between latches. The vertices of the graph (V ) are the latches

and flip-flops in the netlist being analyzed. A directed edge

(v1, v2) ∈ E iff there is a combinational path from the output

of latch v1 (its Q node) to the input of latch v2 (its D node).

L0 L1 L2 L3 L4 L5

Fig. 5. Latch-to-latch information flow in a counter: each
latch in the counter is driven by the latches corresponding
to the lower-order bits.

Given the LCG, we find subgraphs which have the topology

shown in Figure 5. More precisely, given the LCG G = (V,E),
we find ordered sets of nodes Vc = {v1, . . . , vk}, such that

Vc ⊂ V and ∀vi, vj ∈ Vc : (vi, vj) ∈ E iff i ≤ j.

3.1.2 Verifying Counter Properties

We now devise a functional analysis that verifies that the

“candidate” counter found by the topological analysis has the

properties of a counter. First, let us formalize the behavior of

an up counter as follows.10

ci = ¬r ∧ e ∧ (q1 ∧ q2 ∧ · · · ∧ qi−1) ∧ ¬qi ∨
¬r ∧ e ∧ (¬q1 ∨ ¬q2 ∨ · · · ∨ ¬qi−1) ∧ qi ∨
¬r ∧ ¬e ∧ qi ∨ s (1)

In the equation above, ci determines the next state of bit i
of an n-bit counter. r is the function that resets the counter,

s is the function that sets its value high, e is the count-enable

function, and q1 . . . qi are the current values of latches 1 . . . i
of the counter.

Equation (1) says that bit i toggles when all the lower order

bits (1 . . . i−1) are high, the counter is enabled and not being

reset. The bit retains its value when the counter is enabled,

not reset but one of the lower order bits is zero. The counter

also holds its value when it is not reset and not enabled. Bit i
is pulled high if the set function evaluates to 1. Note since we

have left the functions r, e and s unspecified, ci is actually a
family of functions and not a specific Boolean function.

Now consider the Boolean function defined by the full

combinational fanin cone for each latch in the candidate

counter. Let this function be denoted by di where i ranges

10. For clarity of presentation the rest of this section focuses on up counters.
Our implementation uses symmetric techniques to detect down counters.
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across the bits of the counter. We compute the following

cofactors from di.
11

fi = cofactor(di, q1 ∧ q1 ∧ · · · ∧ qi−1 ∧ ¬qi)
gi = cofactor(di, q1 ∧ q1 ∧ · · · ∧ qi−1 ∧ qi)

hi = cofactor(di, (¬q1 ∨ · · · ∨ ¬qi−1) ∧ qi)

The insight here is that if the function di is compliant with

ci from Equation (1), then the functions fi, gi and hi will

reduce to Equation (2).

fi = (¬r ∧ e) ∨ s (2)

gi = (¬r ∧ ¬e) ∨ s

hi = ¬r ∨ s

Now, the functions r, s and e should be the same for all

the bits in the counter. Hence, fi, gi and hi must also be

equivalent. Therefore, we can determine that a set of latches

is not a counter if the SAT solver finds that the functions fi,
gi and hi are not equivalent for all i.

Five counters were found in the oc8051 test article.

3.2 Shift Register Identification
As with counters, our goal here is to identify sets of latches

that form shift registers given an unstructured netlist. The

shift register identification algorithm is similar to the counter

identification algorithm in that it uses a topological check and

a SAT formulation except that the topology and verification

conditions differ.

3.2.1 Topological Check
The topological check for shift registers uses a pruned version

of the latch connection graph (LCG) that we call the single

path latch connection graph (SPLCG). As in the LCG, the

nodes in the SPLCG are the latches and flip-flops in the netlist.

However, the edge v1 → v2 exists in the SPLCG iff there is

exactly one combinational path from the output of latch v1 to

the input of latch v2.

The topological check for unidirectional shift registers is

as follows. Given the SPLCG G = (V,E), we find ordered

sets of nodes Vs = {v1, v2, . . . , vk} such that Vs ⊂ V and

∀vi, vj ∈ Vs : (vi, vj) ∈ E iff j = i + 1. In other words, we

are searching for chains of latches connected by exactly one

combinational path between each latch and its successor.

3.2.2 Verifying Shift Register Properties
We model the family of functions representing the next-state

function of bit i of a shift register using the following equation.

si = ¬r ∧ (e ∧ qi−1 ∨ ¬e ∧ qi) ∨ s (3)

r, s and e are the reset, set and enable functions respectively.

qi is the output of the ith latch of the shift register. Suppose di
is the Boolean function determined by the full combinational

11. Given Boolean functions f and g, cofactor(f,g) is the function obtained
when f is evaluated over the restricted domain specified by g = 1.

fan-in cone of latch i of the supposed shift register. As in the

counter analysis, we consider the following cofactors of di.

fi = cofactor(di, qi−1 ∧ ¬qi)
gi = cofactor(di,¬qi−1 ∧ qi)

If di is complaint with si we will have:

fi = ¬r ∧ e ∨ s

gi = ¬r ∧ ¬e ∨ s

Therefore, the functional check verifies that the functions

fi and gi are identical for each bit of the shift register.

3.2.3 Shift Register Aggregation
Shift registers may consist of multiple bits shifting in tandem

from one set of latches to another. The basic algorithm finds

each cascading chain of latches as separate shift registers.

To aggregate shift registers, first we group shift registers by

length. Next, we form equivalence classes within each group

where shift registers with the same set, reset and shift-enable

functions are classified together. Finally, each equivalence

class is output as a multibit shift register module.
Seven shift registers were found in the RISC FPU test

article.

3.3 Identifying RAMs
This section targets small RAM arrays and register files. Our

objective here is to find the latches/flip-flops that form the

RAM, associated logic that reads data (called “read-logic”) and

logic that writes data into the latches (called “write-logic”).

3.3.1 Identifying Read Logic
The intuition behind identifying the read-logic is that it forms

a set of trees with the RAM cells as leaves of the tree and the

read outputs as roots. We use a marking algorithm to find such

trees. Initially, the algorithm marks all latches in the netlist.

Subsequently, it marks all gates which satisfy the following

conditions: (i) at least one of the gate’s inputs is marked and

(ii) the gate has only one fanout. This is repeated until no new

nodes are marked.

3.3.2 Verification of Read Behavior
The next step is a functional analysis of the marked nodes.

A BDD is constructed for each marked node in terms of the

latches, inputs and unmarked nodes in the circuit. Among the

inputs of this BDD, we assume that those which are latches

are storage nodes (li) while the remaining are the read address

(si). We then verify the following properties.
1) If y = f(s1, . . . , sk, l1, . . . , ln) then y = li or y = ¬li

for every value of s1 . . . sk. In other words, each select

input propagates exactly one of the latches to the output.

2) Every latch node is propagated to the output: y = li or

y = ¬li for all i and appropriate s1 . . . sk.
Latches and nodes which pass these checks are identified as

the RAM array and its corresponding read-logic.12

12. The analysis handles each bit output of the array independently so sets
of latches with common select inputs (read addresses) are aggregated to form
an array with multibit inputs/outputs.
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3.3.3 Identifying Write Logic

d q

b

a

s

d q

b

a

s

d q

b

a

s

we0 we1 wen

wd0 wd1 wdn

...

Fig. 6. RAM write-logic: wei is the write-enable signal for
word i and wdi is the data to be written to word i.

The logic that controls RAM writes is shown in Figure 6.

It consists of decoders driving 2:1 muxes that select between

the write-data and the latch output. The muxes drive the latch

inputs and their select signal is the write-enable signal, denoted

by wei. Once the latches that comprise the register file are

known, cut matching can give us these muxes. Our algorithm

then computes the BDDs for each write-enable signal using

the intersection of combinational fan-in cones. The following

properties are then verified: 13

1) Each write-enable signal is satisfiable: wei 
= 0.

2) No two write-enable signals are simultaneously satisfi-

able: wei ∧ wej = 0 if i 
= j.

If these properties are satisfied, the set of gates that com-

prise the latch inputs, muxes and common support nodes are

identified as the write-logic.14

One RAM structure, a 32x32b register file with two read

ports and 1 write port, was detected in the RISC FPU.

3.4 Identifying Multibit Registers

We use the term multibit register to denote a set of 1-bit

registers whose values are updated in tandem.

d0 q0

s

a

bv1[0]

cv2[0]

dv3[0]

d1 q1

s

a

bv1[1]

cv2[1]

dv3[1]

d7 q7

s

a

bv1[7]

cv2[7]

dv3[7]
...

{c1, c2, c3}

Fig. 7. Register synthesis illustration.

One example of a multibit register is shown in Figure 7.

Each cycle either one of three different values: v1[7 : 0], v2[7 :
0] or v3[7 : 0] or the current value of the register q7 . . . q0 is

assigned to the register based on the conditions c1, c2 and

c3. A structure of this form can be detected using bitslice

matching and aggregation to find the multibit multiplexer and

13. This presentation assumes the write-enable is signal is active high, but
it could also be active-low in which case the properties are modified appro-
priately. We determine the polarity of the write-enable signal by examining
which of the mux inputs is connected to the latch output.

14. We note that the analysis is unable to determine the ordering of the
bits in inputs and outputs of the RAM.

then examining the fanouts and inputs of the multiplexer to

detect the sequential elements around it.15

39 multibit register elements were found in the RISC FPU.

4 OVERLAP RESOLUTION

The inference algorithms described in this paper operate

independently. Therefore, it is possible that a particular gate

in the netlist under analysis might be placed in multiple

inferred modules. For example, in the oc8051 design, the RAM

read-array consists of many muxes identified by the bitslice

aggregation algorithms and the RAM analysis algorithm.

One idea would be to output all inferred modules and

allow a human analyst to pick and choose the “correct” non-

overlapping description of the circuit. While this may be

a feasible option for small circuits, for some of the larger

circuits, the inference tool produces several tens of thousands

of modules. It would be infeasible for a human to look through

all these modules and select a non-overlapping subset.

In this section, we investigate algorithmic techniques for

generating a non-overlapping subset of inferred modules given

the output of the portfolio. In particular, we would like to

generate non-overlapping subsets that either (i) maximize

coverage (measured by number of gates identified) or (ii)

minimize the number of inferred modules while meeting a

coverage target. The former objective is desirable because it

attempts to identify as many gates as possible. The latter is

interesting because we expect that an inference output with

fewer modules while meeting the required coverage target

would be easier to understand from a human analysts’ point

of view.

4.1 Basic Formulation Overview

At a high-level, our solution involves formulating a binary

integer linear program (BILP; sometimes called a Zero-One

ILP) that selects a non-overlapping subset of modules that

optimizes for the desired target metric. We describe the

formulation of the ILP in the following subsection.

4.1.1 ILP Variables
The basic formulation requires one binary variable for each

inferred module. Suppose there are a total of M modules, then

the formulation has M binary variables x1, x2, x3, . . . , xM .

Setting variable xi = 1 denotes that module i will be selected

for output, while xi = 0 means that module i will be elided

from the output.

4.1.2 Constraints Describing Overlaps
Consider an arbitrary element gk from the netlist being ana-

lyzed. Suppose this element gk is covered by inferred modules

k1, k2, . . . , kl. To represent the requirement that element gk

15. As in the case of the RAM identification, the analysis is unable to
determine the ordering of the bits in the multibit register. In some cases,
we were able to infer the ordering of bits by seeding the symbolic word
propagation algorithm with ordered words and checking whether one of the
propagated words matched the register outputs. Note ordered words can be
inferred from aggregation algorithms for adders and subtractors.
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can be covered by only one of these modules in the final

output, we introduce a constraint of the following form.

xk1
+ xk2

+ · · ·+ xkl
≤ 1

There are as many constraints as there are elements in the

netlist that are covered by multiple modules.

4.1.3 Objective Function
The objective of maximizing coverage is encoded in a straight-

forward manner. Let the “size” (i.e., the number of elements

covered by) module i be Si. Then the objective function is:

maximize

M∑
i=1

xi · Si

4.1.4 Alternative Formulation: Minimize Inferred Mod-
ules Given Coverage Constraint
This formulation minimizes the number of output modules

while introducing a new constraint that ensures that a certain

coverage target is met. We retain the same variables as the

previous formulation (described in §4.1.1) and use the same

constraints to encode the selection of non-overlapping modules

(see §4.1.2). The objective is as follows.

minimize

M∑
i=1

xi

We also need to introduce a new constraint that encodes the

fact that the coverage target of Ct elements must be met. This

is done by adding the following constraint to the ILP.

M∑
i=1

xi · Si ≥ Ct

4.2 Sliceable Formulation

Aggregated 5-bit 2:1 MUX (module i)

other gates ...

RAM (module j)

MUX Bitslice 1
s a b

Y

MUX Bitslice 2
s a b

Y

MUX Bitslice 3
s a b

Y

MUX Bitslice 4
s a b

Y

MUX Bitslice 5
s a b

Y

Fig. 8. Illustration of need for the “sliceable” formulation.

To motivate the need for the “sliceable” ILP formulation

consider the example shown in Figure 8. One box shows a

5-bit 2:1 MUX aggregated using the common select signal.

This box partially overlaps with a RAM module because two

of the bitslices in the 2:1 MUX are also included in the

RAM module. Overlaps such as this occur because the bitslice

aggregation algorithms are “greedy” in the sense that these

inferred modules are created with the maximum number of

bitslices matching the common select signal.

The basic formulation uses a single binary variable to either

select or discard an inferred module. Therefore, the formula-

tion will result in either the 2:1 MUX or the RAM being

included in the final output but not both. This is suboptimal

because there is a third option. The 2:1 MUX can be “sliced”

to include the 3 bitslices that don’t overlap with the RAM

and then the entire RAM can be included. In this section we

develop an ILP formulation that allows modules to be “sliced”

in this manner.

4.2.1 ILP Variables

Inferred modules are grouped into two categories. Modules

like muxes and decoders which can be split up into indepen-

dent bitslices are considered “sliceable”. If such a module has

n slices, it is modelled in the ILP with n+1 binary variables:

xi0 , xi1 , . . . , xin . Variable xij where j ≥ 1 represents whether

slice j of module i is selected for output. Variable xi0 is a

special variable introduced for technical reasons. It represents

where module i itself (i.e., any slice in module i) is selected

for output. In the example shown in Figure 8, suppose the

5-bit multiplexer is module i, then MUX bitslices 1, 2, 3, 4

and 5 will be represented by variables xi1 , xi2 , xi3 , xi4 and

xi5 respectively.

Modules which are not “sliceable”, for example: counters

and RAMs, are represented as before with a single binary

variable xi which determines whether the entire module is

selected for output or discarded.

4.2.2 Constraints Describing Overlaps

The formulation in §4.1.2 expressed the fact that if a gate is

covered by l different modules, no more than one of these

modules could be selected for output. Here, we would like to

express the same but at the finer granularity of slices rather

than modules. For this it is necessary to assign the elements

included in a module to its component slices.

Define the following function V ar(gk, i) that maps an

element gk contained in module i to the ILP variable that

represents the slice that gk is contained in.

V ar(gk, i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xi if module i is unsliceable

xij if gk is contained only in

slice j of module i

xi0 otherwise

The intuition here is that for a sliceable module, elements

which are contained in exactly one slice are mapped to that

slice. Elements which are contained in more than one slice,

are mapped to the variable xi0 which is the special variable

that represents the entire module. Returning to the example

in Figure 8, the gates which are inside the boxes labelled

“MUX bitslice j” will be mapped to variable xij . The inverter

however, is “part of” all bitslices, so it is mapped to xi0 .

As before, suppose element gk is covered by inferred

modules k1, k2, . . . , kl. We add the following constraint.
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V ar(gk, k1) + V ar(gk, k2) + · · ·+ V ar(gk, kl) ≤ 1

Consider a gate that is contained within the box labelled

“MUX Bitslice 4” in Figure 8. The specific constraint intro-

duced by a gate inside “MUX Bitslice 4” will be xi4+xj ≤ 1.

This tells the solver that either bitslice 4 or the RAM can

be selected for output but not both. Unlike in the basic

formulation, we are not restricting the selection of the other

bitslices in the MUX.

4.2.3 Slice-Related Constraints

For each sliceable module, we would like to specify that if

any individual slice is selected, gates that are common to more

than one slice are also selected. This leads to constraints of

the following form.

forall 1 ≤ j ≤ n: xi0 − xij ≥ 0

In the notation above, module i has n slices and is modelled

in the ILP using the variables xi0 , xi1 , . . . , xin .

We would also like to specify that each module contains

a minimum number of slices to avoid creating very small

modules. This is done using a constraint of the form:

n∑
j=1

xij − MinSlices · xi0 ≥ 0

n is the number of slices in module i.16 All results are

shown in this paper are with MinSlices = 2.

4.2.4 Objective Function

The objective function to maximize coverage is similar to that

presented in §4.1.3 with the difference that we have to count

“sizes” on a per-slice basis. Define the size function as follows.

Size(x) =
∣∣∣{gk | V ar(gk, i) = x for some i

}∣∣∣
Clearly, Size(x) counts the number of elements covered

by the variable x. Given Size(x) the objective function can

be derived in a straightforward manner by weighting each

variable with its corresponding size.

maximize
∑

variable x

x · Size(x)

Returning to the example in Figure 8, the solver can

maximize coverage by setting xi0 , xi1 , xi2 , xi3 and xj to 1

and xi4 and xi5 to zero. This satisfies all the constraints we

have described and selects bitslices 1, 2 and 3 of the MUX

and the entire RAM.

16. Note adding the constraint
∑N

j=1
xij ≥ MinSlices is incorrect. This

requires every module to have MinSlices slices selected. What we want is:
if a module is selected, it must have at least MinSlices slices in it.

4.2.5 Alternative Formulation
The formulation that minimizes the number of inferred mod-

ules while meeting the coverage target Ct again requires the

addition of the following constraint.

∑
variable x

x · Size(x) ≥ Ct

The following function returns the representative variable

for a module i. The representative variable determines whether

a module is selected for output.

rep(i) =

{
xi if module i is not sliceable

xi0 if module i is sliceable

In the example shown in Figure 8, the representative vari-

ables for the 5-bit multiplexer and RAM are xi0 and xj

respectively.

Assuming the total number of modules is M and that they

are numbered from 1 to M , the objective function is now given

by the following equation.

minimize

M∑
i=1

rep(i)

5 EXPERIMENTAL RESULTS

We now present a detailed evaluation of our algorithms.

5.1 Methodology

We developed an inference tool using the C++ and Python

programming languages that implement the algorithms de-

scribed in this paper. The tool takes as input a synthesized

verilog netlist, analyzes it and outputs an abstracted netlist

with the inferred components. The tool uses the CU Decision

Diagram (CUDD) Package version 2.4.2 for the BDD-based

analyses [23], and MiniSat version 2.2 for satisfiability check-

ing [6]. DepQBF [16] was used as the QBF solver and IBM

CPLEX version 12.5 was the ILP-solver.

Experiments were performed on an Intel R© Xeon R© E31230

CPU clocked at 3.20GHz with 32 GB of RAM. One set of

results are shown for eight netlists. Details of these netlists

are shown in Table 2. All the designs were synthesized using

an IBM/ARM cell library for a 45nm SOI process. This

paper also shows inference results on a large highly-optimized

SoC design consisting of more than 375,000 combinational

elements. A case study describing our analysis of this test

article is given in Section 5.3. Finally, we describe a case

study where we inject hardware trojans into two of the test

articles from Table 2 and discuss how our algorithms would

aid an analyst detect these trojans.

5.2 Summary of Results

Table 3 shows the modules identified and overall coverage

obtained using our inference algorithms. Coverage is measured

as a percentage of gates in the design which are covered by

inferred modules. The table also shows information about the
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TABLE 3
Coverage Results.

Design Information Combinational Sequential Coverage and
components components execution time

Design gate latch a/s dec dm eq gf mux lt ram sr cnt reg cov tim mem

router 896 182
0 44 10 0 46 281 0 0 0 4 8 65% 9s 0.6

0 10 0 0 28 48 0 0 0 4 8 64% 9s 0.7

eVoter 1360 108
0 41 8 8 205 7 72 0 0 0 1 53% 10s 0.6

0 11 1 0 44 5 16 0 0 0 1 45% 10s 0.7

Open8 1807 237
23 278 61 1 115 141 35 2 1 2 18 70% 31s 1.3

5 16 0 1 30 52 5 1 1 0 7 62% 32s 1.4

cpu8080 2258 243
6 402 58 0 181 173 129 0 0 0 8 64% 25s 1.2

6 15 1 0 73 75 6 0 0 0 5 61% 25s 1.2

ae18 3466 1094
27 602 118 0 164 216 99 1 3 2 57 69% 17s 1.0

7 21 2 0 50 71 5 0 2 1 12 65% 21s 1.1

MIPS16 6986 4380
2 1290 102 4 111 346 581 3 1 27 276 94% 19s 1.1

2 4 0 4 18 14 3 2 1 0 1 93% 36s 1.2

oc8051 8164 2748
20 5447 494 5 428 835 1842 8 4 5 304 79% 98s 4.0

5 48 3 4 109 141 11 4 3 5 17 76% 136s 4.3

RISC FPU 14291 3097
130 843 198 24 526 2887 1272 2 7 51 123 78% 185s 3.8

37 59 4 13 158 140 36 1 7 2 40 73% 196s 4.0

Legend for table header: gate: number of gates; latch: number of latches a/s: adders/subtractors; dec: decoders; dm: demultiplexers; eq: equality comparators; gf: gating functions
(and2/or2 etc. of a word with a common signal); mux:multiplexors; lt: parity tree, zero-detect and one-detect; ram:RAMs/register files; sr: shift registers; cnt: counters; reg:
registers; cov: coverage in percentage of gates covered; tim: execution time in seconds. mem: maximum resident set size in GB (proxy for memory consumption).

The white rows show results before overlap resolution while the shaded rows are inferred modules obtained after overlap resolution.

netlists being analyzed, the number of inferred modules of

various types and the execution time of the tool.

For each test article, we show two rows. The white row

shows the number of modules obtained before overlap res-

olution. This means that for the results shown in the white

rows, each gate/flip-flop/latch in the test article may be placed

into multiple different inferred modules. These results are

directly comparable to the results presented in [26]. The

shaded rows show the results after overlap resolution (§4)

has been performed. In this case, each gate/latch/flip-flop is

placed in atmost one inferred module. The process of overlap

resolution necessarily involves a small loss in coverage but we

see from the results shown that the loss is quite small.

For the three biggest netlists, coverage is above 70% and

reaches up to 93% for the 16-bit MIPS CPU. These netlists

all have a large number of replicated bitslices in the datapath

which are captured well by the bitslice identification and

aggregation algorithms. In contrast, the smaller netlists have a

significant fraction of gates devoted to irregular control logic,

which is hard to identify in a fully automated solution.

Both the execution time and memory requirements posed by

the analysis tool are very reasonable. The maximum execution

time among this set of designs is a little more than three

minutes and the maximum resident set size is 4.1GB. The

most computationally-expensive algorithm in our toolbox is

the counter analysis.

5.2.1 Sliceable vs. Basic ILP Formulation
Table 4 compares the basic ILP formulation (§4.1) with

the sliceable ILP formulation (§4.2). Recall that the basic

formulation can only select or discard an entire module, while

the sliceable formulation can select or discard a subset of the

bitslices in a multibit module. We expect that the sliceable

formulation will always have the same or better coverage than

the basic formulation. However, the trade-off here is again that

the sliceable formulation will somtimes tend to choose a few

smaller modules over one big module. Results in Table 4 are

in keeping with these expectations.

TABLE 4
Comparing the Sliceable and Basic Formulations.

Design

Basic Sliceable
Formulation Formulation Coverage

# of Cove- CPU # of Cove- CPU Delta
mod- -rage time mod- -rage time
-ules ules

router 52 52.5% 14s 98 64.3% 9s 11.8%
eVoter 85 41.0% 10s 78 44.9% 10s 3.9%
Open8 78 55.2% 42s 118 62.3% 32s 7.1%
cpu8080 99 52.5% 33s 181 60.8% 25s 8.2%
ae18 123 60.8% 25s 171 64.7% 21s 3.8%
MIPS16 40 92.6% 25s 49 93.1% 36s 0.5%
oc8051 350 74.6% 99s 350 76.0% 136s 1.4%
RISC FPU 333 69.3% 246s 497 73.3% 196s 4.0%

5.3 Case Study 1: Analysis of BigSoC Test Article
We present a case study of algorithmic reverse engineering

of large, realistic SoC. This SoC consists of 375090 combi-

national elements, 34318 latches and 62 and 94 inputs and

outputs respectively. We describe the three part strategy we

used to analyze this design in the rest of this subsection.17

Besides the gate-level netlist, we were also given a datasheet

17. The generic name “BigSoC” is used for confidentiality reasons.
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for the SoC. The datasheet listed the seven constituent cores

of the SoC and provided a brief description of the high-level

functionality of each core.

5.3.1 Circuit Simplification
The SoC in its raw form contains many redundant combi-

national elements such as delays, buffers and paired invert-

ers which were inserted presumably for electrical reasons.

These elements result in the inference of many functionally

equivalent modules with slightly different module boundaries

and adversely affect computational performance and scalabil-

ity. Therefore, our first step was to perform structural logic

simplification and eliminate buffers, delays, paired inverters

and a few other structurally equivalent gates. This reduced the

number of combinational elements in the SoC from 375090

to 168730, a reduction of about 55%!

5.3.2 Partitioning by Reset Tree
Even after logic simplification, we found that the compu-

tationally expensive analysis algorithms - counter and shift

register detection - timed out on the complete design. Although

these inferred modules are small, they are important in gaining

insight into the working of the design. Therefore, the second

step in our analysis of the SoC was to improve analysis

scalability by partitioning the SoC into its constituent cores.

The datasheet of the SoC informed us that the SoC had

seven constituent cores. The SoC had individual reset inputs

for each of these cores and we used these inputs in partitioning

the SoC into its constituent parts. The partitioning algorithm

marks each latch with all the reset inputs that are in its

combinational fan-in cone. The union of the set of all latches

marked with a module’s reset input and all the gates in their

respective fan-in cones yields the module partitioning.

TABLE 5
BigSoC Partition Information.

Partition Inputs Outputs Gates Latches Notes
I2C 472 432 2027 416 I2C impl.
MemCtrl 617 568 3262 571 mem. controller
SPI 470 429 1980 415 SPI interface
UART 463 397 3052 656 UART core
VGA 477 621 19422 770 VGA core
ARM 786 605 22122 4316 32b ARM
SVD 1061 1044 109205 20419 SVD core

BigSoC 62 94 168730 34318 full simplified SoC

The details of the partitioning are shown in Table 5. Note

that a very small number of gates (176 or 0.1%) of gates

are placed into more than one module. We assert that this

discrepancy can easily be resolved by a human analyst during

a later stage of the investigation. About 5% of the gates are

not placed in any partition. We believe these gates correspond

to an inter-core interconnect mentioned in the datasheet.

5.3.3 Results for BigSoC
Results of analyzing the partitions as well as the entire

SOC are shown in Table 6. We note that the coverage is

between 62% and 88%. The VGA module contains a 12000+

gate “framebuffer read” structure that was detected using a

design-specific algorithm. These results demonstrate that our

inference algorithms are effective on very realistic large SoC

designs. The computational requirements for the analysis are

reasonable and the entire analysis can be performed in slightly

over two hours on a contemporary midrange server CPU.

5.4 Case Study 2: Trojan Detection
In order to demonstrate how our reverse engineering algo-

rithms can aid trojan detection, we now present a case study

where we analyze trojan-injected versions of two of the test

articles studied above. Our goal here is demonstrate how

inferences from our analysis algorithms can aid a human

analyst who is trying to detect the presence of hardware trojans

in a gate-level netlist. As stated previously, we assume that the

analyst does not have access to the RTL source code and/or

known good chips and has to rely on manual and algorithmic

analysis of the gate-level netlist to detect malicious behavior.

5.4.1 Description of Trojans
We injected trojans into the oc8051 and eVoter test articles. A

comparison of the original and the trojan-inserted versions of

these test articles is shown in Table 7.

In the case of the eVoter, the trojan is activated a by

secret seven key sequence and allows selection of a specific

candidate. All subsequent votes now go to this candidate. The

trojan can be deactivated by pressing the secret key sequence

again. In this case, the trojan is a backdoor that can be used

to compromise the voting machine hardware.

In the case of the oc8051, the trojan circuitry is activated

when an XOR instruction is a repeated 5 times in a row.

Once the trojan is activated all outputs from the ALU to the

accumulator are set to zero. In other words, the trojan here is

a kill-switch activated by a rare sequence of instructions.

TABLE 7
Details of Trojan-Inserted Designs.

Design Chip Chip Gates Latches
Inputs Outputs Flip-flops

eVoter 31 15 1360 108
eVoter w/ trojan 31 15 1416 117

oc8051 86 78 8164 2748
oc8051 w/ trojan 86 78 8189 2759

5.4.2 Results of Algorithmic Inference
Table 8 summarizes the results of the inference algorithms

on the trojan-inserted designs. We chose to show the results

before and after overlap resolution because the resolution

algorithm may discard modules that provide insight into the

trojan because these modules overlap with other inferred

modules.

5.4.3 eVoter Trojan Analysis
In the case of the eVoter trojan, we see that several additional

decoders and demultiplexers are inferred. These modules cor-

respond to the logic in the trojan that matches the specific

secret key sequence which activates the trojan. Further, we

see two additional muxes and one additional multibit register.

The mux and multibit register here are especially prominent
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TABLE 6
Coverage Results on BigSoC Partitions.

Partition Information Combinational Sequential Misc. Coverage and
components components comp. execution time

Design gate latch a/s dec dm eq gf mux lt ram sr cnt reg misc cov tim mem
I2C 2027 416 0 16 0 0 26 68 1 0 0 0 15 0 62% 16s 1.0
MemCtrl 3262 571 1 15 1 0 45 41 8 0 0 0 9 0 63% 33s 1.6
SPI 1980 415 0 15 0 0 23 47 2 1 0 0 8 0 64% 15s 1.0
UART 3052 656 1 10 2 0 47 67 3 2 1 0 25 0 64% 21s 1.2
VGA 19422 770 0 32 2 0 404 219 7 1 0 0 9 1 88% 1545s 2.8
ARM 22122 4316 2 101 2 1 301 783 21 2 3 0 35 0 62% 298s 5.1
SVD 109205 20419 380 295 4 0 1207 956 225 4 9 1 56 0 70% 1721s 9.1
BigSoc 168730 34318 389 603 21 2 1263 2162 181 11 0 0 285 3 68% 6029s 17.1

Note: Table header legend is the same as for Table 3. Entries with dashes indicate algorithms which timed out on that particular netlist.
Miscellaneous components include two clock tree modules and one framebuffer read structure in the VGA core.

TABLE 8
Trojan Analysis Results And Comparison.

Design Information Combinational Sequential Coverage and
components components execution time

Design gate latch a/s dec dm eq gf mux lt ram sr cnt reg cov tim mem

eVoter 1360 108
0 41 8 8 205 7 72 0 0 0 1 53% 10s 0.6
0 11 1 0 44 5 16 0 0 0 1 45% 10s 0.7

eVoter w/ trojan 1416 117
0 73 10 8 209 12 72 0 0 0 2 55% 10s 0.7
0 12 0 0 44 7 16 0 0 0 2 48% 10s 0.7

oc8051 8164 2748
20 5447 494 5 428 835 1842 8 4 5 304 79% 98s 4.0
5 48 3 4 109 141 11 4 3 5 17 76% 136s 4.3

oc8051 w/ trojan 8189 2759
18 5657 547 5 444 848 1819 8 4 6 304 79% 109s 4.2
5 47 3 5 111 142 13 3 3 6 17 76% 152s 4.6

Note: Table header legend is the same as for Table 3. Rows shaded gray show inferred modules after overlap resolution while the unshaded rows show the inferred modules before
overlap resolution. Columns which are in bold show additional inferred components which correspond to the inserted trojan.

because there are only a few of these modules in the design. In

fact, the additional modules here precisely correspond to the

logic that overrides the user input button number (i.e., user

vote) with the secret trojan/backdoor input.

A human analyst analyzing the inferred modules with no

prior knowledge of the trojan is likely to have noticed this

mux that selects either the user input button number or

a multibit register. Further, the analyst would have noticed

several decoders, which are part of a state machine, and that

these decoders are also driven by the input button number.

Combining this with some manual analysis of the state ma-

chine and discovering that the state machine drives the select

input of this mux would very likely have led to the discovery

of the hardware trojan.

5.4.4 oc8051 Trojan Analysis
The most important additional module discovered by the

algorithms for the oc8051 trojan is a counter. This is in

fact the counter which counts the number of consecutive

XOR instructions being executed by the ALU. The tool also

discovered a gating function module that zeros out the ALU

output. This module is enabled by a set of decoders that are

driven by output of the counter.

Reviewing the inference results from the point of view of

an analyst with no prior knowledge of the trojan, the following

steps are necessary to discover the trojan/kill-switch. First, the

analyst needs to discover the accumulator in the 8051. Our tool

can help discover the accumulator because the ALU adder and

subtractor outputs are connected to the accumulator. The next

key step in detecting the trojan is combining knowledge of

which circuit registers form the accumulator along with the

gating function inferred module that zeros out the accumulator.

The third key step is piecing together the counter output and

decoders that enable this gating function. Even if it is not

entirely clear what event is being counted, the fact that a count

reaching a specific value triggers a kill-switch which results

in the accumulator being permanently zeroed out is sufficient

to determine the presence of a trojan. We assert that these

inference steps are fairly straightforward for an analyst if given

the help of our tools. Without help from an algorithmic reverse

engineering tool, the analyst would have to resort to examining

each of the several thousand gates and registers in this designs,

making detection unlikely.

6 DISCUSSION

In this section, we discuss some of limitations and areas for

potential improvement in our tools. We also provide a detailed

comparison with our previous work which this paper builds on.

6.1 Abstraction Quality
Some of the inferred modules detected by the tool, such as

decoders and demultiplexers are somewhat small and cover

tens of gates leading to a moderately large number of such

modules in the output. Due to this, a human analyst would

need to spend more time looking at each of these inferred

modules. At first sight, this appears to be a major limitation.

However, it is important to note that even with these small

modules, the number of inferred modules is at least an order

magnitude and usually a few orders of magnitude fewer than
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the number of gates and registers present in the article being

analyzed. As we pointed out in the discussion of the trojan

injected in oc8051, this results in a very significant reduction

in the workload for an analyst.

Furthermore, if design-specific information is available

about the types of modules expected to be present in the

design, our algorithms can be easily extended to detect such

modules. Two examples are shown in this paper. The first is

the framebuffer-read structure in the VGA module of BigSoC.

In this case, we designed the algorithm to detect this structure

knowing that a VGA controller and framebuffer were present

in the design.

A second example is our detection of the ALU in oc8051.

Detecting an ALU requires knowledge of the exact functions

implemented by an ALU such as add, subtract, not, negate,

and, nand, or, xor, xnor etc. These vary from design to design.

Moreover, the number of ALU operation specifier bits, the

number of input operands and their bitwidths also needs to

be known or derived. These factors make it hard to write

a completely general ALU detection algorithm. However, in

the case of the oc8051, analyzing the instruction set gave us

information about the functions performed by the ALU as well

as the width of each ALU input. In this case, we were able

to use QBF-based module matching and word identification

to precisely identify the ALU in the oc8051 design. Building

such a large library of high-level components is an important

topic for future work.

Finally, we wish to point out that it is actually advantageous

for the tool to detect small “building-block” type of modules

in the trojan detection scenario. Small modules like decoders,

counters, multiplexers and gating functions are the building

blocks from which higher-level functionality is derived. Since

trojans can be implemented in a variety of different ways,

detecting these building blocks is a more promising approach

than designing algorithms that detect high-level modules that

correspond to trojans. Such algorithms will likely be stymied

by small differences in implementation of the trojan.

6.2 Improving Coverage
Our algorithmic inference tool can automatically reverse en-

gineer between 45% and 93% of the gates in chip. This still

leaves a significant number of gates that need to be reverse

engineered to completely understand the chip’s functionality.

In the rest of the section, we discuss some ways of reverse

engineering these gates.

It is important to note that placing 100% of the gates and

registers in a design into inferred modules is not necessary

for trojan detection. As we showed in §5.4, identifying a few

key modules in the trojan is sufficient to alert an analyst to

potentially malicious behavior. And because our algorithms

can infer a rich library of logical building blocks, we assert

that a significant part of almost any trojan would be covered

by the algorithms presented here.

6.2.1 Design-Specific Bitslices and Aggregation
A human analyst may extend the analysis tool with bitslices

and aggregation algorithms specific to the chip being analyzed.

We used this technique to identify the VGA frame buffer

structure in the BigSoC design.

6.2.2 Manual Analysis of Candidate Modules
Besides fully identified modules, the tool can also be made

to output “candidate” modules generated by common signal

aggregation of “unknown” bitslices (§2.2). A human analyst

can look at the generated modules and try to understand

their functionality, for example, by simulating with random

inputs. Analyzing these modules is easier than analyzing the

entire chip because: (i) the modules only have a fews tens

or hundreds of gates and (ii) the modules have regularity and

structure unlike the full netlist.

6.2.3 Manual Analysis of Uncovered Gates
We can derive useful information about the functionality

of unidentified gates using the output of the tool. Two of

the counters identified in the router are actually head and

tail pointers which index into a FIFO. Knowing these are

counters helped understand the functionality of the indexing

structure. Another case is of structures that do not have a clean

interconnection pattern but have replicated bitslices that can be

detected using cut-based Boolean matching.18

6.2.4 Simulation-Based Analyses
The techniques in this paper focuses entirely on “static”

analysis of the netlist. Simulation of the netlist with carefully

constructed test vectors is a form of dynamic analysis that can

provide valuable information. For instance, one conceivable

way of detecting an FFT co-processor is to construct a test

program executing FFTs in a loop, simulating its execution

and observe where the (known) operands and results of the

transform show up. We are working on such algorithms.

6.2.5 Discussion And Comparison with Previous Work
This paper introduced a portfolio of algorithms for reverse

engineering gate-level netlists. It builds on our previous

work [26, 13] in this area. The work in [26] introduced bitslice

matching and aggregation and provided a brief overview of the

algorithms for counter, shift register and RAM detection. This

work adds new algorithms based on analyzing nodes with com-

mon support (§2.5), the multibit register analysis (§3.4) and the

ILP formulation to resolve overlapping output modules (§4).

This paper has also integrated the functional word propagation

algorithm (§2.3) and QBF-based module matching algorithm

(§2.4) from [13]. These algorithms have proven to be more

effective than the structural word propagation and BDD-based

module matching algorithms presented in [26]. This paper also

expanded on the descriptions of the algorithms for detecting

counters (§3.1), shift registers (§3.2) and RAMs (§3.3). The

evaluation of our algorithms (§5) in this paper is much more

detailed. In particular, we believe that the detailed analysis

of the BigSoC design (§5.3) and the partitioning algorithms

used in making the analysis of BigSoC tractable significant

contributions of this paper. The trojan detection experiments

from §5.4 which demonstrate the feasibility of trojan detection

18. This happens for less-than/greater-than comparison circuits.
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aided by algorithmic reverse engineering are also an important

novel contribution of this paper.

7 CONCLUSION

Integrated circuits are now designed and fabricated in a global-

ized and multi-vendor environment making them vulnerable to

malicious design changes and hardware trojans. Algorithmic

reverse engineering can mitigate these risks by helping detect

malware and verify the integrity of critical ICs.

The key challenge in reverse engineering digital circuits is

generating meaningful module boundaries given a very large

unstructured netlist of gates. In this paper, our main contribu-

tion is a portfolio of algorithms for reverse engineering which:

(i) find module boundaries for a variety of combinational

and sequential components and (ii) functional analyses that

verify the behavior of these modules. Experiments showed

that the functionality of 45% to 93% of the gates in a netlist

may be automatically inferred using our algorithms. We also

demonstrated that our algorithms achieve 68% coverage on a

large highly-optimized SoC consisting of over 375,000 gates.

We also demonstrated that these algorithms are very effective

in aiding a human analyst detect hardware trojans in an

unstructured netlist.
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