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a b s t r a c t

Fibonacci cubes are induced subgraphs of hypercube graphs obtained by restricting
the vertex set to those binary strings which do not contain consecutive 1s. This class
of graphs has been studied extensively and generalized in many different directions.
Induced subgraphs of the hypercube on binary strings with restricted runlengths as
vertices define Fibonacci-run graphs. These graphs have the same number of vertices
as Fibonacci cubes, but fewer edges and different graph theoretical properties.

Basic properties of Fibonacci-run graphs are presented in a companion paper, while
in this paper we consider the nature of the degree sequences of Fibonacci-run graphs.
The generating function we obtain is a refinement of the generating function of the
degree sequences, and has a number of corollaries, obtained as specializations. We also
obtain several properties of Fibonacci-run graphs viewed as a partially ordered set, and
discuss its embedding properties.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The n-dimensional hypercube Qn is the graph with all binary strings of length n as vertices, where two vertices v1v2 . . . vn
and u1u2 . . . un are adjacent if and only if vi ̸= ui for exactly one index i ∈ [n]. We have |V (Qn)| = 2n, and |E(Qn)| = n2n−1.
ibonacci cubes Γn are a family of subgraphs of Qn, and were introduced by Hsu [7]. The vertices of Γn are the Fibonacci
trings of length n,

Fn = {v1v2 . . . vn ∈ {0, 1}n | vi · vi+1 = 0 , i ∈ [n − 1]} ,

nd two vertices are adjacent if and only if they differ in exactly one coordinate. Shortly, Γn is the subgraph of Qn, induced
y the vertices that do not contain consecutive 1s. This family of graphs turned out to be interesting, and has been widely
nvestigated, see for example [3,8,11,12,14].

Recall that a graph isomorphic to a Fibonacci cube is obtained by adding the string 00 to the end of every vertex. We
all such binary strings extended Fibonacci strings. With this interpretation, we can set

V (Γn) = {w00 | w ∈ Fn} ,

nd make two vertices adjacent if and only if they differ in exactly one coordinate.
Instead of considering extended Fibonacci strings as the vertex set, it is possible to consider run-constrained binary

trings, which are used to define Fibonacci-run graphs introduced in [5]. Run-constrained binary strings are strings of 0s
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Fig. 1. Fibonacci-run graphs Rn for n ∈ [4].

nd 1s, in which every run of 1s appearing in the word is immediately followed by a strictly longer run of 0s. Run-
onstrained strings, together with the null word λ and the singleton 0, are generated freely (as a monoid) by the letters
from the infinite alphabet

R = 0, 100, 11000, 1110000, . . . (1)

This means that every run-constrained binary string can be written uniquely as a concatenation of zero or more strings
from R. Note that run-constrained strings of length n ≥ 2 must end with 00.

For n ≥ 0, the Fibonacci-run graph Rn, has the vertex set

V (Rn) = {w00 | w00 is a run-constrained binary string of length n + 2} ,

nd edge set

E(Rn) = {{u00, v00} | H(u, v) = 1} ,

here H(u, v) is the Hamming distance between u, v ∈ {0, 1}n, i.e. the number of coordinates in which u and v differ.
We take R0 to be the graph with a single vertex corresponding to the label 00, which after the removal of the trailing

air of zeros, corresponds to the null word. Clearly, Rn is a subgraph of Qn+2. However it is more natural to see it as a
ubgraph of Qn after suppressing the trailing 00 in the vertex labels of Rn. In this way, we can view the vertices of Rn
ithout the trailing pair of zeros as

V (Rn) = {w | w00 is a run-constrained binary string of length n + 2} .

ote that here we use the same notation Rn, even though the obtained graph is just isomorphic to Rn. This is the same
ind of convention as viewing Γn as a subgraph of Qn+2 if one thinks of the vertices as extended Fibonacci strings, or as
subgraph of Qn as usual by suppressing the trailing 00 of the vertex labels. The graphs R1 – R4 with this truncated

abeling of run-constrained strings are shown in Fig. 1.
Basic properties of Fibonacci-run graphs such as the number of vertices, the number of edges, diameter, the decom-

osition into lower dimensional Fibonacci-run graphs, Hamiltonicity and the nature of the asymptotic average degree are
tudied in [5].
The rest of the paper is organized as follows. After the general preliminaries in Section 2, we consider a decomposition

f run-constrained binary strings and prove a result on special collections of words in Section 3. In Section 4, we consider
he problem of keeping track of both the up-degree and the down-degree of a run-constrained string. Calculation of the
enerating function of the up–down degree enumerator polynomials is presented in Section 5. The proof is divided into a
umber of subsections. In Section 6, we derive a number of consequences of the generating function obtained in Section 5.
mong these is the generating function for the degree enumerator polynomials of Fibonacci-run graphs. Following this, in
ection 7, we consider a number of parameters for Fibonacci-run graphs as partially ordered sets. These include the rank
enerating polynomial, enumeration of the maximal elements, and the calculation of the Möbius function. A combinatorial
spect of run-constrained strings, namely the generating function by inversions is presented in Section 8. Embedding and
elated results are in Section 9, followed by conjectures, questions and further directions in Section 10.

. Preliminaries

In this section, we present definitions and some known results which are needed in the paper. To avoid possible
onfusion that may arise due to the initial values, we reiterate that Fibonacci numbers are defined as f0 = 0, f1 = 1, and
n = fn−1 + fn−2 for n ≥ 2. The Hamming weight of a binary string u is the number of 1s in u, denoted by |u|1. If a, b
re strings, then ab denotes the concatenation of these two strings in that order. Similarly, for a set of strings B, we set

B = {ab | b ∈ B}. The distance between vertices u and v in a graph G is denoted by dG(u, v).
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Fig. 2. The Hasse diagram of the Fibonacci-run graph R4 when viewed as a partially ordered set.

The number of vertices and the number of edges of Rn for n ≥ 5 are given by

|V (Rn)| = |V (Γn)| = fn+2 ,

|E(Rn)| = |E(Γn)| − |E(Γn−4)| = (3n + 4)fn−6 + (5n + 6)fn−5 ,

s proved in [5, Lemma 3.1] and [5, Corollary 4.3].
Fibonacci-run graphs can also be viewed as partially ordered sets whose structure is inherited from the Boolean algebra

f subsets of [n]. The elements here correspond to all binary strings of length n and the covering relation is flipping a 0
to a 1. Therefore in Rn we have a natural distinction between up- and down-degree of a vertex, denoted by degup(v) and
egdown(v). Here degup(v) is the number of vertices u in Rn obtained by changing a 0 to a 1, and degdown(v) is the number
f vertices u in Rn obtained from v by changing a 1 to a 0. Clearly

deg(v) = degup(v) + degdown(v) .

ote that in Rn, degdown(v) is not necessarily equal to the Hamming weight of v because the vertices of the graph are
restricted to be run-constrained binary strings.

The degree sequences, i.e. the nature of the vertices of a given degree in a graph, has been well studied for Fibonacci
cubes [9]. Here we keep track of the degree sequences of our graphsRn as the coefficients of a polynomial. This polynomial
is called the degree enumerator polynomial of the graph denoted by gn(x). The coefficient of xi in the degree enumerator
polynomial is the number of vertices of degree i in Rn. More precisely,

Definition 2.1. The degree enumerator polynomials gn(x) of Rn is defined for n ≥ 1 by

gn(x) =

∑
v∈Rn

xdeg(v) . (2)

Similar polynomials are defined to keep track of the up- and down-degree sequences as well. In particular the
down-degree enumerator polynomial and the up-degree enumerator polynomial of Rn are defined as∑

v∈Rn

ddegdown(v) , and
∑
v∈Rn

udegup(v) ,

respectively.
The generating function of the sequence of down-degree enumerator polynomials of Rn is∑

n≥1

tn
∑
v∈Rn

ddegdown(v) .

he generating functions of the sequence of up-degree enumerator polynomials and the degree enumerator polynomials
re defined similarly.
The nature of the distribution of the up-degrees and the down-degrees are most easily seen from the Hasse diagram of

n for which degup(v) and degdown(v) are simply the number of edges emanating up and down from v ∈ Rn, respectively.
Inspecting Fig. 2, we see that the down-degree, up-degree and the degree enumerator polynomials of R4 are given
respectively by

1 + 4d + 3d2, 3 + 2u + 2u2
+ u4, 5x2 + 2x3 + x4 . (3)
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Fig. 3. The calculation of the bivariate up–down degree enumerator polynomial 3d2 + 2du + 2du2
+ u4 of R4 .

It was determined in [5, Proposition 7.1] and [5, Proposition 7.2] that generating function for down-degree enumerator
olynomials of Rn is

t(1 + d + dt + (d2 − 1)t2 + d(d − 1)t3 + d(d − 1)t4)
1 − t − t2 − (d − 1)t3 − d(d − 1)t5

, (4)

and the generating function for up-degree enumerator polynomials of Rn is

t(1 + u − (u − 2)t − 2ut2 + t3 − (u − 1)t5 − (u − 1)t6)
1 − ut − 2t2 + (2u − 1)t3 + t4 − (u − 1)t5 + (u − 1)t7

. (5)

Our general aim in this paper is to study the generating function of the bivariate polynomials∑
v∈Rn

udegup(v)ddegdown(v) (6)

that we refer to as the up–down degree enumerator of Rn. For example, for n = 4, this polynomial is given by

3d2 + 2du + 2du2
+ u4 , (7)

as can be verified by inspecting R4 in Fig. 3, where the term contributed by each vertex is indicated in a box.
The up–down degree enumerator polynomial is a refinement of the both up- and down-degree enumerator polynomi-

als and of the degree enumerator polynomial gn(x). For instance the polynomial in (7) specializes to the first polynomial
in (3) for u = 1, to the second one for d = 1, and to the last for u = d = x. More generally, the generating function of
the up–down degree enumerator polynomials for Rn specializes to the generating functions (4) and (5) as corollaries, and
provide the generating function for the degree enumerator polynomials {gn(x)}n≥1 itself for u = d = x.

Example 2.2. For the graphs R1 through R8, the up–down degree enumerator polynomials are as follows:

d + u
2d + u2

d + d2 + 2du + u3

3d2 + 2du + 2du2
+ u4

5d2 + 2d2u + 3du2
+ 2du3

+ u5

4d2 + 2d3 + 6d2u + 2d2u2
+ 4du3

+ 2du4
+ u6

3d2 + 7d3 + 5d2u + 9d2u2
+ 2d2u3

+ 5du4
+ 2du5

+ u7

2d2 + 10d3 + d4 + 4d2u + 8d3u + 7d2u2
+ 12d2u3

+ 2d2u4
+ 6du5

+ 2du6
+ u8

We define the generating function GF of the up–down degree enumerator polynomials of Rn formally as follows:

efinition 2.3. The generating function of the sequence of the up–down degree enumerator polynomials is defined as

GF = GF (u, d; t) =

∑
n≥1

tn
∑
v∈Rn

udegup(v)ddegdown(v) . (8)
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. Decomposition of run-constrained strings and a preparatory result

In this section, we present some preliminary results about formal power series, which are needed for the computation
f our up–down degree enumerators and their generating function GF .
We also need another description of run-constrained binary strings. Define the set

S = {100, 11000, 1110000, . . .} ,

hich is used in the rest of the paper. Every run-constrained binary string consists of words from S interspersed with runs
f 0s, including a prefix and a suffix which may also be runs of 0s. Let s∗ denote an arbitrary string of zero or more words
rom S, and s+ denote an arbitrary string of one or more words from S. So we have s+ = ss∗, and as another example,
2s∗ denotes all strings obtained by the concatenation of two or more words from S. Note that this notation is consistent
ith its usage in formal languages. Every non-trivial (i.e. not consisting only of 0s) run-constrained binary string can be
ritten in the form

0i0s+0i1s+0i2 · · · 0iks+0ik+1 ,

here k ≥ 0, i0, ik+1 ≥ 0, i1, i2, . . . , ik ≥ 1. The runs 0i1 , 0i2 , . . . , 0ik are called internal runs, the initial string 0i0 is the
pre-run, and the final string 0ik+1 is the post-run of the word. Note that for the latter two, we do not rule out the possibility
that they have length zero (i.e. i0 = 0 or ik+1 = 0.) So in that sense they are not ‘‘real’’ runs like the interior runs of the
string, which are the portions in between the letters of S that appear in the word, and must have positive length.

Note that the up–down generating function G of the words in S itself is

G = dt3 + d2t5 + d2t7 + · · · = dt3 +
d2t5

1 − t2
. (9)

Here we are keeping the trailing pair of zeros in a run-constrained string into account as the exponent of t so that the
exponent of t starts at 3. This in contrast with definition (8) in which the trailing zeros are not considered and the exponent
of t starts at 1. The reason for this is that it is somewhat easier to explain the steps of the proof of our Theorem 5.1 if we
keep the trailing pair of zeros in the representation of run-constrained strings. The generating function GFX we obtain
this way differs from our target generating function GF in (8) in that it accounts for two extra words 0 and 00, and the
exponent of t for all other words in GFX is 2 more than those in GF . Algebraically this is expressed in (20), and once we
have GFX , we immediately obtain GF from it.

We make us of the following two preparatory results. Consider the alphabet Σ = {a, b} and let Σ∗ denote all words
over Σ . The length of u ∈ Σ∗ is denoted by |u|. Let |u|a and |u|b denote the number of occurrences of a and b in u,
respectively. Let also |u|aa, |u|ab, |u|ba, |u|bb denote the number of appearances of the words aa, ab, ba, bb in u, respectively.
For n ≥ 0, let aΣna = {awa | w ∈ Σ∗, |w| = n}. Similarly, we define the sets of strings aΣnb, bΣna, and bΣnb.

For a word u with |u| ≥ 2, define

m(u) = x|u|ay|u|bα|u|aa+|u|baβ |u|ab+|u|bb . (10)

Example 3.1. For the word u = aababbaaa ∈ aΣ7a, we have |u| = 9, |u|a = 6, |u|b = 3, |u|aa +|u|ba = 5, |u|ab +|u|bb = 3,
and consequently

m(u) = x6y3α5β3 .

Next, we prove the following proposition, to be used for the calculation of the generating function GF of the up–down
degree enumerator polynomials.

Proposition 3.2. Let n ≥ 0 be an integer and let w ∈ Σ∗, where Σ = {a, b}. Then∑
|w|=n

m(awa) = αx2(αx + βy)n, (11)∑
|w|=n

m(awb) = βxy(αx + βy)n, (12)∑
|w|=n

m(bwa) = αxy(αx + βy)n, (13)∑
|w|=n

m(bwb) = βy2(αx + βy)n. (14)

Proof. Consider the first identity. For n = 0, there is only one word aa, and both sides are αx2 in this case. If n > 0 and
u = awa, then note that the number |u|aa + |u|ba is the number of a’s in wa and |u|ab + |u|bb is the number of b’s in w.
Given a word w with |w|a = k and |w|b = n − k, we calculate m(u) as

m(u) = xk+2yn−kαk+1βn−k
= αx2xkyn−kαkβn−k .
60
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such strings w, we obtain∑

|w|=n

m(aua) = αx2
n∑

k=0

(
n
k

)
xkyn−kαkβn−k

= αx2(αx + βy)n .

he proofs of the other identities are similar. □

By summing each identity in Proposition 3.2 over all nonnegative integers n, we obtain the following formulas.

orollary 3.3. Let Σ = {a, b} and m be as defined in (10). Then∑
w∈Σ∗

m(awa) =
αx2

1 − (αx + βy)
, (15)

∑
w∈Σ∗

m(awb) =
βxy

1 − (αx + βy)
, (16)

∑
w∈Σ∗

m(bwa) =
αxy

1 − (αx + βy)
, (17)

∑
w∈Σ∗

m(bwb) =
βy2

1 − (αx + βy)
. (18)

. Up–down degree polynomials

In the general case we aim to keep track of the terms

udegup(v)ddegdown(v)t |v| (19)

or every run-constrained binary string v. If we are to only keep track of the down-degree of a run-constrained binary
string, then the problem is considerably simpler. In this case we are flipping 1s in the string to 0s, and the contribution
of every word s ∈ S in the observed run-constrained binary string v, independently of where it is located in v, is either
1 (s = 100) or 2 (s ∈ S \ {100}).

The difficulty with keeping track of the up-degree arises in the following situations. As an example consider the
subword s10s1 that appears somewhere in the string, where s1 = 100, and use parentheses to highlight the words from
S:

· · · (100) 0 (100) · · ·

The 0 in the middle can be flipped to 1 in the case that the 100 on the right is followed by a 0:

· · · (100) 0 (100) 0 · · ·

but not if the 100 on the right is followed by another word from S:

· · · (100) 0 (100) (11000) · · ·

As another example, consider the last subword s ∈ S in the word. It may be followed by zero or more 0s. For example, if
s = 100,

· · · (100), · · · (100) 0, · · · (100) 00, · · · (100) 000, · · · (100) 0000, . . .

In the first two cases, the 0 immediately to the right of 1 cannot be flipped to a 1 but in all other cases it can be.
Additionally, whenever we have r ≥ 3 trailing 0s in a case like this, r − 2 of those can be flipped to a 1.

5. Calculation of GF

Theorem 5.1. The generating function for the up–down degree enumerator polynomials of the graphs Rn is given by
GF = Nu,d/Du,d where

Nu,d = (d + u)t − d(u − 2)t2 + (d2 − d − 2u)t3 − (d − 2)d(u − 2)t4

− (d − 1)(u − d + du)t5 − d(d + u − 2)t6 + d(1 − 2d + 2d2 + du − 2d2u)t7

− 2(d − 1)d2(u − 1)t8 − (d − 1)d2(d + 1)(u − 1)t9 − (d − 1)2d2(u − 1)t10

− (d − 1)2d2(u − 1)t11 ,

nd

Du,d = 1 − ut − 2t2 + (2u − d)t3 + t4 + (2d − d2 − u)t5 + d(du − 1)t7

+ 2(d − 1)d2(u − 1)t9 + (d − 1)2d2(u − 1)t11 .
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roof. We consider the cases according to the type of word from S that precedes the leftmost internal run of 0s, and the
ord from S that follows the rightmost internal run of 0s. There is also the case, where the run-constrained binary string
oes not have internal runs of 0s. Thus there are altogether five cases to consider. In the cases (A) through (D), k ≥ 1,
0, ik+1 ≥ 0, and i1, i2, . . . , ik > 0. Note that s simply denotes a word from S, and this word may be different at different
places in the below schematic description of the cases. Similarly, s2s∗ denotes a string of at least two words from S.

(A) The string is of the form 0i0 s 0i1 · · · 0ik s 0ik+1

(B) The string is of the form 0i0 s2s∗ 0i1 · · · 0ik s 0ik+1

(C) The string is of the form 0i0 s 0i1 · · · 0ik s2s∗ 0ik+1

(D) The string is of the form 0i0 s2s∗ 0i1 · · · 0ik s2s∗ 0ik+1

(E) The string has no internal runs of 0s.

et GFA, GFB, GFC , GFD, GFE denote the generating functions of the classes of strings in the cases (A) through (E), respectively.
hen the generating function for the run-constrained binary strings with the statistic (19) is

GFX = GFA + GFB + GFC + GFD + GFE,

nd the generating function GF for the same statistic for V (Rn) is (after getting rid of the strings 0 and 00, and removing
he trailing 00 in all strings)

GF = (GFX − t − t2)/t2 . (20)

To simplify the notation in the remaining part of the proof, we define the following quantities:

G = dt3 +
d2t5

1 − t2
,

α =
ut

1 − ut
, β =

t
1 − ut

,

x = G, y =
G2

1 − G
.

alculation of GFE
We first consider the calculation of GFE , which is the most straightforward. Since there are no internal runs of 0s in

ase (E), we can partition the strings in (E) into three classes and calculate the generating function for each.

(1) The extended Fibonacci string is all 0s:
The generating function for these is

t +
t2

1 − ut
. (21)

(2) The extended Fibonacci string has a single word from S:
The generating function is(

1 +
2t

1 − ut
+

t2

(1 − ut)2

)
G . (22)

To see this, note that words in this set are of the form 0is0j with i, j ≥ 0. For j = 0 the generating function is the
product of G and

1 + t + t2 + ut3 + u2t4 + · · · = 1 + t +
t2

1 − ut
.

For j = 1 it is the product of G and

t + ut2 + ut3 + u2t4 + · · · = t + ut2 +
ut3

1 − ut
.

For j = 2 it is the product of G and

ut2 + u2t3 + u2t4 + u3t5 + · · · = ut2 + u2t3 +
u3t5

1 − ut
,

and so on. Adding the fractional expressions over j yields∑ ujt j+2

1 − ut
=

t2

1 − ut

∑
ujt j =

t2

(1 − ut)2
. (23)
j≥0 j≥0
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a

The sum of the pairs of terms 1 + t , t + ut2, ut2 + u2t3, etc. over j ≥ 0 is calculated to be

1 +
2t

1 − ut
. (24)

Adding the contributions of (23) and (24) proves (22).
(3) The extended Fibonacci string has two or more words from S:

We prove that in this case the generating function is(
1 + t +

t + t2

1 − ut
+

t2

1 − ut
+

t3

(1 − ut)2

)
G2

1 − G
. (25)

The strings here are of the form 0is2s∗0j with i, j ≥ 0. The generating function of the strings of at least two words
from S is G2/(1 − G).
We again calculate the contribution to the generating function for j = 0, 1, 2, . . .. For j = 0, we have

1 + t + t2 + ut3 + u2t4 + · · · = 1 + t +
t2

1 − ut
,

for j = 1

t + t2 + t3 + ut4 + u2t5 + · · · = t + t2 +
t3

1 − ut
,

for j = 2

ut2 + ut3 + ut4 + u2t5 + · · · = ut2 + ut3 +
ut4

1 − ut
,

etc. Adding the fractional terms gives

t2

1 − ut
+

∑
j≥1

uj−1t j+2

1 − ut
=

t2

1 − ut
+

t3

(1 − ut)2
.

The sum of the pairs of remaining terms that appear for each j is

1 +
t

1 − ut
+ t +

t2

1 − ut
and adding these up gives (25).

Finally, adding up and simplifying the contributions of (21), (22) and (25), we obtain

GFE =
t(1 + (1 − u)t)

1 − ut
+

(1 + (1 − u)t)2

(1 − ut)2
G (26)

+
(1 + (1 − u)t)(1 + (1 − u)t + (1 − u)t2)

(1 − ut)2
G2

1 − G
.

Calculation of GFA
We first consider the generating function GFA on an example. We will see that the observations made on it can be

used on a general string. Take a word of the type

0i0s0i1s0i2s2s∗0i3s2s∗0i4s0i5s0i6 . (27)

In this example, k = 5, i0, i6 ≥ 0, i1, i2, i3, i4, i5 > 0. The contribution of the pre-run in such a word is the factor

1 + ut +
ut2

1 − ut
.

Note that we are using the fact that the pre-run is followed by s0. The contribution of the first interior run 0i1 is

α =
ut

1 − ut

as it is located in the context s0i1s0. The contribution of the second interior run 0i2 is

β =
t

1 − ut

s it appears in the context s0i2s2s∗. Continuing, the contribution of the third interior run 0i3 is

β =
t

1 − ut
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ecause it appears in the context s2s∗0i3s2s∗. The contribution of the fourth interior run 0i4 is

α =
ut

1 − ut
as it appears in the context s2s∗0i4s.

We can summarize the situation with the contribution of the internal runs as follows:

the internal runs located in the context of s0is0 and s2s∗0is0 contribute α,

the internal runs located in the context of s0is2s∗ and s2s∗0is2s∗ contribute β.

f course each occurrence of s contributes x = G and each occurrence of s2s∗ contributes y = G2/(1−G). For our example,
this leaves the contribution of the last interior run and the post-run. Note that the last interior run contributes β if the
post-run has length zero, and α if the post-run has positive length. In the first case the contribution of the post-run is 1,
and in the second it is

t
1 − ut

.

Adding the two contributions, the last interior run and the post-run together contribute

β + α
t

1 − ut
= α

u−1

1 − ut
.

Therefore we can ‘‘charge" α as the contribution of the last interior run if we make the contribution of the post-run equal
to

u−1

1 − ut
.

We can simplify the situation further. Encode the strings of type (27) by the word

aabbaa

over the two letter alphabet {a, b}, ignoring the runs of 0s altogether, and encoding s by a and s2s∗ by b. Since we are in
ase (A), these words start and end with the letter a. Then we have the following:

(1) The contribution of the pre-run is

1 + ut +
ut2

1 − ut
.

(2) The contribution of the post-run is

u−1

1 − ut
. (28)

(3) The contribution of each letter a is x = G.
(4) The contribution of each letter b is y = G2/(1 − G).
(5) The contribution of each letter pair aa or ba is α.
(6) The contribution of each letter pair bb or ab is β .

In our example aabbaa, there are four a’s, two b’s, two aa’s, one ba, one bb and one ab. So the generating function of the
words encoded by aabbaa is(

1 + ut +
ut2

1 − ut

)(
u−1

1 − ut

)
x4y2α3β2 .

Note that x4y2α3β2
= m(aabbaa) as defined in (10). By (11),∑

|w|=4

m(awa) = αx2(αx + βy)4 .

Generalizing these results and using (15), the generating function GFA is given by

GFA =

(
1 + ut +

ut2

1 − ut

)(
u−1

1 − ut

)
αx2

1 − (αx + βy)
. (29)

alculation of GFB
Let us consider how this case differs from the computation of GFA. This time the contribution of the pre-run is

1 + t + t2 + ut3 + u2t4 + · · · = 1 + t +
t2

.

1 − ut
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gain the contribution of the post-run is taken to be (28). Each adjacent pair aa or ba contributes α, and each pair bb or
ab contributes β . In this case the encoding words start with b and end with a. Using (12) and (16), we find

GFB =

(
1 + t +

t2

1 − ut

)(
u−1

1 − ut

)∑
n≥0

αxy(αx + βy)n (30)

=

(
1 + t +

t2

1 − ut

)(
u−1

1 − ut

)
αxy

1 − (αx + βy)
.

Calculation of GFC
Here the contribution of the pre-run is as in case (A), but the contribution of the post-run is

1 +
t

1 − ut
.

he encoding words over {a, b} start with a and end with b. Therefore by (15)

GFC =

(
1 + ut +

ut2

1 − ut

)(
1 +

t
1 − ut

)
βxy

1 − (αx + βy)
. (31)

alculation of GFD
In this case the contribution of the pre-run is such as in case (B), and the contribution of the post-run is as in case (C).

he encoding words over {a, b} start and end with b. Therefore by (17), we have(
1 + t +

t2

1 − ut

)(
1 +

t
1 − ut

)
βy2

1 − (αx + βy)
. (32)

Finally, adding up the contributions from (29), (30), (31), (32), (26) (by Mathematica) gives the generating function
GFX and via (20), the generating function GF given in the theorem. □

6. Consequences of the up–down degree enumerator

The degree enumerator polynomials gn(x) for R1 through R10 (computed by Mathematica) are as follows:

g1(x) = 2x
g2(x) = x2 + 2x
g3(x) = x3 + 3x2 + x
g4(x) = x4 + 2x3 + 5x2

g5(x) = x5 + 2x4 + 5x3 + 5x2

g6(x) = x6 + 2x5 + 6x4 + 8x3 + 4x2

g7(x) = x7 + 2x6 + 7x5 + 9x4 + 12x3 + 3x2 (33)
g8(x) = x8 + 2x7 + 8x6 + 12x5 + 16x4 + 14x3 + 2x2

g9(x) = x9 + 2x8 + 9x7 + 15x6 + 22x5 + 24x4 + 14x3 + 2x2

g10(x) = x10 + 2x9 + 10x8 + 18x7 + 30x6 + 32x5 + 39x4 + 10x3 + 2x2

g11(x) = x11 + 2x10 + 11x9 + 21x8 + 39x7 + 48x6 + 57x5 + 42x4 + 10x3 + 2x2

g12(x) = x12 + 2x11 + 12x10 + 24x9 + 49x8 + 68x7 + 81x6 + 84x5 + 46x4 + 8x3 + 2x2

Making the substitutions u → x and d → x in the generating function of the up–down degree enumerator polynomials,
we find the generating function of the degree enumerator polynomials of the Rn to be as follows.

Theorem 6.1. The generating function for the degree enumerator polynomials of Fibonacci-run graphs

f (t, x) =

∑
n≥1

gn(x)tn

is given in closed form by Nx/Dx, where

Nx = xt
(
2 − (x − 2)t + (x − 3)t2 − (x − 2)2t3 − x(x − 1)t4 − 2(x − 1)t5

− (x − 1)(2x2 − x + 1)t6 − 2x(x − 1)2t7 − x(x − 1)2(x + 1)t8

− x(x − 1)3t9 − x(x − 1)3t10
)
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Dx = 1 − xt − 2t2 + xt3 + t4 − x(x − 1)t5 + x(x − 1)(x + 1)t7

+ 2x2(x − 1)2t9 + x2(x − 1)3t11.

Remark 6.2. To find the generating function of the number of vertices with degree k, we can take dk

dxk
f (t, x), and then

set x = 0. The resulting series divided by k! is then the generating function of the number of vertices of degree k in Rn.
We can denote this series by

1
k!
Dkf (t, x) |x=0 . (34)

n other words, the coefficient of tn in (34) is the number of vertices of degree k in Rn.

In the following examples we calculate the number of vertices of small degree in Fibonacci-run graphs.

xample 6.3. We differentiate the generating function f (t, x) of Theorem 6.1 with respect to x twice using Mathematica,
nd then set x = 0. Dividing the resulting expression by 2 gives

1
2
D2f (t, x) |x=0= t2 + 3t3 + 5t4 + 5t5 + 4t6 + 3t7 +

2t8

1 − t
,

confirming that for n ≥ 8, Rn has exactly two vertices of degree 2. If n is even, then these two vertices are 01n/20n/2+1

and 1n/20n/2+2. If n is odd, then they are 001⌊n/2⌋0⌈n/2⌉ and 1⌈n/2⌉0⌊n/2⌋+2.

Example 6.4. Continuing computing with Mathematica, we find

1
6
D3f (t, x) |x=0= t3 + 2t4 + 5t5 + 8t6 + 12t7 + 14t8 + 14t9 + 10t10 +

10t11

1 − t2
+

8t12

1 − t2

which means that for n ≥ 11, the number of vertices of degree 3 in Rn is 10 if n is odd, and 8 if n is even.

xample 6.5. For k = 4, we get
1
24

D4f (t, x) |x=0 = t4 + 2t5 + 6t6 + 9t7 + 16t8 + 24t9 + 39t10 + 42t11 + 46t12

+ 39t13 + 43t14 +
t15(39 + 45t − 35t2 − 42t3)

(1 − t2)2

from which we compute that for n ≥ 15, the number of vertices of degree 4 in Rn is 2n + 9 if n is odd and 3n/2 + 21 if
n is even.

Example 6.6. Similar calculations give that the number of vertices of degree 5 in Rn for n ≥ 18 is 9n− 1 if n is odd, and
12n − 48 if n is even.

The presented examples lead to the following conjecture.

Conjecture 6.7. For a given k, the generating function of the number of vertices of degree k in Rn is of the form
pk(t)

(1 − t2)k+1

where pk(t) is a polynomial of degree 1
2 (15k + 8) if k is even, and of degree 1

2 (15k + 7) if k is odd.

We already have the first few degree enumerator polynomials as given in (33). From the denominator of their
enerating function in Theorem 6.1, we get the following result.

heorem 6.8. If gn = gn(x) is the degree enumerator polynomial for Rn as defined in Definition 2.1 with the initial values
iven by (33), then for n ≥ 12

gn = xgn−1 + 2gn−2 − xgn−3 − gn−4 + x(x − 1)gn−5 − x(x2 − 1)gn−7

− 2x2(x − 1)2gn−9 − x2(x − 1)3gn−11 .

Two other specializations of the generating function of the up–down degree enumerator polynomials are obtained in
the following way.

(1) Setting u = 1, we obtain the generating function of the down-degree enumerator polynomials in (4), which we had
already computed [5, Proposition 7.1].

(2) Setting d = 1, we obtain the generating function of the up-degree enumerator polynomials shown in (5), also
already computed in [5, Proposition 7.2].
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Fig. 4. The Hasse diagram of the graph R6 as a poset. The trailing 00 of the vertex labels have been truncated. The dark lines show the interval
000000, 110001] which is isomorphic to the 3-dimensional hypercube Q3 . The six maximal elements of the poset are underlined.

Note that Theorem 5.1 can be used to recalculate another result. The down-degree enumerator generating function
ifferentiated with respect to d is

t(1 − t2)(1 + (2d − 1)t2)
(1 − t − t2 − (d − 1)t3 − d(d − 1)t5)2

which for d = 1 gives the generating function of the number of edges of Rn, already determined in [5] as

t(1 − t4)
(1 − t − t2)2

. (35)

learly, this result could also be obtained by differentiating the up-degree enumerator generating function with respect
o u, and then evaluating it at u = 1.

7. Fibonacci-run graphs as partially ordered sets

Naturally, one might view the vertices of a Fibonacci-run graph as a partially ordered set (poset for short). This poset
is defined as (Rn, ≤), where the covering relation is given as follows: for u, v ∈ Rn, v covers u if and only if v is obtained
rom u by flipping a 0 in u to a 1. The binary relation ‘‘≤" is the transitive closure of this covering relation. We have shown
he Hasse diagram of R4 in Fig. 2. Fig. 4 depicts the Hasse diagram of R6.

Note that the number of vertices v that cover a vertex u ∈ Rn is precisely the up-degree degup(u). The number of
ertices u ∈ Rn that are covered by v is the down-degree degdown(v) of the vertex v, as indicated in Fig. 3.
Notice that (Rn, ≤) is a ranked poset, where the rank of u ∈ Rn is its Hamming weight |u|1. Since the number of

ertices in Rn of weight w is given by(
n − w + 1

w

)
(36)

or 0 ≤ w ≤ ⌈n/2⌉ [5, Corollary 3.2], the rank generating polynomial of the poset Rn is

F (Rn, x) =

⌈n/2⌉∑
k=0

(
n − k + 1

k

)
xk . (37)

Next we consider the maximal elements of R and determine its Möbius function.
n
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.1. Maximal elements

The maximal elements of a poset are those elements which are not smaller than any other element of the set. The
ollowing table lists the run-constrained binary strings of lengths 3, 4, . . . , 8 which correspond to maximal elements of
R1 through R6, viewed as a poset.

R1 R2 R3 R4 R5 R6
100010000100011000001100000100100

100011000100100010010001001000
110000100010001110000

100100010011000
111000011000100

11100000

The sequence {Mn}n≥1 of the number of maximal elements of Rn starts as

1, 2, 2, 3, 5, 6, 10, 13, 20, 27, 40, 56, 80, . . .

We can obtain the generating function of this sequence by setting d = 1 and u = 0 in the up–down degree enumerator
enerating function in Theorem 5.1. This specialization gives the following result.

orollary 7.1. If Mn denotes the number of maximal elements of the poset of Rn, then the generating function of the sequence
Mn}n≥1 is given by∑

n≥1

Mntn =
t(1 + 2t − 2t3 + t5 + t6)
1 − 2t2 − t3 + t4 + t5 − t7

.

7.2. The Möbius function

We can easily compute the Möbius function µ of the poset (Rn, ≤), since every interval [u, v] is isomorphic to a cube
Boolean algebra) and therefore has the same Möbius function. Denoting the weights of u and v by |u|1 and |v|1, we have

µ(u, v) =

{
(−1)|v|1−|u|1 if u ≤ v,

0 if u ≰ v.

. Inversion generating function

In this section, we present an observation about a combinatorial property of run-constrained binary strings that we
se to define Fibonacci-run graphs. For n ≥ 1, consider the inversion enumerator polynomial Qn(x, q) defined by

Qn(x, q) =

∑
w∈V (Rn)

x|w|1qinv(w), (38)

here inv(w) denotes the number of inversions of w and |w|1 is the Hamming weight, or the rank of w. Recall that for
= w1w2 · · · wn, inv(w) is the number of pairs 1 ≤ i < j ≤ n with wi > wj. Note that in (38), the trailing pair of zeros

re not taken in the representation of the vertices V (Rn), as indicated in Fig. 1. A few of these polynomials are as shown
elow:

Q1(x, q) = 1 + x,
Q2(x, q) = 1 + (q + 1)x,
Q3(x, q) = 1 +

(
q2 + q + 1

)
x + x2,

Q4(x, q) = 1 +
(
q3 + q2 + q + 1

)
x +

(
2q2 + 1

)
x2,

Q5(x, q) = 1 +
(
q4 + q3 + q2 + q + 1

)
x +

(
2q4 + q3 + 2q2 + 1

)
x2 + x3 .

Proposition 8.1. Set Q−2(x, q) = Q−1(x, q) = Q0(x, q) = 1 with Q−n(x, q) = 0 for n ≥ 3. Then for n ≥ 1

Qn(x, q) =

∑
k≥0

xkQn−1−2k(xqk+1, q) . (39)

Proof. The proof is a consequence of the fundamental decomposition of Fibonacci-run graphs given in Theorem
[5, Lemma 4.1]. Note that the terms in the sum vanish for k ≥ ⌈

n+1
⌉. □
2
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H(x, q; t) =

∑
n≥1

Qn(x, q)tn .

Then a consequence of (39) is the functional identity

H(x, q; t) =
t(1 + x + xt)

1 − xt2
+ t

∑
k≥0

xkt2kH(xqk+1, q; t) . (40)

his identity can be proved by multiplying both sides of (39) by tn for n ≥ 1, summing over n, and changing the order of
ummation on the right hand side. We omit the details.
We also note that substituting q = 1 in Qn(x, q) gives the rank generating polynomial F (Rn, x) of Rn defined in (37).

n other words, the coefficient of xk becomes the number of words in V (Rn) with weight k as given by (36). For instance,
or n = 7 and q = 1, we have

1 + 7x + 15x2 + 10x3 + x4,

or which the coefficients are(
8
0

)
= 1,

(
7
1

)
= 7,

(
6
2

)
= 15,

(
5
3

)
= 10,

(
4
4

)
= 1.

Indeed, taking q = 1 in (40), we see that H satisfies

H(x, 1; t) =
t(1 + x + xt)

1 − xt2
+

tH(x, 1; t)
1 − xt2

,

so that

H(x, 1; t) =
t(1 + x + xt)
1 − t − xt2

.

e thus get the generating function of the rank generating polynomials F (Rn, x) (see (37)) of Fibonacci-run graphs as a
oset as

t(1 + x + xt)
1 − t − xt2

=

∑
n≥1

F (Rn, x)tn

= (1 + x)t + (1 + 2x)t2 + (1 + 3x + x2)t3 + (1 + 4x + 3x2)t4 + · · ·

Inversions and the major index statistics of a similar flavor for a class of related Fibonacci strings can be found in [4].

9. Embedding related results

We can encode a binary string of length n as a run-constrained binary string of length 3n+ 1. Let si = 1i0i+1 for i ≥ 1.
Given a binary string with k runs of 1s,

w = 0j01i10j11i2 · · · 1ik0jk ,

we first encode the runs as

0sj0si1sj1 · · · siksjk
if j0 > 0 (i.e. the binary string starts with 0), and by

si1sj1 · · · siksjk
if j0 = 0 (i.e. the binary string starts with 1). Then, if necessary, we append 0s at the end to make the length of the
encoding 3n + 1.

For n = 3, this works as follows
000 → 0s3 → 01110000 00
001 → 0s2s1 → 011000100 0
010 → 0s1s1s1 → 0100100100
100 → s1s2 → 10011000 00
011 → 0s1s2 → 010011000 0
101 → s1s1s1 → 100100100 0
110 → s2s1 → 11000100 00
111 → s3 → 1110000 000

This encoding can be carried out for arbitrary n, resulting in an embedding of the hypercube Qn into R3n−1 (the trailing
00 is not included in the vertex labels here).
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uestion 9.1. What is the dilation of this embedding, i.e. the value of

max
uv∈E(Qn)

dR3n−1 (u
′, v′) ,

where the prime denotes the image under the encoding described above?

We note that although it is intuitive, the embedding described above does not seem to give the smallest dimensional
Fibonacci-run graph in which it is possible to embed Qn.

The study of hypercubes of various dimensions which are subgraphs of a Fibonacci-run graphs are interesting in its
own right. An analogous question has been studied for Fibonacci cubes, cf. results about cube polynomial listed in [8],
and generalizations in [13].

Let hn,k denote the number of k-dimensional hypercubes Qk in Rn. A corollary of [5, Proposition 8.2], obtained by taking
q = 1 in that proposition is the following. The generating function of the cube polynomials of Rn is given by∑

n≥1

tn
∑
k≥0

hn,kxk =
t(2 + x + (x + 1)t + x(x + 2)t2 + x(x + 1)t3 + x(x + 1)t4)

1 − t − t2 − xt3 − x(x + 1)t5
. (41)

In the series expansion of this generating function in powers of t , the largest m for which the term xm appears as
a coefficient of tn, gives the dimension of the largest hypercube Qm that can be embedded in Rn. Calculations on (41),
using high order derivatives with respect to x (with Mathematica) suggest that for m ≥ 0, the hypercube Q2m+1 embeds
in R5m+1 and the hypercube Q2m+2 embeds in R5m+3, and these are the smallest possible Fibonacci-run graphs with this
property. So it appears that the hypercube graph Qn can be embedded into R⌈(5n−4)/2⌉, and this is the smallest possible
run graph with this property.

Conjecture 9.2. The smallest m for which the hypercube graph Qn can be embedded into Rm is m =
⌈ 5n−4

2

⌉
.

0. Further directions

In the final section, we list various questions and conjectures, which are of interest in the further study of Fibonacci-run
raphs. These are in addition to Conjecture 9.2 on the determination of the smallest dimensional Fibonacci-run graph
hat contains Qn, Question 9.1 on the dilation of the mapping described at the start of Section 9, and Conjecture 6.7 on
he form of the generating function of the number of vertices of a given degree in Rn.

For Conjecture 6.7, the extraction of the coefficients in the generating function of the degree enumerator polynomials
f (t, x) of Theorem 6.1, one may use the mechanism described in Remark 6.2, and the examples presented afterwards,
along with the Leibniz formula for higher derivatives and the reciprocal differentiation result in [10].

Considering the results obtained in Examples 6.3–6.6 in Section 6, the following general question arises.

Question 10.1. What is the number of vertices of degree k in Rn?

The analysis and the conjecture on the diameter of Rn can be found in [5]. In relation to this, a natural question that
rises is the following:

uestion 10.2. What is the radius of Rn?

It may be possible to consider Question 10.2 in conjunction with the analysis for the exact diameter of Rn in
[5, Section 5].

An irregularity measure of graphs was defined by Albertson [1], and recently studied for various families of graphs
in [2], and generalized to a polynomial enumerator in [6].

Question 10.3. What is the irregularity, or more generally the irregularity polynomial, of Rn, as defined in [6]?
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