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a b s t r a c t

Among the classical models for interconnection networks are hypercubes and Fibonacci
cubes. Fibonacci cubes are induced subgraphs of hypercubes obtained by restricting
the vertex set to those binary strings which do not contain consecutive 1s, counted
by Fibonacci numbers. Another set of binary strings which are counted by Fibonacci
numbers are those with a restriction on the runlengths. Induced subgraphs of the
hypercube on the latter strings as vertices define Fibonacci-run graphs. They have the
same number of vertices as Fibonacci cubes, but fewer edges and different graph
theoretical properties.

We obtain properties of Fibonacci-run graphs including the number of edges, the
analogue of the fundamental recursion, the average degree of a vertex, Hamiltonicity,
special degree sequences, and the number of hypercubes they contain. A detailed study
of the degree sequences of Fibonacci-run graphs is interesting in its own right and is
reported in a companion paper.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The n-dimensional hypercube Qn is the graph on the vertex set

{0, 1}n = {v1v2 . . . vn | vi ∈ {0, 1}},

where two vertices v1v2 . . . vn and u1u2 . . . un are adjacent if vi ̸= ui for exactly one index i ∈ [n]. In other words, vertices
f Qn are all possible strings of length n consisting only of 0s and 1s, and two vertices are adjacent if and only if they
iffer in exactly one coordinate or ‘‘bit’’. Clearly, |V (Qn)| = 2n, and |E(Qn)| = n2n−1.
A well studied subfamily of hypercubes are Fibonacci cubes Γn which were introduced by Hsu [6] as an alternate

nterconnection topology. The vertex set Γn consists of the Fibonacci strings of length n,

Fn = {v1v2 . . . vn ∈ {0, 1}n | vivi+1 = 0 , i ∈ [n − 1]} ,

nd two vertices are adjacent if and only if they differ in exactly one coordinate. In other words, Γn is the subgraph of
n, induced by the vertices that do not contain consecutive 1s. This family of graphs has proved to have an interesting
tructure and was studied extensively.
As mentioned in the seminal paper, the Fibonacci cubes can be viewed as an interconnection topology and can be

pplied to fault-tolerant computing [6]. A survey of a variety of properties of Fibonacci cube graphs [10] presents not just
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he fundamental decomposition of Fibonacci cubes, but also its Hamiltonian properties, and many enumeration results.
or some very recent results, see [1,14,16,19]. Following similar ideas, other graph families have also been introduced and
tudied, such as Lucas cubes [15], generalized Fibonacci cubes [7], k-Fibonacci cubes [5] and daisy cubes [12].
Note that a Fibonacci cube can equivalently be defined by adding 00 to the end of the binary representation of every

ertex. We can call such binary strings extended Fibonacci strings. Actually, in an extended Fibonacci string, the rightmost
ero corresponds to the Fibonacci number f0 and the second to last zero corresponds to f1 in the encoding of the so called
eckendorf or canonical representation of integers [21]. In this representation, f0 is not needed since it is zero, and f1 is
ot needed because f2 is already 1, and the inclusion of another 1 would prevent uniqueness of the Zeckendorf expansion.
e can call this representation with the additional 0s the extended Zeckendorf representation.
With this interpretation

V (Γn) = {w00 | w ∈ Fn}

and two vertices are adjacent if they differ in exactly one coordinate. Recall that the Hamming distance H(u, v) between
trings u, v ∈ {0, 1}n is the number of coordinates in which u and v differ. Using this, the edge set of Γn can be
escribed as

E(Γn) = {{u00, v00} | H(u, v) = 1} .

Observe that extended Fibonacci strings defined above, together with the null word λ and the singleton 0, are generated
reely (as a monoid) by the infinite alphabet

F = 0, 100, 10100, 1010100, . . .

his means that every v ∈ V (Γn) can be written uniquely as a concatenation of zero or more strings from F .
With this in mind we introduce a new family of graphs. Instead of considering extended Fibonacci strings as the vertex

set to define our communication network, we consider run-constrained binary strings. These are strings of 0s and 1s, in
which every run (sometimes called a block) of 1s appearing in the word is immediately followed by a strictly longer run
of 0s. Such run-constrained strings, together with the null word λ and the singleton 0, are generated freely by the letters
from the alphabet

R = 0, 100, 11000, 1110000, . . . (1)

Note that run-constrained strings of length n ≥ 2 must end with 00.
These strings allow us to define the Fibonacci-run graph Rn, parametrized by n ≥ 0, in the following fashion. The vertex

set of Rn is

V (Rn) = {w00 | w00 is a run-constrained string of length n + 2} ,

and its edge set is

E(Rn) = {{u00, v00} | H(u, v) = 1} .

The term Fibonacci-run graph makes sense, since |V (Rn)| = |V (Γn)| is the (n + 2)th Fibonacci number fn+2, as we will
later show in Section 3.

Clearly, Rn is a subgraph of Qn+2, but it is more natural to see it as a subgraph of Qn (after suppressing the tailing 00
in the vertices of Rn). In fact, from now on, we will view the vertices of a Fibonacci-run graph without the trailing pair
of zeros as

V (Rn) = {w | w00 is a run-constrained binary string of length n + 2} .

This is the same kind of a convention as viewing Γn as a subgraph of Qn+2 if we think of the vertices as extended Fibonacci
strings, or as a subgraph of Qn as usual by suppressing the trailing 00 of the vertex labels in the extended Zeckendorf
representation.

Additionally, we define R0 to be isomorphic to K1, and its only vertex corresponding to the label 00, which after the
removal of the trailing pair of zeros corresponds to the null word.

We start the study of the Fibonacci-run graphs Rn by considering the basic properties of these graphs, such as
the number of edges, diameter, decomposition, Hamiltonicity, asymptotic average degree, and compare these graph
parameters with the known results for Γn.

The rest of the paper is organized as follows. After the preliminaries in Section 2, we consider the nature of the run-
constrained binary strings in Section 3, and calculate the number of edges of Rn. This is followed by the graph-theoretic
decomposition of Rn, which is actually what we make use of for our results on the number of edges. In Section 5, we
consider the diameter of Fibonacci-run graphs, followed by asymptotic results in Section 6. In Section 7, we use the
properties of run-constrained strings to calculate the generating functions of the distribution of vertices with special
types of degrees in Rn. In Section 8, we prove that Fibonacci-run graphs are partial cubes for only small values of n, and
provide a count of the induced hypercubes Qk contained in Rn. Finally, in Section 9 we study the Hamiltonicity of Rn,
and conclude with conjectures and further directions for research. Figures of a few large Fibonacci-run graphs are given
in the Appendix.
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. Preliminaries

In this section, we give definitions, provide notation, and indicate the known results that are needed in the paper. To
void possible confusion, recall that Fibonacci numbers are defined as f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for n ≥ 2.
hey are closely related to the golden ratio ϕ = (1 +

√
5)/2, as limn→∞ fn+1/fn = ϕ. In general, it can be shown that

limn→∞ fn+k/fn = ϕk for any integer k.
The Hamming weight of a binary string u is the number of 1s in u, denoted by |u|1. If a, b are strings, then ab denotes

he concatenation of those two strings. Similarly, for a set of strings B, we set aB = {ab | b ∈ B}.
The degree of a vertex v is the number of neighbors of v, denoted by deg(v). Since each neighbor of v ∈ V (Rn) is

btained either by changing a 0 in v into a 1 or by changing a 1 in v into a 0, we can distinguish between the up-degree
egup(v), and down-degree degdown(v) of the vertex v. The first is the number of neighbors of v which are obtained by
witching a 0 in v into a 1, while the second is the number of neighbors obtained by switching a 1 in v into a 0. Clearly,
eg(v) = degup(v)+ degdown(v). Note that in Rn, degdown(v) is not necessarily equal to the Hamming weight of v because
f the constraints on the run-lengths that must hold.
We keep track of the degree sequences of our graphs Rn as the coefficients of a polynomial. This polynomial is called

he degree enumerator polynomial of the graph. The coefficient of xi in the degree enumerator polynomial is the number
f vertices of degree i in Rn. Similar polynomials are defined to keep track of the up- and down-degree sequences as well
see the beginning of Section 7 for an example).

The average degree of a graph G is

deg(G) =
1

|V (G)|

∑
v∈V (G)

deg(v) =
2|E(G)|
|V (G)|

.

The diameter of G is the maximum distance between pairs of vertices of the graph, that is

diam(G) = max{d(u, v) | u, v ∈ V (G)} .

e use the notation dG(u, v) when we need to emphasize that the distance is relative to G. An edge {u, v} ∈ E(G) is
ometimes denoted by u ∼ v.
A partial cube is an isometric subgraph of a hypercube. A subgraph H of a graph G is an isometric subgraph if for

very u, v ∈ V (H) we have dH (u, v) = dG(u, v). A graph G is a median graph if every triple u, v, w of its vertices has
unique median x, that is a vertex x with the properties d(u, x) + d(x, v) = d(u, v), d(v, x) + d(x, w) = d(v, w), and
(u, x) + d(x, w) = d(u, w). Recall that hypercubes are median graphs, and that median graphs are partial cubes.

. The number of edges

emma 3.1. If n ≥ 1, then |V (Rn)| = fn+2.

roof. Since we know that |V (Γn)| = fn+2 [6,10], it suffices to provide a bijection between vertex sets of Γn and Rn. For
he purpose of this proof, we view both vertex sets with additional 00 at the end of each string.

An explicit bijection between Fibonacci strings and run-constrained strings is obtained by setting

Φ(0) = 0
Φ(100) = 100

Φ(10100) = 11000
Φ(1010100) = 1110000,

tc., a bijection between the alphabets F and R, and extending Φ to full words via the unique factorization. So for example,
tarting with a Fibonacci string w = 10010100001010100100, we find Φ(w) as

Φ
(
w

)
= Φ

(
(100)(10100)(0)(0)(1010100)(100)

)
= (100)(11000)(0)(0)(1110000)(100)
= 10011000001110000100.

his clearly yields a bijection, thus |V (Rn)| = |V (Γn)| = fn+2. □

orollary 3.2. The number of vertices in Rn of Hamming weight w, 0 ≤ w ≤ ⌈n/2⌉ is(
n − w + 1

w

)
.

roof. The result follows from the bijection Φ between vertex sets of Rn and Γn (as it preserves the number of 1s in a
string), and the classical result that the number of Fibonacci strings of length n and Hamming weight w is

(n−w+1
w

)
(see,
for example [17]). □
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Fig. 1. Graphs Γn and Rn for n ∈ [4].

Fig. 1 depicts the first four Fibonacci graphs Γn and the first four Fibonacci-run graphs Rn. As noted, we omit the
nding 00 of the vertex labels in both. Note that the graphs Γn and Rn are isomorphic for n ∈ [4]. However, the bijection

Φ between the vertex sets of these graphs is not in general a graph isomorphism. For example, for the adjacent vertices
u = 101 and v = 001 in Γ3, we have Φ(u) = 110, Φ(v) = 001 with H(Φ(u), Φ(v)) = 3 in R3, so Φ(u) and Φ(v) are not
djacent in R3. However as it turns out the two graphs are isomorphic anyway (under a different graph isomorphism),
ee Fig. 1.
In the following, we prove that the graphs Γn and Rn are never isomorphic for n ≥ 5. Recall [10] that the number of

dges of Γn is given by

|E(Γn)| =
1
5

(2(n + 1)fn + nfn+1) , (2)

with generating function∑
n≥1

|E(Γn)|tn =
t

(1 − t − t2)2
= t + 2t2 + 5t3 + 10t4 + 20t5 + 38t6 + · · · (3)

Lemma 3.3. If n ≥ 5, then

|E(Rn)| = |E(Γn)| − |E(Γn−4)|, (4)

with generating function∑
n≥1

|E(Rn)|tn =
t(1 − t4)

(1 − t − t2)2
= t + 2t2 + 5t3 + 10t4 + 19t5 + 36t6 + · · ·

roof. For the proof of the expression (4), see Section 4, Corollary 4.3.
The ordinary generating function for |E(Rn)| follows directly from the recursion, the properties of graphs R1,R2,R3,

4, and (3):∑
n≥1

|E(Rn)|tn = t + 2t2 + 5t3 + 10t4 +

∑
n≥5

(|E(Γn)| − |E(Γn−4)|)tn

= t + 2t2 + 5t3 + 10t4 +

∑
n≥5

|E(Γn)|tn − t4
∑
n≥1

|E(Γn)|tn

= t + 2t2 + 5t3 + 10t4 +
t

(1 − t − t2)2

− (t + 2t2 + 5t3 + 10t4) − t4
t

(1 − t − t2)2

=
t − t5

. □

(1 − t − t2)2
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In particular, an analytic expression for the number of edges of Rn in terms of the Fibonacci numbers is given by (6)
in Corollary 4.3.

Corollary 3.4. If n ≥ 5, then the graphs Rn and Γn are not isomorphic.

Proof. If n ≥ 5, then |E(Γn−4)| ≥ 1, and therefore from (4) in Lemma 3.3 it follows that |E(Rn)| < |E(Γn)|, thus the graphs
cannot be isomorphic. □

As subgraphs of hypercubes, Fibonacci-run graphs are bipartite. The parts of the bipartition are simply obtained by
separating the vertices of odd and even Hamming weight. Thus we have the following easy inequality for the vertex
independence number α(Rn).

Lemma 3.5. If n ≥ 1, then α(Rn) ≥

⌈
fn+2
2

⌉
.

4. Decomposition of Rn

It is well known that Fibonacci cubes have a simple and very useful decomposition [6]. Namely, Γn can be partitioned
into subgraphs 0Γn−1 and 10Γn−2, with a perfect matching between Γn−2 and its copy 0Γn−2 in Γn−1. This immediately
implies a formula for the quantities |V (Γn)|, |E(Γn)|, existence of a Hamiltonian path in Γn, and other interesting
properties [6,10]. With this in mind, we aim to find a similar decomposition of the Fibonacci-run graphs.

Lemma 4.1. The vertex set of a Fibonacci-run graph Rn can be partitioned into
⌈n/2⌉−1⋃

k=0

1k0k+1V (Rn−(2k+1)) ∪ 1⌈n/2⌉0⌊n/2⌋V (R0) .

Proof. The vertices of Rn are run-constrained strings of length n+ 2, all ending with 00. Each of them starts either with
a 0 or with a run of 1s (followed by a longer run of 0s). The maximal number of 1s in such a string is ⌈n/2⌉. Thus every
string in V (Rn) can be uniquely written as 1k0k+1w, where 0 ≤ k ≤ ⌈n/2⌉, and w is a run-constrained string of length
n + 1 − 2k. If k < ⌈n/2⌉, then w ∈ V (Rn−(2k+1)), while the last sting can be viewed as 1⌈n/2⌉0⌊n/2⌋V (R0). This yields the
described decomposition. □

It follows from Lemma 4.1 that Rn contains the following graphs as subgraphs

0Rn−1, 100Rn−3, 11000Rn−5, 1110000Rn−7, . . .

The last graph in this sequence is 1m−10mR1 if n = 2m, and 1m−10mR0 if n = 2m − 1. We augment this list by one more
subgraph of Rn consisting of a single vertex: 1m0mR0 if n = 2m, and 1m0m−1R0 if n = 2m − 1.

If we denote this partition into subgraphs with +, then we obtain the following for n ∈ [8]:

R1 = 0R0 + 1R0

R2 = 0R1 + 10R0

R3 = 0R2 + 100R0 + 110R0

R4 = 0R3 + 100R1 + 1100R0

R5 = 0R4 + 100R2 + 11000R0 + 11100R0

R6 = 0R5 + 100R3 + 11000R1 + 111000R0

R7 = 0R6 + 100R4 + 11000R2 + 1110000R0 + 1111000R0

R8 = 0R7 + 100R5 + 11000R3 + 1110000R1 + 11110000R0

A schematic representation of the decomposition of graphs R1, . . . ,R5 is shown in Fig. 2.
Next, we consider the edges between the mentioned subgraphs of Rn. Inside each subgraph 1k0k+1Rn−(2k+1) we

inherit the edges from the graph Rn−(2k+1). Between subgraphs 0Rn−1 and 1k0k+1Rn−(2k+1) for 1 ≤ k ≤ ⌈n/2⌉ − 1,
we have an edge if and only if the two strings differ in exactly one coordinate. This means that the edges are of the
form 01k−10k+1w ∼ 1k0k+1w, where w ∈ V (Rn−(2k+1)). Therefore each pair of subgraphs 0Rn−1 and 1k0k+1Rn−(2k+1) for
1 ≤ k ≤ ⌈n/2⌉ − 1 yields exactly |V (Rn−(2k+1))| edges in Rn. On the other hand, between subgraphs 1k0k+1Rn−(2k+1) and
1ℓ0ℓ+1Rn−(2ℓ+1) for k < ℓ and 1 ≤ k, ℓ ≤ ⌈n/2⌉−1, we can have an edge only if ℓ = k+1. To be precise, the edges between
those two subgraphs are of the form 1k+10k+2w ∼ 1k0k+3w, where w ∈ V (Rn−(2k+3)), so we get exactly |V (Rn−(2k+3))|
edges between appropriate subgraphs. The only remaining edges to study are between the vertex 1⌈n/2⌉0⌊n/2⌋V (R0) and the
other parts of the graph. But this vertex has exactly two neighbors in Rn: 1⌈n/2⌉−10⌊n/2⌋+1V (R0) and 01⌈n/2⌉−10⌊n/2⌋V (R0).
As examples, see Fig. 3 for a schematic representation of the decomposition of R6 and R7.
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a

Fig. 2. The graphs Rn , for n ∈ [5], with their decomposition schematically shown with thicker edges.

Fig. 3. The decomposition of R6 (above) and R7 (below). The edges are symbolically marked with the lines indicating the edges present between
the parts.

We already know (see Fig. 1), that |E(R1)| = 1, |E(R2)| = 2, |E(R3)| = 5, and |E(R4)| = 10. For n ≥ 5, we can use the
bove argument to obtain the following

|E(Rn)| =

⌈n/2⌉−1∑
k=0

|E(Rn−(2k+1))| + |V (Rn−3)| + 2
⌈n/2⌉−1∑

k=2

|V (Rn−(2k+1))| + 2. (5)
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emma 4.2. If n ≥ 4, then

|E(Rn)| = |E(Rn−1)| + |E(Rn−2)| + fn−1 + fn−3 .

Proof. We know from Lemma 3.1 that |V (Rn)| = fn+2. Set en = |E(Rn)|. If n ≥ 7, we can use the recursion from (5) for
and n − 2:

en = en−1 +

⌈n/2⌉−1∑
k=1

en−(2k+1) + |V (Rn−3)| + 2|V (Rn−5)|

+ 2
⌈n/2⌉−1∑

k=3

|V (Rn−(2k+1))| + 2

= en−1 + fn−1 + fn−3 + en−2 .

For n ∈ {4, 5, 6}, we can determine the number of edges en from (5), and check by hand that the recursion en =

en−1 + en−2 + fn−1 + fn−3 gives the same result. □

Notice that the result of Lemma 4.2 can be simplified to |E(Rn)| = |E(Rn−1)|+|E(Rn−2)|+Ln−2, where Ln−2 is the Lucas
umber. This compares nicely to the expression |E(Γn)| = |E(Γn−1)|+ |E(Γn−2)|+ fn, which follows from the fundamental

decomposition of Fibonacci cubes.

Corollary 4.3. If n ≥ 5, then

|E(Rn)| = |E(Γn)| − |E(Γn−4)| .

Proof. We can easily check that the equality holds for n = 5. Now let n ≥ 6, and let en = |E(Rn)| and gn = |E(Γn)|. By
Lemma 4.2, the induction hypothesis, Eq. (2), and the relation fn = fn−1 + fn−2, it follows that

en = (gn−1 − gn−5) + (gn−2 − gn−6) + fn−1 + fn−3

= (3n + 4)fn−6 + (5n + 6)fn−5 . (6)

On the other hand, we can also calculate that

|E(Γn)| − |E(Γn−4)| = (3n + 4)fn−6 + (5n + 6)fn−5 ,

which completes the proof. □

To conclude the section, we observe that from the decomposition it follows that each vertex in Rn \0Rn−1 has exactly
one unique neighbor in 0Rn−1. More precisely, let ϕ:Rn \ 0Rn−1 → 0Rn−1 be defined as

1k0k+1w ↦→ 01k−10k+1w, w ∈ Rn−2k−1, 1 ≤ k ≤ ⌈n/2⌉ − 1,

1⌈n/2⌉0⌊n/2⌋
↦→ 01⌈n/2⌉−10⌊n/2⌋.

learly, the function ϕ is injective. Moreover, for every u, v ∈ Rn \ 0Rn−1 it satisfies u ∼ v ⇐⇒ ϕ(u) ∼ ϕ(v).

. Diameter

The diameter of Fibonacci cubes is well known [6], and equals diam(Γn) = n. Determining the diameter of Fibonacci-
un graphs turns out to be a rather difficult task. Clearly, diam(Rn) = n for n ∈ [4]. The exact values of the diameter
computed by brute force are shown in Fig. 4 for n ≤ 30. For general n we present a lower bound on diam(Rn), and a
onjecture on the actual value of the diameter.
We first prove the following lemma, which will be generalized later.

emma 5.1. If n =
1
2 (r

2
+ 3r − 2), then diam(Rn) ≥ n −

⌊ r−1
2

⌋
.

Proof. It suffices to find two vertices u, v ∈ V (Rn) with d(u, v) = n − ⌊
r−1
2 ⌋.

If r is even, take

u = 1021304 . . . 1r−10r1r/20r/2+1,

v = 0120314 . . . 0r−11r0r+1,

here the trailing 00 is not omitted. In this case,

n = 1 + 2 + · · · + r + (r − 1) =
1
(r2 + 3r − 2),
2
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Fig. 4. The exact values and the lower bound given by Theorem 5.3 for diam(Rn) for n ≤ 30.

d(u, v) = 1 + 2 + · · · + r +
r
2

= n −

( r
2

− 1
)

= n −

⌊
r − 1
2

⌋
.

f r is odd, then we take

u = 1021304 . . . 1r0r+1,

v = 0120314 . . . 0r1(r+1)/2−10(r+1)/2+1,

here the last 00 is again not omitted. In this case, we get

n = 1 + 2 + · · · + r + (r − 1) =
1
2
(r2 + 3r − 2),

d(u, v) = 1 + 2 + · · · + r +
r − 1
2

= n −

(
r − 1
2

)
= n −

⌊
r − 1
2

⌋
. □

orollary 5.2. If n =
1
2 (r

2
+ 3r − 2), then diam(Rn) ≥ n −

√
n/2.

Proof. This can be verified simply by checking that
√ n

2 ≥
r−1
2 ≥

⌊ r−1
2

⌋
. □

heorem 5.3. If n ≥ 1, then diam(Rn) > n −
√
2n.

Proof. If n =
1
2 (r

2
+ 3r − 2) for some integer r , then the result holds. Otherwise, we have

1
2
(r2 + 3r − 2) < n <

1
2
((r + 1)2 + 3(r + 1) − 2) ,

hich implies

n =
1
2
(r2 + 3r − 2) + D, with 1 ≤ D ≤ r + 1 .

e again aim to construct vertices u, v ∈ V (Rn) which differ on at least n −
√
2n coordinates. The idea is to extend the

last run of r + 1 zeros in u or v from the proof of Lemma 5.1, and add the maximum allowed number of 1s followed by
appropriate number of 0s in the other vertex.

If r is even, then let (without omitting the 00 at the tail end)

u = 1021304 . . . 1r−10r1⌈(D+r−1)/2⌉0⌊(D+r+3)/2⌋,

v = 0120314 . . . 0r−11r0D+r+1,
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hile if r is odd, let

u = 1021304 . . . 1r0D+r+1,

v = 0120314 . . . 0r1⌈(D+r−1)/2⌉0⌊(D+r+3)/2⌋.

n both cases, we obtain

n = 1 + 2 + · · · + r + (r + D − 1) =
1
2
(r2 + 3r − 2) + D,

d(u, v) = 1 + 2 + · · · + r +

⌈
r + D − 1

2

⌉
= n −

⌊
r + D − 1

2

⌋
.

Now, it suffices to prove that n −
⌊ r+D−1

2

⌋
> n −

√
2n. This holds, if we can prove that

√
2n > r+D−1

2 , with
=

1
2 (r

2
+ 3r − 2) + D for some r ≥ 1, and 1 ≤ D ≤ r + 1. But since D ≥ 1, we have

√
2n ≥

√
r2 + 3r > r , and

ince D ≤ r + 1, we get r+D−1
2 ≤ r . Thus

√
2n > r+D−1

2 , and indeed d(u, v) > n −
√
2n. □

We have calculated by computer the exact values of diam(Rn) for n ≤ 30. These values, together with the
orresponding values of the lower bound of Theorem 5.3 are shown in Fig. 4. From the actual values of the diameter
e see that in the range given, the values for n = 4, 8, 13, 19, 26 corresponding to r = 2, 3, 4, 5, 6 of Lemma 5.1 are
ctually exact.
Based on this fact and the values in Fig. 4, we conjecture that the diameter is given by

diam(Rn) = n −

⌊√
1 +

n
2

−
3
4

⌋
. (7)

6. Asymptotic results

We have seen that |E(Rn)| < |E(Γn)| holds for n ≥ 5, so it is natural to consider the asymptotic behavior of the
quotient |E(Rn)|/|E(Γn)|. From the recursion in Corollary 4.3, expression in Eq. (2) for |E(Γn)|, and the asymptotic behavior
of Fibonacci numbers it follows that

lim
n→∞

|E(Rn)|
|E(Γn)|

= 1 − lim
n→∞

|E(Γn−4)|
|E(Γn)|

=
1
2
(3

√
5 − 5) ≈ 0.854. (8)

So asymptotically, Rn has about four-fifths the number of edges of the Fibonacci cube Γn.
The asymptotic average degree of Fibonacci cube Γn is known [11] to be

lim
n→∞

deg(Γn)
n

=

(
1 −

1
√
5

)
≈ 0.55. (9)

Using (9) and (8), we obtain the asymptotic average degree of the Fibonacci-run graph Rn as

lim
n→∞

deg(Rn)
n

= 2
(√

5 − 2
)

≈ 0.47 ,

slightly lower value.

. Up–down degree sequences

The degree sequences, i.e. the nature of the vertices of a given degree in a graph, has been well studied for Fibonacci
ubes [13]. Fibonacci-run graphs can also be viewed as partially ordered sets whose structure is inherited from the Boolean
lgebra of subsets of [n]. The elements here correspond to all binary strings of length n and the covering relation is flipping
0 to a 1. Therefore in Rn we have a natural distinction between up- and down-degree of a vertex, denoted by degup(v)
nd degdown(v): degup(v) is the number of vertices u in Rn obtained by changing a 0 to a 1, and degdown(v) is the number
f vertices u in Rn obtained from v by changing a 1 to a 0. We have deg(v) = degup(v) + degdown(v).
The nature of the distribution of the up-degrees and the down-degrees is most easily seen from the Hasse diagram of

Rn for which degup(v) and degdown(v) are simply the number of edges emanating up and down from v ∈ Rn, respectively.
From Fig. 5, the down-degree enumerator polynomial of R4 is given by

1 + 4d + 3d2 , (10)

and its up-degree enumerator polynomial by

3 + 2u + 2u2
+ u4 . (11)

rom Fig. 5 we also find that the degree-enumerator polynomial of R4 is

5x2 + 2x3 + x4 . (12)

First, we consider the generating function for the down-degree enumerator polynomials for Rn.
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Fig. 5. The Hasse diagram of R4 .

Proposition 7.1. The generating function for down-degree enumerator polynomial in Fibonacci-run graphs is∑
n≥1

tn
∑
v∈Rn

ddegdown(v) =
t(1 + d + dt + (d2 − 1)t2 + d(d − 1)t3 + d(d − 1)t4)

1 − t − t2 − (d − 1)t3 − d(d − 1)t5
.

roof. We first consider the contributions of the strings from the alphabet R of (1). The string 100 contributes dt3, but
onger strings 1k0k+1 of length n contribute d2tn, since both the first and the last 1 appearing can be switched to 0. Thus,
eeping track of the down-degree by the exponent of d and the total length as the exponent of t , the strings from R give

t + dt3 + d2t5 + d2t7 + · · · = t + dt3 +
d2t5

1 − t2
.

Therefore the generating function of the free monoid, which includes vertices V (Rn), n ≥ 1, is
1

1 − t − dt3 −
d2t5
1−t2

.

From this we need to subtract the terms 1, t, t2, which correspond to the null word, 0 and 00 respectively. This gives

1

1 − t − dt3 −
d2t5
1−t2

− 1 − t − t2 =
t3(1 + d + dt + (d2 − 1)t2 + d(d − 1)t3 + d(d − 1)t4)

1 − t − t2 − (d − 1)t3 − d(d − 1)t5
.

Finally, we divide by t2 to effectively shorten the length by 2 and get rid of the contribution of the last two zeros in each
run-constrained string generated to obtain the desired result. □

First few terms given by the generating function in Proposition 7.1 are

(1 + d)t + (1 + 2d)t2 + (1 + 3d + d2)t3 + (1 + 4d + 3d2)t4 + (1 + 5d + 7d2)t5

+ (1 + 6d + 12d2 + 2d3)t6 + (1 + 7d + 19d2 + 7d3)t7 + · · ·

Note that since the sum of down-degrees of the vertices in Rn is the total number of edges, we can obtain the
enerating function of the number of edges in Rn by differentiating the result of Proposition 7.1 with respect to d, and

then setting d = 1. This again gives the generating function obtained in Lemma 3.3.
Along similar lines to the proof of Proposition 7.1, we also obtain the generating function of the up-degree enumerator

polynomials for Rn.

Proposition 7.2. The generating function for up-degree enumerator polynomials of Fibonacci-run graphs is∑
n≥1

tn
∑
v∈Rn

udegup(v) =
t(1 + u − (u − 2)t − 2ut2 + t3 − (u − 1)t5 − (u − 1)t6)
1 − ut − 2t2 + (2u − 1)t3 + t4 − (u − 1)t5 + (u − 1)t7

.

First few terms of the power series expansion of the generating function in Proposition 7.2 are

(1 + u)t + (2 + u2)t2 + (2 + 2u + u3)t3 + (3 + 2u + 2u2
+ u4)t4

+ (5 + 2u + 3u2
+ 2u3

+ u5)t5 + (6 + 6u + 2u2
+ 4u3

+ 2u4
+ u6)t6 + · · ·

It is desirable to study the generating function of the bivariate up–down degree enumerator polynomials∑
udegup(v)ddegdown(v) .
v∈Rn
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or example, for n = 4, this polynomial is

3d2 + 2du + 2du2
+ u4 , (13)

s can be verified by inspecting R4 in Fig. 5. The polynomial in (13) specializes to (10) for u = 1, to (11) for d = 1,
nd to (12) for u = d = x. More generally, the generating function of the up–down degree enumerator polynomials for

Rn would give Propositions 7.1 and 7.2 as corollaries, and provide the generating function for the degree enumerator
polynomials itself for u = d = x. The derivation of this general case is of independent interest and is studied in detail in
a companion paper [4].

8. Relation to hypercubes

Recall that partial cubes are an important and well-studied class of graphs. Since Fibonacci-run graphs are subgraphs
of hypercubes, it is natural to ask whether they can be isometrically embedded in a hypercube.

Proposition 8.1. Fibonacci-run graph Rn is a partial cube if and only if n ≤ 6.

Proof. We can check with a computer that graphs Rn for n ≤ 6 are partial cubes.
Let n ≥ 7. Winkler [20] proved that a connected graph is a partial cube if and only if it is bipartite and the Djoković–

Winkler relation θ is transitive. Recall that for edges xy, uv of a bipartite graph it holds xy θ uv ⇐⇒ d(x, u) =

(y, v) and d(x, v) = d(y, u). Let a, b be arbitrary run-constraint strings of appropriate lengths and take vertices in Rn:

x =a111100000b, y = a111000000b,
p =a011100000b, q = a011000000b,
u =a100100000b, v = a100000000b.

It can be checked that xy, pq, uv ∈ E(Rn), and that xy θ pq and pq θ uv, but not xy θ uv. Thus θ is not transitive and Rn is
ot a partial cube. □

Additionally, we remark that the Fibonacci-run graphs are in general not median graphs. They are median for n ≤ 4,
as those graphs are isomorphic to Γn, which are known to be median [9]. However, Rn is not a median graph for n ≥ 5.
Consider the following triple of vertices:

u =111000n−5,

v =100000n−5,

w =001000n−5 .

Clearly, u, v, w ∈ V (Rn). Since Rn is an isometric subgraph of a hypercube, the unique candidate for a median of u, v, w
is obtained in the same way as in a hypercube – using the majority rule [8]. With this rule, a coordinate of the median
vertex equals the value that appears at least in two of the vertices u, v, w on that coordinate. Thus the unique candidate
or a median is x = 101000n−5 /∈ V (Rn), hence Rn is not a median graph.

Next, we consider an analogous question. Instead of observing Fibonacci-run graphs as subgraphs of hypercubes, we
onsider the possible hypercubes which are subgraphs of a Fibonacci-run graph. A similar question has been studied for
ibonacci cubes as well, cf. results about cube polynomial listed in [10], and generalizations in [18].

roposition 8.2. If hn,d,k denotes the number of k-dimensional hypercubes Qk in Rn whose distance to the all zero vertex 0n

is d, then the generating function
∑
n≥1

tn
∑
d,k≥0

hn,d,kqdxk equals

t(1 + q + x + (q + x)t + ((q + x)2 − 1)t2 + (q + x)(q + x − 1)t3 + (q + x)(q + x − 1)t4)
1 − t − t2 − (q + x − 1)t3 − (q + x)(q + x − 1)t5

.

roof. Let us keep track of all hypercubes Qk in Rn. To each such subgraph, we associate the monomial qdxk, where d is
he distance of the Qk to the all zero vertex 0n

∈ V (Rn). For every vertex v ∈ Rn, select k 1s in its string representation
hat can be replaced with a 0. Note that the number of such 1s is at most degdown(v) (which is not necessarily equal to
eg(v)). By flipping these 1s to 0s in all possible ways, we obtain the vertices of a copy of Qk in Rn. The distance of this
ypercube to 0n is w − k, where w = |v|1 is the Hamming weight of the vertex v. So from every vertex of Hamming
eight w and down-degree r , we obtain

(r
k

)
different copies of Qk, with the associated monomial qw−kxk for each.

The generating function can be obtained from Proposition 7.1 by replacing each dr that appears in the series expansion,
y (q + x)r . The reason for this is that the term dr arises from a vertex v with down-degree r , and its contribution to the
onomials making up the generating function is

r∑(
r
k

)
qr−kxk = (q + x)r .
k=0
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Table 1
Graphs Rn for 1 ≤ n ≤ 12 which have a Hamiltonian cycle or a Hamiltonian path.
n 1 2 3 4 5 6 7 8 9 10 11 12

cycle? no no no ✓ no no ✓ no no ✓ no no

path? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Thus this replacement is the same as if we replace d by q + x in the generating function in Proposition 7.1, and this
ubstitution gives the generating function of the proposition. □

The coefficients of the generating function in Proposition 8.2 for 1 ≤ n ≤ 6 are

1 + q + x,
1 + 2q + 2x,

1 + 3q + q2 + (3 + 2q)x + x2,

1 + 4q + 3q2 + (4 + 6q)x + 3x2,

1 + 5q + 7q2 + (5 + 14q)x + 7x2,

1 + 6q + 12q2 + 2q3 + (6 + 24q + 6q2)x + (12 + 6q)x2 + 2x3.

So for example, the term (12+ 6q)x2 in the last polynomial in this list indicates that in R6, there are 12 squares (Q2’s)
hat contain the all zero vertex, and 6 squares whose distance to the all zero vertex is one.

. Hamiltonicity and further directions

It is well known and follows from the fundamental decomposition of Fibonacci cubes, that Γn has a Hamiltonian path
or every n ≥ 0 [3]. The corresponding result for Fibonacci-run graphs is more difficult. Properties of the graphs Rn for
≤ n ≤ 12 are presented in Table 1.
Since the graphs Rn are bipartite (vertices with odd/even Hamming weight form the two parts), the graph can only

e Hamiltonian if both parts are of equal size. Let ∆n denote the number of vertices of even Hamming weight minus the
umber of vertices of odd Hamming weight in Rn. Using Corollary 3.2, we calculate that

∆n =

⎧⎨⎩
0 if n ≡ 1 (mod 3),
−1 if n ≡ 2, 3 (mod 6),
1 if n ≡ 0, 5 (mod 6).

Therefore we have

emma 9.1. If n ̸≡ 1 (mod 3), then Rn does not contain a Hamiltonian cycle.

Even though this lemma does not solve the Hamiltonicity of Fibonacci-run graphs completely, based on the decompo-
ition in Fig. 3, and the computational values we have obtained in Table 1, we conjecture that Rn is Hamiltonian if and
nly if n ≡ 1 (mod 3) and that Rn always has a Hamiltonian path. We remark that the decomposition of Rn in terms of
maller dimensional Fibonacci-run graphs as indicated in Fig. 3 indicates various approaches for the construction of the
amiltonian paths inductively. The decomposition would require the entry and the exit vertices of the Hamiltonian path
or each smaller dimensional Fibonacci-run graph in a uniform manner. Such a construction is a topic of further interest.

However, it turns out that the problem can be approached using Gray codes, and has recently been resolved by Baril,
irgizov, and Vajnovszki [2].

heorem 9.2 ([2, Corollary 8]). Every Fibonacci-run graph has a Hamiltonian path.

In conjunction with the lower bound in Lemma 3.5 we then have

orollary 9.3. For n ≥ 1, α(Rn) =

⌈
fn+2
2

⌉
.

It would be satisfying to find a proof of the expression in Lemma 3.3 for the number of edges combinatorially, without
using the decomposition of Rn, and also prove the conjecture on the exact value of the diameter given by the expression
in (7). Among many graph theoretical parameters of Fibonacci-run graphs that can be further studied, we can also mention
the problem of the determination of the radius of R .
n
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Fig. 6. Fibonacci-run graphs R6 , R7 and R8 .
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ppendix. Figures of some Fibonacci-run graphs

See Figs. 6 and 7.
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Fig. 7. Fibonacci-run graphs R11 and R12 .
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