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Ömer Eğecioğlu
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We introduce a new probability model, namely the Impartial, Anonymous, and Neutral

Culture (IANC) Model, for sampling public preferences concerning a given set of alterna-

tives. The IANC Model treats public preferences through a class of preference profiles

named roots, where both names of the voters and the alternatives are immaterial. The gen-

eral framework along with the theoretical formulation through group actions, an exact for-

mula for the number of roots, and the description of a symbolic algebra package that allows

for the generation of roots uniformly are presented. In order to be able to obtain uniform

distribution of roots for large electorate size and high number of alternatives which lead

to combinatorial explosions, the machinery we developed involves elements of symmetric

functions and an application of the Dixon-Wilf algorithm. Using Monte Carlo methods,

the model we develop allows for a testbed that can be used to answer various questions

about the properties and behaviors of anonymous and neutral social choice rules for large

parameters. As applications of the method, the results of two Monte Carlo experiments

are presented: the likelihood of the existence of Condorcet winners and the probability of

Condorcet and plurality rules to choose the same winner.
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1. INTRODUCTION

In social choice theory, all procedures aggregating individual preferences into
social choice are analyzed in the light of some robustness and reliability criteria, such
as nonvulnerability to various paradoxes, monotonicity, consistency, strategy-
proofness, and self-selectivity. Theoretically, a single concrete example is enough
to conclude that a social choice rule (SCR) fails in any of these criteria. However,
it is also of interest to know the likelihood of such a problem occurring in practice
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and to detect the behavior patterns of a SCR with respect to alteration of the number
of voters and alternatives.

An extensive literature has been devoted to analyzing the properties and beha-
viors of various SCRs through probability models designed to generate voters’
preferences. There are two basic models in this literature, namely, the Impartial
Culture (IC) and Impartial Anonymous Culture (IAC) Models. IC uses preference
profiles, which show how each of n voters in an electorate totally orders (linearly
ranks) m alternatives, for generating voters’ preferences, and regards each preference
profile equally likely. IAC, on the other hand, is based on the presentation of voter
preferences by anonymous profiles where the names of the voters are neglected, and
assumes that each resulting anonymous profile class is equally probable.

In this article, we introduce the Impartial, Anonymous, and Neutral Culture
(IANC) Model, which treats voter preferences through a class of preference profiles
where not only the names of the voters but also the names of the alternatives
are immaterial. This approach reflects two basic axioms of social choice theory:
anonymity and neutrality. Anonymity requires voters to be treated equally whereas
neutrality prohibits an SCR from having a built-in bias for or against any one or
more alternatives. In other words, if the names of the voters and=or alternatives
are permuted, the winner(s) of the aggregation process induced by any anonymous
and neutral SCR remain(s) intact except from the corresponding alternative names
after permutation. Hence, given the number of alternatives and voters, some prefer-
ence profiles are ‘‘equal’’ to each other from the perspective of anonymous and
neutral SCRs, since they can be generated from each other via relabeling alternatives
and voters. Therefore, such SCRs lead to a partition of preference profiles into
anonymous and neutral equivalence classes (ANECs). Any preference profile in such
an ANEC can be taken as the representative profile which we refer to as a root. Thus,
each root represents a structurally distinct preference profile under simultaneous ful-
fillment of anonymity and neutrality axioms.

To our knowledge, this is the first study in the literature which introduces
a formulation of roots for a given number of alternatives and voters. The notion
of a root itself (as a core preference structure independent of the names of the alter-
natives and of the voters) appeared first in Sertel and Giritligil (2003, 2005). In these
experimental studies, the subjects were confronted with the hypothetical preference
of a hypothetical electorate over some abstract set of alternatives at which several
SCRs of focus choose distinct winners. The subjects were shown all possible roots
that can be generated fulfilling this constraint, and being confronted with each root
the subjects were asked which of the alternatives should be chosen for that society.
As the ‘‘veil of ignorance’’ was provided in the experimental setting, the answers of
the subjects showed their ‘‘democratic’’ values about how to aggregate individual
preference into a social choice. Note that in experimental studies of this kind, it is
important to be aware of the set of all possible roots to sample from. Random
sampling of preference profiles instead of roots is surely prone to biased and incom-
plete data since the relative position of the winner of a SCR can be ‘‘favorable’’ in
some roots and can be ‘‘ ‘unfavorable’’ in some others. That is, a random sampling
from preference profiles can create bias for or against some SCRs. Hence, it is crucial
to consider (and carefully sample from in a computational approach) all possible
preference structures when voting outcomes are analyzed.
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As we introduce a group theoretic formulation of roots, we describe a symbolic
algebra package that allows for the generation of roots from the uniform distri-
bution. By the Monte Carlo method, this black-box model allows for a testbed that
can be used to answer various questions about the properties of anonymous and neu-
tral SCRs experimentally. Since there is a combinatorial explosion for large values of
m and n, any simple enumeration of roots is definitely insufficient to select represen-
tatives uniformly. We use ideas from the theory of symmetric functions and
specialize the general Dixon-Wilf algorithm to overcome this problem.

2. BASIC NOTIONS AND DEFINITIONS

2.1. Preference Profiles and Equivalence Classes

We consider a finite collection of voters {1, 2, . . . , n}. Each voter is assumed to
have a total (linear) preference order (a complete, anti-symmetric and transitive
binary relation) on a finite set of alternatives A¼ {a1, a2, . . . , am}. A preference
profile P is an n-tuple of total orders on A. Clearly, for m alternatives and n voters,
there are m!n preference profiles.

Let us represent a preference profile as an m� n matrix which shows how each
of the n voters linearly ranks m alternatives. We assume that the voters correspond to
the columns and the alternatives correspond to the rows of the matrix. In this rep-
resentation, the entries in the jth column of the matrix lists the preferences of the
jth voter in decreasing rank from the first row down to the last row. In particular,
the first row of the matrix consists of the entries from A that are the voters’
top-ranked alternatives.

As an example, consider a case with two alternatives, a1 and a2, and three voters
whose preferences over a1 and a2 are given in sequential columns. There are two
possible linear preference rankings for two alternatives: a1 is strictly preferred to a2,
or a2 is strictly preferred to a1. In this case there is a total of (2!)

3¼ 8 preference profiles.

An anonymous equivalence class (AEC) is the set of preference profiles that
can be generated from each other via permuting the names of the voters, that is
permuting the columns. That is, an AEC contains those preference profiles which
are ‘‘equivalent’’ to each other if the names of the voters are immaterial. It can be
shown (see Feller, 1957) that the number of AECs for totally (linearly) ordered m
alternatives by n voters is given by the binomial coefficient

nþm!� 1

m!� 1

� �
: ð1Þ

For this example there are four AECs: AEC1¼ {P1}, AEC2¼ {P2, P3, P4},
AEC3¼ {P5, P6, P7} and AEC4¼ {P8}.
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An ANEC is the set of AECs that yield those preference profiles which are
equivalent to each other if, not only the names of the voters but also the names
of the alternatives are immaterial. Hence, an ANEC contains those preference pro-
files that can be generated from each other via permuting the names of the voters
and simultaneously the names of the alternatives. In the above example, there are
two possible permutations for the names of the alternatives: One is the identity
permutation which leaves the names of the alternatives intact, and the other is
the permutation which relabels a1 as a2 and a2 as a1. If we apply these permuta-
tions to the AECs mentioned above, we obtain a further partition of the set
{AEC1, AEC2, AEC3, AEC4} of AECs. Note that this new partition gives us only
two ANECs:

ANEC1 ¼ AEC1;AEC4f g; ANEC2 ¼ AEC2;AEC3f g: ð2Þ

A representative preference profile in an ANEC is referred to as a root. A
root representing ANEC1 shows a preference structure at which all voters have
the same preference ranking, and a root representing ANEC2 exhibits a structure
where one of the preference rankings is adopted by two voters and the other is
adopted by one voter.

Although the immediate way to compute the number of ANECs (roots) for a
given m and n seems to be dividing the number of AECs by m!, there are cases for
which this does not work. Let us demonstrate the problem via the following example:
For m¼ 2 and n¼ 2, there are four preference profiles:

The number of AECs is three: AEC1¼ {P1}, AEC2¼ {P2, P3}, AEC3¼ {P4}.
Note that there are again two ANECs,

ANEC1 ¼ AEC1;AEC3f g; ANEC2 ¼ AEC2f g; ð3Þ

and in this case 3=2! is not even an integer. For ANEC2, both permutations of alter-
natives do not lead to anything other than ANEC2 itself, so it has only one AEC.
Hence, an ANEC might contain less than m! AECs. We give in Theorem 11 a for-
mula for the calculation of the number of ANECs, which explains the effect of
the numerical properties of n and m in determining this number. A particular case
is a result of Giritligil and Doğan (2004) that, for a given pair of m and n, each root
represents m! AECs if and only if m! and n are relatively prime.

2.2. Probability Models for Sampling Electorate’s Preferences: IC,
IAC, and IANC

There are two widely adapted probability models in the social choice litera-
ture which are used for sampling voters’ preferences. The IC model was introduced
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by Guilbaud (1952). For totally ordered m alternatives chosen by n voters, IC
assumes that each voter independently selects her preference ranking according
to a uniform probability distribution. IC uses preference profiles for generating
voters’ preferences. This is a multinomial equiprobable preference profiles model
which assumes that each of the m!n preference profiles is equally likely.

As introduced by Fishburn and Gehrlein (1978), the IAC model relies also on
an equiprobability assumption, but this time without taking the identity of the voters
into account. Hence, the preferences of the electorate are generated via using anony-
mous profiles in which the names of the voters are neglected. An anonymous profile
here is the representative profile selected from an AEC. IAC assumes that each
anonymous profile is equally likely.

IC and IAC reflect the notions of Maxwell-Boltzmann and Bose-Einstein stat-
istics, respectively, that are used in thermodynamics. The details about these assump-
tions and their extensive use in the literature are presented in Berg and Lepelley
(1994) and Gehrlein (1997).

The impartial, anonymous, and neutral culture (IANC) probability model of
public choice theory that is introduced in this article uses roots to generate voters’
preferences. The immediate reason for this approach is that all preference profiles
and anonymous profiles that can be generated from a root via permuting the
names of the alternatives and simultaneously the names of the voters have the
same properties from the perspective of an anonymous and neutral SCR. For
instance, if an anonymous and neutral SCR is detected to fail in satisfying certain
criteria, then all of the preference profiles represented by this root suffer from the
same problem. However, there is no reason for the other roots to have the
paradox. That is, while the behavior of any such SCR is surely homogeneous
among the profiles represented by any one root, it is not so across the roots.
All roots that can be generated for a given pair of m and n form the set of all
possible ‘‘preference structures’’ which are independent of voter and alternative
names.

The number of preference profiles or anonymous profiles get tremendously
large even for small numbers of alternatives (as small as five) and of voters. As a
consequence, enumeration studies adopting IC or IAC fail to make exact calcula-
tions and clearly analyze the pattern of the behaviors of SCRs with respect to
increasing number of alternatives and of voters. Apparently, the number of roots
is small compared to the total number of preference profiles or anonymous profiles
that can be generated for a given pair of m and n. However, as presented in the pre-
ceding sections, the calculation of the number of roots is a nontrivial process due to
the combinatorial complications induced by simultaneous permutation of the names
of the alternative and of the voters.

We use elements of group theory to define ANECs and apply the Frobenius
lemma for the calculation of the number of roots. However, even then, we are faced
with a combinatorial explosion in the calculation of the number of roots for large
values of m and n. At this point, we make use of certain properties of symmetric
functions. We first develop a general formula for the number of roots, and then
use this information along with the Dixon-Wilf algorithm to generate roots from
a uniform distribution. We emphasize that a plain enumeration of the roots to this
end is quite impossible to carry out.
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Most importantly, it should be noted that the group-theoretic approach and the
application of certain symmetric function identities coupled with the Dixon-Wilf
algorithm introduced in this article can be adopted for different ways of generating
voters’ preferences. That is, the general framework of the presented model enables
the researcher to work with preference profiles, anonymous profiles or roots to gener-
ate voters’ preferences, and to analyze the behavior patterns of the SCRs for even high
values of m and n (surely with modest hardware facilities) by Monte Carlo methods.

Some features of IANC that separates it further from IC and IAC are pre-
sented in the following sections. As applications of the method, the results of two
Monte Carlo simulations are given and compared with the ones of IC and IAC.

3. FRAMEWORK AND FORMULATION OF ROOTS

3.1. Permutations, Partitions, and Group Actions

We start by giving a brief outline of the elements of permutations, integer parti-
tions, and group actions on finite sets and their application to the notion of roots.
Our presentation is limited to the introduction of sufficient notation to be able to
state the mathematical results that we present. For the proofs of the major results
quoted, the reader is referred to Eğecioğlu (2009).

Let X(m, n) denote the set of all preference profiles that can be generated for m
alternatives and n voters. Note that the cardinality of X(m, n) is m!n.

For the finite set of n voters [n]¼ {1, 2, . . . , n}, a permutation r of [n] is any
one-to-one mapping of [n] onto itself. Such a r can be regarded as a reordering of
an ordered collection of n distinct elements of [n]. The way that the elements of [n]
are reordered can be presented by a cycle decomposition of r. For n¼ 3, for example,
the cycle decomposition of r¼ (12)(3) means that r takes the first element in the
order to the second and the second element to the first, and fixes the third element
(i.e., sends the third element to itself.)

The set of all permutations on [n] form a group under the composition oper-
ation �, with the identity function from [n] to [n] forming the group identity. This
group is called the symmetric group on n symbols and denoted by Sn. The order of
a group is the number of elements it contains. The order of Sn equals n!. For
example, S3 is of order six since it consists of six permutations which can be pre-
sented via the following cycle decompositions of r: (1)(2)(3), (12)(3), (1)(23),
(13)(2), (123), (132).

A partition k of an integer n is a weakly decreasing sequence of nonnegative
integers k¼ (k1� k2� . . .� kn) with n¼ k1þ k2þ . . .þ kn. Each of the integers
ki> 0 is called a part of k. For example k¼ (3, 2, 2) is a partition of n¼ 7 into three
parts. It has two parts of size two and one part of size three. If k is a partition of n,
then this is denoted by k‘ n. Each partition of n has a type denoted by the symbol
1a12a2 . . . nan, which signifies that k has ai parts of size i for 1� i� n. For example, the
type of k¼ (3, 2, 2) is 10223140506070. We can safely omit the zeros that appear as
exponents and write the type of k as 2231.

A permutation r of [n] defines a partition of n where the parts of the partition
are the cycle lengths in the cycle decomposition of r. The cycle type of r is defined as
the type of the resulting partition. For example, r¼ (142)(35)(67) has cycle type 2231.
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For any k‘ n, define the number

zk ¼ 1a12a2 � � � nana1!a2! � � � an! : ð4Þ

The number of permutations of cycle type 1a12a2 . . . nan is given by z�1
k n! where k

is the partition of cycle lengths of r. For example in the symmetric group S7, there are

7!

22312!1!
¼ 210

permutations having the same cycle type 2231 as r. The collection of permutations
which have a given cycle type is called a ‘‘conjugacy class.’’

A group of permutations G acts on a set X if each element r of the group per-
mutes the elements of X, in such a way that the identity element does nothing, while
a composition of actions corresponds to the action of the composition. Denote by Pr

the image of P2X under the permutation of X induced by r. Then, for P2X and r,
s2G, (Pr)s¼Ps�r. The subset {Pr j r2G} of X is called the ‘‘group orbit’’ of P2X.
A group action on X splits up X into a disjoint union of subsets

X ¼ h1 þ h2 þ � � � þ ht; ð5Þ

where each hi is a group orbit and the ‘‘þ’’ signifies disjoint union. The hi are the
equivalence classes under the action of G on X, where we define P, Q2X to be
equivalent and put P�Q if and only if there exists some permutation r2G such that
Q¼Pr. If Pr¼P then P is a fixed-point of r. If we put GP¼ {r2G jPr¼P}, then
this is called the stabilizer subgroup of P2X. GP is a group in its own right. As a
consequence of the orbit-stabilizer theorem and Lagrange’s theorem, the number
of elements in the group orbit of P is given by the quotient jGj=jGPj. For r2G let
Fr¼ {P2X jPr¼P} denote the set of elements of X fixed by r. Consider now a
group of permutations G acting on a set X. As in (5), this action splits up X into
equivalence classes. The number t of these classes can be computed by the formula

t ¼ 1

jGj
X
r2G

jFrj; ð6Þ

which is known as the Frobenius lemma (or Burnside lemma). This lemma says that
the number of orbits under the action of a finite group G is the average number of
fixed points of elements of G.

For detailed information on permutations groups and their actions on finite
sets, we refer the reader to Kerber (1991) or Wielandt (1964).

3.2. The Number of Roots for m Alternatives and n Voters

First, we need some more definitions and notation. For integers d and n we use
the symbol d j n to mean that d divides n evenly. For any statement S we define the
indicator function of S by
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vðSÞ ¼ 1 if S is True;
0 if S is False:

�

For partitions k and l, we use GCD(k) as a shorthand for the greatest common
divisor (GCD) of the parts of k, and LCM(l) as a shorthand for the least common
multiple (LCM) of the parts of l.

For an integer k with 0� k� x, extend the definition of the ordinary binomial

coefficient
x
k

� �
to nonintegral values of x by setting

x

k

� �
¼

x!
k!ðx�kÞ! if x is integral;

0 otherwise:

�
ð7Þ

We remark that this extension is distinct from the standard one which makes
use of the C function to extend the factorials.

Given n and m, let X¼X(m, n) consist of all m� n matrices with entries from
{a1, a2, . . . , am} such that each of the n columns is a permutation of {a1, a2, . . . , am}.
The product group Sn�Sm acts on X. Sn�Sm consists of pairs g¼ (r, s) with r2Sn

and s2Sm, where the group operation is componentwise composition of permuta-
tions. In the action of g¼ (r, s), a preference profile Pg is obtained from another
preference profile P by permuting the columns (voters) according to r, and simul-
taneously permuting the alternative names in P by mapping each ai to as(i), i¼ 1,
2, . . . , m. Consider the preference profile P below for m¼ 2 and n¼ 4:

If we take g¼ ((13)(24), (1)(2)), then

and for g¼ ((13)(24), (12)), we have

The number of roots R(m, n) is given by the number of group orbits t in the
decomposition (5).

Theorem 1. The number of roots R(m, n) is given by

Rðm; nÞ ¼
X
k‘n
l‘m

vðLCMðlÞ jGCDðkÞÞz�1
l z�1

k m!a1þ���þan ; ð8Þ

where the type of k is 1a12a2 . . . nan and zk is as defined in (4).
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We apply the Frobenius lemma and determine the nature of the fixed points of
g2Sn�Sm. The proofs of the main Theorems 1, 2, and 3 and the elements of the
theory of symmetric functions that we make use of can be found in Eğecioğlu
(2009). We state these results here to emphasize that there is a rigorous basis to
the algorithm we have produced for the generation of roots with equal probability.

The expression on the right-hand side of (8) for R(m, n) is actually a double
sum, and the number of terms involved in the summation is the product of the
number of partitions of n and the number of partitions of m. Since the number of
partitions of an integer grows exponentially, the evaluation of R(m, n) via (8) is
not practical.

Now suppose that LCM(l)¼ d. Then the contribution of l to the sum (8) can
be written as

z�1
l

X
k‘n

djki ;8i

z�1
k m!a1þ���þan : ð9Þ

To be able to use this to simplify the number of terms in the computation of
R(m, n), we need a simpler expression for this sum. Fortunately, a formula for (9)
can be found by using methods from the theory of symmetric functions (see Macdonald
1998; Eğecioğlu, 2009).

Theorem 2. For any two integers n and r

X
k‘n

djki ;8i

z�1
k ra1þ���þan ¼

n
d þ r

d � 1
r
d � 1

� �
; ð10Þ

where the binomial coefficient is defined as in (7).

These two results together yield Theorem 3.

Theorem 3.

Rðm; nÞ ¼
X
l‘m

z�1
l

n
d þ m!

d � 1
m!
d � 1

� �
; ð11Þ

where d¼ d(l)¼LCM(l), the binomial coefficient is defined as in (7), and zl is as
defined in (4).

Note that the summation in (11) is over partitions of m only, and is inde-
pendent of the number of voters n. Theorem 3 has some immediate implications.
We take a look at some simple examples and applications.

3.3. Formula for n Voters and m¼ 2 Alternatives

For m¼ 2, there are only two partitions of m. These are (1, 1) and (2). We have
LCM(1, 1)¼ 1, and LCM(2)¼ 2. The corresponding values of zl are both 2. Thus we
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obtain an exact formula for the number of roots as

Rð2; nÞ ¼ 1

2

X
k‘n

z�1
k 2!a1þ���þan þ 1

2

X
k‘n
2jki

z�1
k 2!a1þ���þan

¼ 1

2

nþ 1

1

� �
þ 1

2

n
2

0

� �
:

This is another way of saying

Rð2; nÞ ¼
1
2 nþ 1 if n is even;
1
2 ðnþ 1Þ if n is odd:

(

Example: For the example with m¼ 2 and n¼ 3 given in in Section 2.1, R(2, 3)¼ 2
orbits (roots) of m!n¼ 8 elements of X(2, 3) are the two given in (2) as ANEC1

and ANEC2.
Example: For the example with m¼ 2 and n¼ 2 given in Section 2.1, R(2, 2)¼ 2

orbits (roots) of m!n¼ 4 elements of X(2, 2) are the two given in (3) as ANEC1

and ANEC2.
Example: For m¼ 2 and n¼ 4, the R(2, 4)¼ 3 orbits (roots) of m!n¼ 16 elements of

X(2, 4) are given by

3.4. Formula for n Voters and m¼ 3 Alternatives

For m¼ 3, there are a total of three partitions of m. These are (1, 1, 1), (2, 1),
and (3). We have LCM(1, 1, 1)¼ 1, LCM(2, 1)¼ 2, and LCM(3)¼ 3. The corre-
sponding values of zl are 6, 2, and 3, respectively. Thus we obtain an exact formula
for the number of roots as

Rð3; nÞ ¼ 1

6

X
k‘ n

z�1
k 3!a1þ���þan þ 1

2

X
k‘ n
2jki

z�1
k 3!a1þ���þan þ 1

3

X
k‘ n
3jki

z�1
k 3!a1þ���þan

¼ 1

6

nþ 5

5

� �
þ 1

2

n
2 þ 2

2

� �
þ 1

3

n
3 þ 1

1

� �
: ð13Þ
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When n and m! are relatively prime, only one of the terms involving the
extended binomial coefficients is nonzero, and the summation in Theorem 3 has
a single term corresponding to d¼ 1 only. The corresponding partition is l¼ (1,
1,. . ., 1) with zl¼m!. An immediate corollary is the following result mentioned in
the introduction:

Corollary. When n andm! are relatively prime, the number of roots R(m, n) is given by

Rðm; nÞ ¼ 1

m!

nþm!� 1
m!� 1

� �
:

3.5. A Comparison of the Number of AECs and Roots for m¼ 3
Alternatives

For m¼ 3 alternatives, the number of roots is given by the sum in (13). The
number of AECs is given by the binomial coefficient in (1). Figure 1 compares these
numbers for 1� n� 100, where the vertical axis is log-scale.

Counting the roots by means of the formulas given in Theorems 1, 2, and 3
may seem unwieldy in general, since as we have remarked the number of partitions
of n grows exponentially in n. However, the calculation of R(m, n) by means of
a symbolic algebra package such as Mathematica is relatively straightforward. We
can easily calculate the value of R(m, n) for relatively large values of m and n using
the general formula in Theorem 3. As examples,

Rð5; 5Þ ¼ 1876255

Rð5; 10Þ ¼ 2049242056940

Rð5; 20Þ ¼ 5908312923863263889174

Rð5; 30Þ ¼ 214658568936630826879925768420;

FIGURE 1 The number of AECs and ANECs(roots). The larger value plotted is the number of AECs,

and the smaller one is the number of roots. The number of voters n ranges from 1 to 100. The vertical axis

is given in the log scale (color figure available online).
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as well as incomprehensibly large values such as

1775806931865011985896266923967495687932727158794851206432159

9292646589480794890970501606240176140489486440

for R(10, 20).
In the next section, we shall indicate the importance of being able to access

the values of R(m, n) for large and unconstrained values of m and n. The ability
to compute the value of R(m, n) together with a general combinatorial method
known as the Dixon-Wilf algorithm allows us to construct a symbolic package to
generate the roots such that each root is produced with probability 1=R(m, n).

Next, we describe the ingredients we use in the construction of our symbolic
algebra package.

4. A MONTE CARLO TESTBED FOR IANC

Our immediate aim in the construction of this testbed is to be able to generate
representatives of the roots randomly where each root is equally likely. Fortunately,
the theory of group actions on sets that we have used for the interpretation of the
roots as the orbits of a group action allows us to do this. In addition to having access
to the elements of this procedure, our group is an explicit permutation group
Sn�Sm, and we are also able to calculate the quantities, such as the size of the
conjugacy classes, that are needed in the standard theory of symmetric functions.

4.1. Uniform Generation of Roots

Suppose a group of permutations G acts on a set X. Consider the decom-
position of X into orbits h1, h2, . . . , ht as in (5). If the number of orbits t is known
(this is R(m, n) in our case), then the following procedure, usually referred to as
the Dixon-Wilf algorithm in the combinatorics literature (Dixon & Wilf, 1983) can
be used to generate an orbit h from the uniform distribution.

4.1.3. Basic Elements of the Dixon-Wilf Algorithm.

1. Select a conjugacy classC�Gwith probability jCjjFrj
tjGj , where r is somemember ofC.

2. Select uniformly at random some x2Fr.
3. Return the orbit h that contains x.

The crucial aspect of the Dixon-Wilf algorithm is that it is guaranteed to return
an orbit (representative) distributed uniformly over the set of all orbits.

Recall again the example with m¼ 2 and n¼ 3 in Section 2.1. In this case,
we have jh1j ¼ 2 and jh2j ¼ 6. If each of the 8 preference profiles were equally likely,
then that would generate an element from h1 with probability 1=4 and from h2 with
probability 3=4. In contrast, the Dixon-Wilf algorithm guarantees that an element
from h1 or an element from h2 will be returned, each case being equally likely. In
this case each P2 h1 is returned with probability 1=4, and each P2 h2 is returned with
probability 1=12, although the values of what these individual probabilities are need
not concern us. What is important is that each root is an equally likely outcome.
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By means of Theorems 1, 2, and 3, we are able calculate the number of orbits
t¼R(m, n) for large values of m and n. In addition, we can calculate the necessary
parameters as required in the Dixon-Wilf algorithm such as the size of the conjugacy
classes for the product group of IANC. The details can be found in Eğecioğlu, (2009).

We have implemented an algorithm named GenerateRoot[m,n] to generate
roots from the uniform distribution as a Mathematica program (the Mathematica
notebook containing this function can be accessed online for experimentation; see
Eğecioğlu, 2004). The program takes two integers m, n as input and generates a pref-
erence profile P by our algorithm, which is based on the Dixon-Wilf algorithm. The
resulting P is guaranteed to be distributed over the R(m, n) roots uniformly. This is
the surprising application of the Dixon-Wilf algorithm.

As an example of the performance of the algorithm, Table 1 gives the numerical
results from runs of the root generation algorithm for a special case. We have run
the algorithm x times for x running from 10 to 10000 in powers of 10 for m¼ 2 and
n¼ 4. For each preference profile P returned by GenerateRoot[2,4] we checked
whether P2 h1, P2 h2, or P2 h3. These are the three roots for m¼ 2 and n¼ 4 as given
in (12). Pr[Hits from orbit h1] is the ratio of the number of P2 h1 to x. Pr[Hits from orbit
h2] and Pr[Hits from orbit h3] are calculated similarly. The resulting probabilities are col-
lected in Table 1. Since there are three roots, the actual probability for each is 0.333. . ..

4.2. Variations on the IANC Model, Homogeneity

We have considered m� n matrices X¼X(m, n) with entries from the
alternatives {a1, a2, . . . , am} such that each of the n columns is a permutation of

TABLE 1 Random Generation of Roots from the Uniform Distribution with 4 Voters and 2

Alternatives

No. of trials x Pr[Hits from orbit h1] Pr[Hits from orbit h2] Pr[Hits from orbit h3]

10 0.2 0.5 0.3

100 0.34 0.29 0.37

1000 0.352 0.348 0.3

10000 0.3235 0.3396 0.3369

Note. Each trial is the generation of a root from R(2, 4) by using GenerateRoot[2,4]. The three

roots h1, h2, h3 area as given in (12).

TABLE 2 Group Actions on Preference Profiles with m Alternatives and n Voters

Which Give the IC, IAC, and IANC models

Group action Voter preference model

Number of inequivalent

classes of profiles (roots)

e IC m!n

Sn IAC
nþm!� 1
m!� 1

� �
Sn�Sm IANC R(m, n)

Note. IC¼ Impartial Culture; IAC¼ Impartial Anonymous Culture; IANC¼
Impartial, Anonymous, and Neutral Culture. The formula for R(m, n) is as given in

Theorem 3.
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{a1, a2, . . . , am}. This is the collection of m� n preference profiles. For our model,
the product group Sn�Sm acts on X, and the roots are representatives of the equiv-
alence classes under this action. The more common models have also group theoretic
interpretation in which only the group is different. For example, IC corresponds to
the action by the trivial group e� e which fixes every profile in X. The IAC is the
equivalence classes of the action of Sn only in the form Sn� e, where the names of
the alternatives are left fixed. We can summarize the situation in Figure 2.

Group-theoretic formulation and the resulting Monte Carlo generation tools
can be useful in the analyses of other types of models as well. For example, suppose
that the alternatives come from two parties, say a subset R of red alternatives, and
a complementary subset B of blue alternatives. We can then impose the neutrality
condition that the red alternatives are equivalent under the relabelings of R, and
the blue alternatives are equivalent under the relabelings of B. If the number of alter-
natives in R and B are r and b¼m� r, then we have a natural action of the group
Sn�Sr�Sb on the preference profiles with n voters and m alternatives. Therefore
many structural questions in social choice theory can be formulated in a setting of
this type and then analyzed by Monte Carlo methods.

Both IC and IAC have been characterized in terms of special Pólya-
Eggenberger urn models with m! balls that correspond to the possible total orders
of the alternatives. The probabilities can then be described by taking the parameter
a¼ 0 for the IC and and a¼ 1 for IAC. A recent exposition of these calculations can
be found in Lepelley and Valognes (2003). The parameter a can be interpreted as a
homogeneity measure for the voters. In the case a¼ 0 the urn model is without
replacement and the voters form their opinion independently of one another. For
positive a, in particular for IAC where a¼ 1, the urn model is now with replacement
and the homogeneity interpretation is that a certain amount of dependence exists
between the preferences of different voters.

For the IANC, it is unlikely that there is a similar Pólya-Eggenberger urn
model that allows for the the homogeneity interpretation for the model. The
difficulty is in the nature of the balls, since for the IANC the difference is not only
in the replacement rule but also the stipulated equality of some of the balls
after they have been picked. However, since the equivalence classes of IANC are
coarser than the equivalence classes of IAC, we can safely say that there is at least
as much dependence between the preferences of different voters as there are in the
IAC model.

FIGURE 2 Two randomly generated preference profiles with 9 voters and 6 alternatives that happen to

have Condorcet winners.
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5. APPLICATIONS: MONTE CARLO SIMULATIONS

We demonstrate the applications of IANC by providing two Monte Carlo
experiments. For these applications we focus on two anonymous and neutral
SCRs that are known and studied the most in the literature: plurality and the
Condorcet rule.

5.1. Plurality and the Condorcet Rule

How to aggregate individual preferences into a social choice has been a major
ethical question ever since the political philosophy of the Enlightenment. When only
two alternatives are at stake, the ordinary majority voting is unambiguously
regarded as the ‘‘fairest’’ method. For three and more alternatives, plurality voting,
where each voter reports the name of exactly one alternative on her ballot and the
alternative receiving the most votes wins, has been historically the most popular
SCR.

One of the celebrated critiques of plurality voting, Marquis de Condorcet
(1785) noted that plurality voting may elect a poor candidate; that is, it can result
in a winner that would lose in a simple pairwise majority comparison to every other
candidate. Condorcet provided the most analyzed nonpositionalist voting principle
by requiring that if a candidate defeats every other candidate on the basis of the
simple majority rule, then that candidate should be the winner in the election.

Example: Consider the preference profile for m¼ 4 alternatives A¼ {a, b, c, d} and
n¼ 5 voters given below.

In the above example, the alternative a is the plurality winner since it is
top-ranked the most among all available alternatives. However, note that it is the
very last choice of the majority (3 out of 5) of voters. In order to be able to determine
the Condorcet winner in this example, we need to check the pairwise majority
relations between the alternatives: b beats a, c and d in 3 out of 5 voters’ rankings.
Therefore, b is the Condorcet winner. Note that a, the plurality winner, is beaten by
every other alternative and it is actually the Condorcet loser.

The Condorcet rule has been widely studied not only as a SCR but also
as a desirable criterion. However, this principle has also generated one of the most
studied paradoxes in the social choice literature. A Condorcet paradox occurs when
a social outcome is cyclic (i.e., not transitive) even though the individual preferences
are not, due to the conflict in majority wishes.

Example: Consider the preference profile for m¼ 3 alternatives A¼ {a, b, c} and
n¼ 3 voters given below.
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In this profile a is preferred to b, and b is preferred to c; however, c is preferred
to a in pairwise majority relation. That is, majority wishes are cyclic and there is no
alternative which beats every other alternative in majority of the voter preferences.
Hence, the Condorcet rule fails to choose a winner.

Based on the possibility of nonexistence of a Condorcet winner, the criteria
called ‘‘Condorcet consistency’’ of a SCR is defined as the conditional probability that
the given SCR chooses the Condorcet winner, given that a Condorcet winner exists.

5.2. Likelihood of the Existence of a Condorcet Winner

Although certain domains of preferences that guarantee the existence of
Condorcet winner are known theoretically (the so-called single-peaked preferences),
these do not fully characterize the preferences that have Condorcet winners. Since
Condorcet rule serves also as a certain criterion of desirability, it is of interest to
know the likelihood of existence of a Condorcet winner.

For n¼ 9 andm¼ 6, the two randomly generated preference profiles (i.e., roots)
produced by GenerateRoot[m, n] in Figure 2 both have Condorcet winners, whereas
the randomly generated preference profile in Figure 3 does not have a Condorcet
winner. Thus, if we had picked only three random roots using GenerateRoot[6,
9], then 2 out of 3 generated have Condorcet winners. We may be tempted to
extrapolate that maybe 2 out of 3 roots have Condorcet winners in the general case
of 9 voters and 6 alternatives. GenerateRoot[6, 9] allows us to carry this experiment
much further. We have run the root generation algorithm x times for x running
from 10 to 100000 in powers of 10 for m¼ 6 and n¼ 9. For each P returned by
GenerateRoot[6, 9] we checked whether the profile P has a Condorcet winner.
Considering the results in Table 3, it appears that the probability of a Condorcet win-
ner over all the roots is about 0.74.

Figure 4 shows the computed probabilities of the existence of Condorcet winners
in the IANC model for m¼ 3 alternatives, obtained by running GenerateRoot[3, n]
for up to n¼ 41 voters.

5.3. Condorcet Consistency of Plurality

In this section, we report the results of the Monte Carlo simulations we
have performed to experimentally determine the likelihood of plurality to choose
the Condorcet winner. This is also called the Condorcet consistency of plurality.
Since plurality is the most commonly used SCR due to the ease of its implementation
in terms of the amount of information required from the voters, its fulfillment of
the Condorcet criteria; that is, its Condorcet consistency is important.

In the simulations, the cases where the Condorcet rule fails to chooses a winner
are ignored. In order for Condorcet to choose single winners we run the experiment
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only for odd values of n. On the other hand, plurality can anytime choose multiple
winners. In that case, we require any one of the plurality winners to coincide with the
Condorcet winner.

Here is the procedure followed for the experiment: Given n and m, we let
GenerateRoot[m, n] generate a random root from the uniform probability. If the
generated root profile P does not have a Condorcet winner, then we simply ignore
it and generate another root. For each root that does have a Condorcet winner,
say ai, we check and see if it is also chosen by plurality. For this we consider the first
row of the preference profile P and make sure that ai occurs in this row at least as

FIGURE 3 A randomly generated preference profile with 9 voters and 6 alternatives that does not have a

Condorcet winner.

TABLE 3 For n¼ 9 and m¼ 6, the Probability of Roots to Have a Condorcet

Winner in the IANC Model

No. of trials x Pr[Existence of a Condorcet winner]

10 0.8

100 0.73

1000 0.75

10000 0.733

100000 0.73705

Note. IANC¼ Impartial, Anonymous, and Neutral Culture.

FIGURE 4 The probability of the existence of Condorcet winners for m¼ 3 alternatives in the Impartial,

Anonymous, and Neutral Culture Model. Note the scale of the vertical axis and the small range of prob-

abilities shown. The horizontal axis is the number of voters n, through odd integers from 5 to 41. Data

have been smoothed by a 5-term moving-average filter. The number of samples used is N¼ 10,000.
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many times as every aj, for 1� j�m. The ratio of the number of roots in which the
Condorcet winner is also a plurality winner to the total number of roots generated
which have Condorcet winners is an approximation to the probability that a Condorcet
winner is also a plurality winner.

For the case of n¼ 9 voters and m¼ 6 alternatives, we generated N¼ 10,000
roots with Condorcet winners from the uniform distribution on the roots. Out of
the 10,000, the Condorcet winners were also plurality winners in 4,635 cases. Thus
0.4635 is an approximation to the probability that a Condorcet winner is also
a plurality winner for 9 voters and 6 alternatives.

A plot of these probabilities for various n and m computed by using N¼ 1,000
Condorcet winners for each case appears in Figure 5.

Figure 6 is the probability of the existence of Condorcet winners for m¼ 3
alternatives and various values of number of voters n in the IC, IAC and IANC
models. In Table 4, we give a comparison of the probabilities of the existence of
Condorcet winners in the models IC, IAC, and IANC for various m. The IC and

FIGURE 5 The probability of the Condorcet winners to also be plurality winners in the IANCmodel after

the data have been smoothed out by a 5-term moving-average filter. The horizontal axis is the number of

voters n, through odd integers from 3 to 41. The number of samples used is N¼ 1000 per m=n pair.

FIGURE 6 The probability of the existence of Condorcet winners for m¼ 3 alternatives and various

values of number of voters n in the Impartial Culture (medium gray), Impartial Anonymous Culture (dark

gray), and Impartial, Anonymous, and Neutral Culture (light gray) Models.
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IAC probabilities are from Gehrlein (1998). The IANC probabilities were computed
by generating¼ 10,000 random roots by GenerateRoot[m, n] for each m=n pair.
We note that for the very special case of n¼ 3 voters, the behavior of the three
models shown in Table 4 concerning the probability of the existence of Condorcet
winners for increasing number of alternatives is quite similar.

6. CONCLUDING REMARKS

The way that anonymous and neutral SCRs aggregate individual preferences
into social choice is independent of the names of the alternatives and of the voters.
What matters for these rules is the preference structure in the society of concern, that
is, the relative positions of the alternatives in the preference rankings of individual
voters. In this article, we have used group theory to formulate the structure of
the preference structures (roots) for given m and n, and presented the ingredients
of a symbolic algebra package for the generation of the roots from the uniform
distribution to introduce IANC, a probability model to sample voters’ preferences.

IANC allows for a sophisticated testbed that can be used to provide a simu-
lative analysis of the behaviors of the anonymous and neutral SCRs with respect
to varying number of alternatives and voters. Since, for m alternatives and n voters,
all preference profile can be generated from a root by permuting the names of
the alternatives and=or voters, the results implemented by an anonymous and
neutral SCR remain the same for any of these profiles. Hence, it is important
to observe the behavior of such SCRs as the ‘‘core’’ of the possible preference
structures are sampled. Even though probabilistic experiments with the IANC model
can be carried out for relatively large values of the parameters, number of voters=
alternatives in the thousands or millions would still present computational problems.
However, we believe that the combinatorial interpretation of the roots and the
resulting formula for R(m, n) may be exploited to derive asymptotic results
in certain cases. It is likely that the asymptotic results would be same or similar to
the asymptotics of IC and IAC.

TABLE 4 The Probability of a Condorcet Winner in the IC, IAC, and IANC

Models for n¼ 3 Voters

m IC IAC IANC

3 0.9444 0.9642 0.8959

4 0.8888 0.9015 0.8949

5 0.8400 0.8439 0.8384

6 0.7977 0.7986 0.8003

7 0.7612 0.7613 0.7642

8 0.7292 0.7292 0.7259

9 0.7010 0.7010 0.7040

10 0.6760 0.6760 0.6813

11 0.6535 0.6535 0.6529

Note. Impartial Culture (IC) and Impartial Anonymous Culture (IAC)

probabilities are from Gehrlein (1998). N¼ 10,000 samples were generated

for the Impartial, Anonymous, and Neutral Culture (IANC) computations.
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Although we introduce the formulation of roots and the IANC model in the
framework of social choice, various applications of the approach can be adopted in
other fields. For instance, in a sociometric context, we can assume that each of n indivi-
duals ranksm group members (i.e., including Ego) on some dimension. Then, an ANEC
refers to the family of potential ‘‘anonymized’’ role structures for this system, where one
is concerned not with who is specifically being evaluated (or evaluating) but rather the
underlying patterns of evaluation per se. Among the prospects for further research, we
believe that theories can be build to predict the role theoretic properties of the system,
even where one cannot effectively predict the ratings among specific individuals.
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