World Scientific

Vol. 15 No. 4 (2004) 619-648 www.worldscientific.com

© World Scientific Publishing Company

International Journal of Foundations of Computer Science \\?

A CLASS OF GRAPHS WHICH HAS EFFICIENT RANKING
AND UNRANKING ALGORITHMS FOR SPANNING
TREES AND FORESTS

OMER EGECIOGLU

Department of Computer Science, University of California, Santa Barbara
Santa Barbara, CA 93106-5110, USA

JEFFREY B. REMMEL
Department of Mathematics, University of California, San Diego
La Jolla, CA 92093-0112, USA

S. GILL WILLIAMSON
Department of Computer Science and Engineering,
University of California, San Diego
La Jolla, CA 92093-0114, USA

Received 17 August 2003
Accepted 15 January 2004
Communicated by Stephan Olariu

ABSTRACT

Remmel and Williamson recently defined a class of directed graphs, called filtered
digraphs, and described a natural class of bijections between oriented spanning forests of
these digraphs and associated classes of functions [12]. Filtered digraphs include many
specialized graphs such as complete k-partite graphs. The Remmel-Williamson bijections
provide explicit formulas for various multivariate generating functions for the oriented
spanning forests which arise in this context. In this paper, we prove another important
property of these bijections, namely, that it allows one to construct efficient algorithms
for ranking and unranking spanning trees or spanning forests of filtered digraphs G. For
example, we show that if G = (V| E) is a filtered digraph and SP(G) is the collection of
spanning trees of G, then our algorithm requires O(|V'|) operations of sum, difference,
product, quotient, and comparison of numbers less than or equal |SP(G)| to rank or
unrank spanning trees of G.

Keywords: Graph, filtered digraph. complete bipartite graph, spanning tree, spanning
forest, ranking, unranking, combinatorial generation, enumeration.

1. Introduction

The original motivation for this paper was the work of Egecioglu and Remmel
[3] who gave a bijective proof of the formula n"~2 for the number of Cayley trees
on n vertices, i.e. the number of spanning trees of the complete graph K,. In

619

620 O. Egecioglu, J. B. Remmel & S. G. Williamson

particular, they showed that there is a natural bijection between the set Cj, 1 of all
Cayley trees on n vertices, where all edges are directed toward the root 1, and the
class of functions 7 = {f : {2,...,n — 1} — {1,...,n}}. Later in [4], Egecioglu
and Remmel extended this idea to give a bijective proof for the number of spanning
trees of the complete k-partite graph Ky, . .,. Again in [4], Egecioglu and Remmel
showed that there was a natural bijection between a certain class of functions f :
{2,...,m =1} = {1,...,n} and the set of spanning trees of K, . n, rooted at
vertex 1.

It is well known that the formulas for the number of spanning trees of K,, and
Ky,,...n, follow from the matrix tree theorem [1]. One advantage of [3, 4] over the
matrix tree theorem approach is that the resulting bijections give rise to natural
multivariate generating functions which keep track of the descent and rise edges for
the set of root-directed spanning trees, i.e., the spanning trees where all edges are
oriented toward the root vertex. A second advantage of the bijective approach of
[3, 4] is that there are well known techniques [10, 11, 13] for ranking and unranking
function classes and hence the bijections provide ways to rank and unrank spanning
trees of K, and Ky, . n,-

Later, Remmel and Williamson [12] extended the work of Egecioglu and Remmel
to a much larger class of graphs. In particular, Remmel and Williamson defined
a class of directed graphs, called filtered digraphs, and described a natural class
of bijections between certain sets of oriented spanning forests of these digraphs
and associated classes of functions. Remmel and Williamson derived multivariate
generating functions for the oriented spanning forests which arise in this context
and linked basic properties of these spanning forests to properties of the functions to
which they correspond. The class of filtered digraphs contains not only both K, and
K, ... n, but also many directed graphs to which the matrix tree theorem does not
apply. In addition, Remmel and Williamson extended the results of Egecioglu and
Remmel in two other ways. First, the methods of [12], applied to spanning forests
rather than just to spanning trees. Second, the multivariate generating functions
derived in [12] were finer than those considered by Egecioglu and Remmel and hence
have a greater variety of specializations.

In this paper, we shall show the Remmel-Williamson bijections can be used to
give efficient ranking and unranking algorithms for the set of spanning forests in
filtered digraphs. The basic idea is that the bijection between the set of spanning
forests in filtered digraphs and their associated function classes can be carried out
in linear time. This reduces the problem of ranking and unranking spanning forests
to the problem of ranking and unranking functions, for which there are well known
techniques [13]. In particular, let [n] = {1,2,...,n} and G be a filtered digraph
G = ([n], E). Let 7[7?1] denote the set of all root directed spanning forests F of
G with roots 1,...,m. Then we shall show that it requires only O(n) operations
of sum, difference, product, quotient and/or comparison of numbers z < Iﬁg]l to

either rank or unrank elements of 7[1?1] In general, |7Ef7’;]| = n9M 5o that it may
take as many as nlogn bits to write down a number z < |7I%| Thus in the
worst case, it could take n?logn bit operations for ranking and unranking forests

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 621

in ’Ifffl] However, if we merely want to produce a random element F € ﬁg], then
we shall show that it takes only nlogn bit operations to produce a random tree.
This is a considerable improvement over the best algorithms for generating random
spanning forests of an arbitrary graph, which runs in time O(n2-37%) [2], see [8] for a
survey of results on random spanning trees. Moreover, since our bijection preserves
the collections of ascent edges between the directed graph of the function and the
rooted directed spanning tree of its image under our bijection, we can also randomly
generate spanning forests or trees which contain a given collection of pre-specified
ascent edges with essentially no extra cost.

This paper is organized as follows. In Section 2, we define the class of filtered
digraphs and their corresponding function classes. We then define the bijection
between the function class of a filtered digraph and the set of root-directed span-
ning trees of the filtered digraph. In Section 3, we shall prove that this bijection
can be carried out in linear time, and, as a consequence, the problem of ranking
and unranking spanning forests or trees of a filtered digraph can be reduced to the
problem of ranking and unranking functions in the corresponding function class.
In Section 4, we shall give our algorithms for ranking and unranking functions in
function classes associated with filtered digraphs. Finally in Section 5, we shall
give three specific applications of our algorithms. First, we consider one of the
simplest cases of a filtered digraph, namely, the case where G = K,. In this case,
we show explicitly how our basic unranking and ranking procedures can rank and
unrank root-directed spanning forests of K,, which contain a collection of prespec-
ified ascent edges or for which we specify a collection of vertices which must start
an ascent edge. Next we consider the case of filtered digraphs for complete multi-
partite graphs K, In this case, we explicitly give the unranking procedure
for root directed spanning forests of Ky, . n,. Finally, we consider multipartite
cyclic digraphs Cp, ... n,. Multipartite cyclic graphs are not covered by the classical
matrix tree theorem.

2. The Bijection between Filtered Digraphs and Function Classes

In this section, we shall give the definitions of a filtered digraph and their cor-
responding functions classes as described in [12]. We shall also define the Remmel-
Williamson bijections and give some of their properties.

Let [n] = {1,2,...,n}. Let G = ([n], E) be a digraph with vertex set [n] and
edge set E. Let F = (¢1,¢o,...,c) be a composition of n. That is, assume ¢; is a
positive integer for each ¢ and Ele ci=n. Let Ng=0andlet N; =c¢;+---+¢ for
t=1,...,k. Welet C; = {1+ Ny—1,...,N;} fort =1,...,n. Note that each C; is an
interval and the collection of nonempty sets {C; | ¢ = 1,...,k} forms a set partition
of [n]. We call this set partition the filtration associated with the composition F.
Definition 1 Given a composition F = (cy,... ,ck)‘ of n, we define a partial order
relation <g on[n] byx <py ifz =y orifr €C; andy € C; where 1 <i < j <k.
We call <y the filtration order on [n].

We write z <p y if z <p y but z # y. If z <p y, then our definitions ensure
that z < y as integers. Note that 1 € Cy, n € Cy, and each of the sets C; is a set

622 O. Ejecioflu, J. B. Remmel & S. G. Williamson

of incomparable elements (i.e., an antichain) with respect to <g. In the standard
terminology for posets, < is the ordinal sum of the antichains C;, 1 <i < k.
Definition 2 Let {C; : i =1,...,k} be the filtration associated with the composition
F = (c1,...,cx) of n. Let Ip and Is be subsets of [k] and let B = {C; : i € Ig}
and S = {C; : i € Is}. We refer to the sets B and S as the bases and summits of
G respectively: a set C; € B is called a base of G and its elements are called base
vertices of G. A set C; € S is called a summit of G and its elements are called
summit vertices of G. We say that a digraph G = ([n], E) is a filtered digraph with
respect to ¥, Ip, and Is, if the following conditions hold for all z,y € [n].

1.1€elp,1¢Is, k& Ip, and k € Is.
2. Ifz,y € C; for some 1 <i <k, then (z,y) ¢ E.

3. Ify <p =z, then (z,y) € E if and only if there exist p < q such that z € C,,
g€ls,yeCpandpe Ip.

4- Ifz €C;, 1 <1<k, and C; is not a summit, then there is some y such that
(z,y) € E and z < y.

It is perhaps helpful to paraphrase conditions (1)-(4). Condition (1) states that
C; is a base but not a summit and C;, is a summit but not a base. Otherwise the
bases and summits are arbitrary. A set C; with ¢ ¢ {1, k} may be both a base and
a summit. Condition (2) states that the restrictions of G to the sets C; are empty
digraphs (no edges). Condition (3) states that all directed edges between summit
vertices and “lower” base vertices are present and these are the only “downward”
edges in E. That is, these are the only edges (z,y) € E with y <p z. Finally,
condition (4) states that for any vertex = that does not belong to a summit, there
is at least one upward edge out of z. That is, there is at least one edge (z,y) € E
such that x <p y.

Given any digraph G’ = ([n], E'), we can define the set of “root-directed” span-
ning forests of G’ with roots r1,...,r, € [n] as follows. First we regard the digraph
G’ as an undirected graph in the obvious manner. Next we consider the set of all
spanning forests 7' = (T7, ..., T,) of this undirected version of G’ with subtrees T},
i=1,...,q, such that r; € T for ¢ = 1,...,¢q. We can then think of each T as
a directed graph by considering r; as the root of T] and directing all edges back
toward the root. That is, we direct all edges in T} so that there is a directed path
from each vertex v in T} to r;. If for each 4, all these directed edges are in fact in
E, then we say that T" is a root-directed spanning forest of G' with roots ry,...,r,
(alternatively, such spanning forests are called “oriented,” but we shall stick to the
former terminology.)

We denote the set of all root-directed spanning forests of G' with roots ry,...,r,
by 7'{(51"“”%}. If n ¢ {ry,...,7q}, then we use the notation 7—{5‘;1’,...,7'.1};7']' to designate
all root-directed spanning forests of G’ with n in the component tree rooted at r;.

Returning to the case G = ([n], E), suppose we are given a directed edge (4, 7)

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 623

where 1 <4, j < n. Following [12], we define the weight of (4, 7), W((s, j)), by

N pisjifi<j,
Wi ={ P s
where p;, g;, si,t; are variables for ¢ = 1,...,n. We shall call a directed edge (4, j)
a descent edge if i > j and an ascent edge if 1 < j. The weight of any digraph
G = ([n], E) is then defined by

w@) = [[wGi):

(i,7)EE

Definition 3 Let G = ([n], E) be a filtered digraph with respect to the composition
F = (c1,...,¢k), the set of bases indexed by Ig and the set of summits indezed
by Is. Let m be such that 1 < m < n — 1 and assume that 1,...,m are base
vertices of G. Suppose that m € C;. Let Fp(G,F,m) be the set of all functions
f:{m+1,...,n—1} = [n] that satisfy the following conditions.

1. If f(i) #1 then (i, f(i)) € E.
2. If f(i) =i andi € Cp, thenp € IsNIp and p > t.
3. IfpeIsnlip and p > t, then there is at most one i € C,, such that f(i) =i.

We call F,,(G,F,m) the m-canonical function class for the filtered digraph G with
respect to F, Ip and Is.

We note that our conditions ensure that F,(G,F,m) is not empty. That is,
suppose that v € [n] \ {n,1,...m} is in C;. Now if C; is a summit, then we know
that ¢ > 1. Moreover, we know that 1 € C; and that C; is a base so that (v,1)
in E. Thus there is at least one choice for f(v). Similarly, if C; is not a summit,
then ¢ < k and we know that there is at least one upward edge out of v in G. Thus
again, there is at least one choice for f(v).

We can think of each f € F,,(G,F,m) as a directed graph on the vertex set
{1,...,m}. That is, if f(i) = j, then there is a directed edge from 7 to j. A
moment’s thought will convince one that, in general, the digraph corresponding
to a function f € F,(G,F,m) will consist of m + 1 root-directed trees rooted at
vertices 1,...,m and n respectively, with all edges directed toward their roots, plus
a number of directed cycles of length > 1. For each vertex v on a given cycle,
there is possibly a root-directed tree attached to v with v as the root and all edges
directed toward v. Note the fact that there are trees rooted at vertices n,1,...,m
is due to the fact that these elements are not in the domain of f. Thus there can
be no directed edges out of any of these vertices. We let the weight of f, W(f), be
the weight of the digraph associated with f.

Suppose that we are given a filtered digraph G = ([n], E) with respect to the
composition F = (¢y,...,cx). Suppose that the summits are indexed by Is and the
bases are indexed by Ig. Suppose also that 1,...,m are fixed base elements of G.
Let {C; | i = 1,...,k} be the filtration partition for F and suppose that m € C;.
Thus Ni_; < m < N;. Let ﬁgl; ; denote all root-directed spanning forests of G

624 0. Ejecioglu, J. B. Remmel & S. G. Williamson

with roots in [m] = {1,...,m} and for which n is a vertex of the tree (component)
rooted at j. We shall show that in this situation, if the root j ¢ C;, then there
is a natural bijection ©; between the m-canonical function class F,(G,F,m) for
G and the set TG ;- I j € Ci, then there is a corresponding bijection O from
the subset f*(G F m) of ,.(G,F,m) to TG] . where F(G,F, m) consists of all
f € Fo(G,F,m) such that f(i) #i for all i € Ct such that i > m. In such a case,
©; will simply be defined to be the restriction of ©; to F;:(G,F,m).

To define the bijection ©;, 1 < j < N;_1, we first imagine that the directed
graph corresponding to f € F,(G,F,m) is drawn in two parts (see Figure 1). The
first part of the graph consists of the rooted-trees at roots 1,...,5 — 1,5+ 1,...m
The second part of the graph is drawn so that

(a) the trees rooted at n and j are drawn on the extreme left and the extreme right
respectively with their edges directed upwards,

(b) the cycles are drawn so that their vertices form a directed path on the line
between n and j, with one back edge above the line, and the root-directed
tree attached to any vertex on a cycle is drawn below the line between n and
1 with its edges directed upwards,

(c) each cycle is arranged so that its maximum element is on the right, and

(d) the cycles are arranged so that if the maximum element m, of a cycle c is in
C; and the maximum element m. of a cycle ¢’ in C;, then c is to the left of ¢/
if either (i) 2 > j, (ii) ¢ = j and c is a one cycle or (iii) ¢ = j, neither ¢ nor ¢'
are one cycles and m, > m,r.

Figure 1 depicts a function f drawn according to the rules (a)-(d) where n =
27, F = (5,5,3,6,8), and G = ([n], E) is the filtered digraph defined as follows.
Since F = (5,5,3,6,8), C1 = {1,...,5},C2 = {6,...,10},03 = {11,. ..,13},64 =
{14,...,19} and Cs = {20,...,27}. Welet Ip = {1,2,4} and Is = {2,4,5} so that
the sets Cy, C2 and C4 are bases and the sets C2,C4 and Cs are summits. Finally,
we specify the edges of G as follows: [C; : C2,C3,C4], [Ca : C1,C3,C4,C5), [Cs : C4,C5],
[C4 : C1,Ca,C5], [Cs : C1,C2,C4). Here we interpret [C; : Cjy, .. .C;,] to mean that there
is a directed edge from every vertex v € C; to every vertex w in C;, for k=1,...,s.

This given, suppose that the digraph of f is drawn as described above and the
cycles of f are ci(f),...,c.(f) reading from left to right. We let r., () and I,(y)
denote the right and left endpoints of the cycle ¢;(f) for i = 1,...,a. Note that if
ci(f) is a 1-cycle, then we let r.,(s) = l.,(s) be the element in the 1-cycle. ©;(f)
is obtained from f by simply deleting the back edges (rc,(s),lc;(s)) fori =1,...,a
and adding the directed edges (rc;(s),lc;,.(s)) for i =1,...,a — 1 plus the directed
edges (n,l.,(s)) and (r¢,(s),Jj). That is, we remove the all the back edges that are
above the line, and then we connect n to the lefthand endpoint of the first cycle, the
righthand endpoint of each cycle to the lefthand endpoint of the cycle following it,
and we connect the righthand endpoint of the last cycle to j. For example, O2(f)
is pictured in Figure 2 for the f given in Figure 1. If there are no cycles in f, then
©;(f) is simply the result of adding the directed edge (n, j) to the digraph of f.

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 625

e
N—p-y
—>

NN N gl I -
RRRERERCEIaRRERRge R ans

N 00 00 W QN Y U 00

-

Fig. 1. The digraph of a function.
N
15] 2

17— 6— 11— 20— 14> 5—> 12— 19— § —> 16— 10— d—>-9—>>2

A S A AV A

7 5 17 2 B 18 2%
13
Fig. 2. ©2(J).

Remmel and Williamson define @]71 as follows. Given a forest T' € 7{,67';]: i
consider the path mg = n,z1,...,m1,22,...Mm2,...,2¢,...,My¢,] where m; is the
maximum interior vertex on the path from m;_; to j, 1 < ¢ <. If (m;—1,m;) is an
edge on this path, then it is understood that z;,...,m; = m; consists of just one
vertex and we define z; = m;. Note that by definition mg =n > my > ... > m;.

We obtain the digraph @;1(T) from T via the following procedure.

Procedure for computing (9]-_1(T).

(1) First we declare that any edge e of T which is not an edge of the path from n
to j is an edge of @J-‘I(T).

(2) Next we remove all edges of the form (my,j) or (m;—1,z;) for 1 <i <t.
Finally for each ¢ with 1 <14 < t, we consider the subpath z;,...,m;.

(3) If m; = z;, create a directed loop (m;, m;).

(4) If m; € C; for some s, but z; € C,, convert the subpath z;,...,m; into the
directed cycle z;, ..., m;, z;.

(5) If z;,m; € C; for some s, but z; # m;, then convert the subpath z;,z},...,m;
to the directed cycle zi, ..., m;, 2} and the directed loop (z;, z;).

Finally in the case where j € C;, the forest ©%(f*) for a function f* € F;(G,F, m)

626 O. Egeciodlu, J. B. Remmel & S. G. Williamson

is created by exactly the same procedure that we used to create ©;(f) for f €
Fn(G,F,m). Similarly, given a T* € 7{76,':];]-, we define (@;)_I(T*) in exactly the
same way that we defined 9;1(T) for T € ﬁg]; j when j' < N; ;. We refer the
reader to [12] for the details that @j—l(T) is the inverse map of ©; for each j < m
such that m ¢ C; and that (©3)~"(T) is the inverse map of 07 for each j < m such

that m € C;. In fact, Remmel and Williamson [12] proved the following result.
Theorem 1 Let G = ([n], E) be a filtered digraph with respect to the composition
F = (c1,...,c1), the set of summits indezed by Is, and the set of bases indezed by
Ig. Assume that 1,...,m are base elements of G, that m € C;, and that Ny,—q =
¢+ -+ c—1. Then, for each 1 < j < Ny, ©; : Fp(G,F,m) — ﬁg];j is a
bijection that preserves ascent edges, i.e. , for all i < j and all f € Fn(G,F,m),
© — j is an edge of f if and only if i — j is an edge of ©;(f). Similarly, for each
Ni14+1<j<m, 0; : Fo(G,F,m) —» 7{5;];;‘ s a bijection that preserves ascent
edges. Moreover, it is the case that

at;W(f) = W(©;(f), 1<j<N;; and

at;W(f) = W(O5(f), Na+1<j<m.
and hence
Yo W@ =galts -+ tn,) Y W) (1)
TeTS fE€F.(G,F,m)

[m]

+ onltn i+ tm) > W)
feFx(G,F,m)

Here ift =1, then N;—1 = Ng = 0 and we take t; +--- +tn,_, = 0.

3. Spanning forests from the function table in time O(n)

In this section, we shall briefly outline the proof that one can compute the
bijections ©; and O in linear time. That is, we shall prove the following.
Theorem 2 Let G = ([n], E) be a filtered digraph with respect to the composition
F = (c1,...,ck), the set of summits indezed by Is, and the set of bases indexed by
Ig. Assume that 1,...,m are base elements of G, that m € C;, and that N;_1 =
¢+ -+ c—1. Then, for each 1 < j < Ny_y, we can compute the bijection ©; :
Fru(G,F,m) — 7{5';];]. and its inverse in linear time and, for each N;_1+1 < j < m,
we can compute the bijection OF : F:(G,F,m) — ﬁg]; y and its inverse in linear
time.

Proof. We need only prove this result for the bijection ©; since the bijection 07 is
just the restriction of ©; to F;(G,F,m).

Suppose that we are given f € F,.{(G,F,m). Our basic data structure for the
function f is a list of pairs (i, f(3), ji, jr(;)) where i € Cj; and f(i) € Cj,,,. Our goal
is to construct the directed graph of ©;(f) from our data structure for f, that is,
for i =m+1,...,n, we want to find the set of four-tuples, {(,t;, i, jz,), such that
there is directed edge from i to ¢; in ©;(f) and i € C;; and t; € C;j,, .

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 627

We shall not try to give the most efficient algorithm to construct ©;(f) from
f. Instead, we shall give an outline the basic procedure which shows that one can
construct ©;(f) from f efficiently. For ease of presentation, we shall organize our
procedure so that it makes four linear time passes through the basic data structure
for f to produce the data structure for ©;(f).

Pass 1. Goal: Find, in linear time in n, a set of representatives ti,...,t, of
the cycles of the directed graph of the function f.

To help us find ¢y, ..., t,, we shall maintain an array Ajm+1}, Ajm+2],--- A[n—1],
where for each i, A[i] = (¢;, ps, ¢;) is a triple of integers such ¢; € {0,...,n—m} and
{pi,q:} C{-1,m+1,--- ,n—1}. The ¢;’s will help us keep track of what loop we
are in relative to the sequence of operations described below. Then our idea is to
maintain, through the p; and g;, a doubly linked list of the locations ¢ in A where
¢; = 0, and we obtain pointers to the first and last elements of this doubly linked
list. It is a standard exercise that these data structures can be maintained in linear
time.

Initially, all the ¢;’s will be zero. In general, if ¢; = 0, then p; will be the
largest integer j such that m + 1 < j < 4 for which ¢; = 0 if there is such a j and
p; = —1 otherwise. Similarly, ¢; > 7 is defined to be the smallest integer k& such
that n — 1 > k > ¢ for which ¢; = 0 if there is such a k¥ and ¢; = —1 if there is no
such k. If ¢;p41 > 0, then g4 is the smallest integer j > m + 1 such that ¢; =0
and ¢,,41 = —1 if there is no such integer j. If ¢,_; > 0, then p,_, is the largest
integer k¥ < n — 1 such that ¢; = 0 and p,_; = —1 if there is no such integer k.

Initialize A by setting A[m +1] = (0, —1, ¢m+1), by setting A[{]] = (0,i—1,i+1)
for m+1 < i< n-—1, and by setting Aln — 1] = (0,pp_1,-1). Im+1<n-1
then gmy1 = m+2 and p,—1 = n — 2. Otherwise (m + 1 =n — 1), these quantities
are both —1.

LOOP(1): Start with i; = m + 1, setting c¢y1 = 1. Next compute fO(m + 1),
flm+1), f2(m+1),..., f*(m+1), each time updating A by setting cgi(m+1) = 1
and adjusting pointers, until, prior to setting c¢k; (41 = 1, we discover that either
(1) ff*(m+1) € {1,...,m,n}, in which case we have reached a node in graph(f)
which is not in the domain of f and we start over again with the m + 1 replaced by
the smallest ¢ for which ¢; =0, or

(2) = f*¥1(m + 1) already satisfies ¢, = 1. This condition indicates that the value
 has already occurred in the sequence m + 1, f(m + 1), f2(m +1),..., f¥1(m +1).
Then we set t; = f*(m + 1).

LOOP(2): Start with 49 = gm41 which is the location of the first 4 such that
¢; = 0, and repeat the calculation of LOOP1 with i, instead of 33 = m + 1. In
this manner, generate f0(iz), f1(i2), f2(i2),. .., f*¥2(i2), each time updating A by
setting cgi(i,) = 2 and adjusting pointers, until either

(1) ff*(m +1) € {1,...,m,n}, in which case we have reach a node in graph(f)

628 O. Egecioglu, J. B. Remmel & S. G. Williamson

which is not in the domain of f and we start over again with the i, replaced by the
smallest ¢ for which ¢; = 0, or

(2) z = f*(m+1) already satisfies ¢, = 2. (This condition indicates that the value
z has already occurred in the sequence iz, f(i2), f2(i2),..., f*¥* (i2).) Then we set
iy = fk1 (i2)-

We continue this process until ¢,,+1 = —1. At this point, we will have generated
t1,...,t,, where the last loop was LOOP(r). The array A will be such that, for all
m+1<i<n—-1,1< ¢ <r identifies the LOOP in which that particular domain
value ¢ occurred in our computation described above.

Pass 2. Goal: For i = 1,...,7, find the largest element l; in the cycle deter-
mined by t;.

It is easy to see that this computation can be done in linear time by one pass through
the array A computed in Pass 1 above. At the end of Pass 2, we set s; = f(I;).
Thus when we draw the cycle containing ¢; according to our definition of @;(f), I;
will be right most element in the and s; will be the left most element of the cycle
containing t;. However, at this point, we have not ordered the cycles appropriately.
This ordering will be done in the next pass.

Pass 3. Goal: Sort (l1,s1),...,(lk,sk) so that they are appropriately ordered ac-
cording the criterion for the bijection ©;(f) as described in by condition (a) -(d).
Note that according to condition (d) of our criterion for drawing the graph of f
so that we can construct ©;(f), the cycles are arranged so that if the maximum
element m, of a cycle ¢ is in C; and the maximum element my of a cycle ¢’ in
Cj, then ¢ is to the left of ¢ if either (i) ¢ > j, (ii) ¢ = j and c¢ is a one cycle or
(iii) ¢ = j, neither ¢ nor ¢’ are one cycles and m, > m.. It is then easy to see
that our desired ordering can be constructed in linear time by constructing a triple
(J1:, x (i is a fixed point), l;) where /; € Cj;,, and then doing a lexicographic bucket
sort. Here for any statement A, x(A) = 1 if A is true and x(A) = 0 if A is false.
(See Williamson’s book [13] for details on the lexicographic bucket sort.)

Pass 4. Goal: Construct the directed graph of ©;(f) from the digraph of f.

Given the root ;7 whose subtree is to contain n, modify the table for f to produce
the table for 8(f). That is, assume that (I;,s1), ..., (I, sk) is the sorted list coming
out of Pass 3. Then we modify the table for f so that we add entries for the directed
edges (n, s1) and (I, j) and modify entries of the four tuples starting with I3, ...,
so that there corresponding second elements are s, ..., sk, j respectively. This can
be done in linear time using our data structures.

Next, consider the problem of computing the inverse of either ©; or ©7. Sup-
pose that we are given the data structure of the forest F' € T[Gm], i.e. we are given
a set of four tuples, (,t;,j;, ¢,), such that there is a directed edge from i to ¢; in
F and i € Cj; and ¢; € Cj,,. Recall the computation of the inverse consists of two
basic steps.

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 629

Step 1. Given a forest F € 7[%1 5 consider the path

mo =n,%1,...,M1,T2,...M2,...,Tty...,Myt,]
where m; is the maximum interior vertex on the path from m;_; to j, 1 <i < ¢.
If (m;—1,m;) is an edge on this path, then it is understood that z;,...,m; = m;

consists of just one vertex and we define x; = m;. Note that by definition mg =
n>my>...>m.

First, by making one pass through the data structure for F, we can construct
the directed path n = a; = ... = a, where a, € {1,...,m}. Thus j = a, in this
case. In fact, we can construct a doubly linked list (n,ay,...,a,_1,7) with pointers
to the first and last elements in linear time. If we traverse the list in reverse order,
(4,@r-1,...,a1,n), then it easy to see that m; = a,_;, my, is the next element
in the list (ar—2,...,a1) which is greater than m; and, in general, having found
m; = a4, then m;_; is the first element in the list (as—1,...,a;1) which is greater
than m;. Thus it is not difficult to see that we can use our doubly linked list to pro-
duce the factorization mg = n,z1,...,my,T2,...ma,...,T¢,..., My, j in linear time.

Step 2. We obtain the digraph @;I(F) from F' via the following procedure.

Procedure for computing 07 (F) :

(1) First we declare that any edge e of F' which is not an edge of the path from n
to j is an edge of @;1(F).

(2) Next we remove all edges of the form (my,j) or (mj_1,x;) for 1 <i < t.
Finally for each 7 with 1 < i < t, we consider the subpath z,,...,m;.

(3) If m; = z;, create a directed loop (m;, m;).

(4) If m; € C; for some s, but z; € C,, convert the subpath z;,...,m; into the
directed cycle x;, ..., m;, x;.

(5) If z;, m; € C, for some s, but z; # m;, then convert the subpath z;,z},...,m;
to the directed cycle =}, ..., m;, z} and the directed loop (z;, ;).

Again it is easy to see that we can use the data structure for F', our doubly linked
list, and our path factorization, mg = n,xy,...,m1,T2,...Ma,...,Ts,..., Mg, tO
construct the data structure for f in linear time.

Since we use exactly the same procedure to construct the inverse of 07, it follows
that we can construct the inverses of ©; and ©7 in linear time. 0.

Given that we can carry out the bijections ©; and ©} and their inverses in
linear time, it follows that in linear time, we can reduce the problem of constructing
ranking and unranking algorithms for ﬁg];j to the problem of constructing ranking
and unranking algorithms for the corresponding function classes. We will construct
ranking and unranking algorithms for these function classes in the next section.

630 O. Ejecioflu, J. B. Remmel & S. G. Williamson

4. Ranking and Unranking Algorithms for Function Classes

The main goal of this section is to construct algorithms for ranking and un-
ranking the function classes 7, (G, F,m) or F;:(G,F, m). Our idea is to reduce this
problem to the problem of ranking and unranking paths through a rooted planar
tree, see [13]. Thus before we present our ranking and unranking algorithms for
Fu(G,F,m) or F:(G,F,m), we need to develop some notation and terminology for
ranking and unranking paths through rooted planar trees.

Given a rooted planar tree T, let L(T') be the number of leaves of T and Path(T)
be the set of paths which go from the root to a leaf. Then for any path p € Path(T),
we define the rank of p relative to T, rankr(p), to be the number of leaves of T
that lie to the left of of the leaf of p.

Given two rooted planar trees Ty and T», T} ® T3 is the tree that results from
Ty by replacing each leaf of T; by a copy of T> (see Figure 3). If the vertices of
Ty and T are labeled, then we shall label the vertices of T} ® T> according to the
convention that each vertex v in 77 have the same label in T3 ® T5 that it has in T
and each vertex w in a copy of T, that is decendent from a leaf labeled I in T} has
a label (I, s) where s is the label of w in T>. Given rooted planar trees T4,..., T}
where k > 3, we can define T; @ T ® - - - ® T, by induction as (Th1 ® - - ®Tk—1) @ T,.
Similarly if T} ..., T} are labeled rooted planar trees, we can define the labeling of
71 T, ®---® Ty by the same inductive process.

T, = /\ T, = T,®T, =

Fig. 3. The operation T1 ® T>.

Now suppose that we are given two rooted planar trees 77 and 75 and suppose
that p; € Path(T)) and ps € Path(T,). Then we define the path p; ® p» in T3 ® T
which follows p; to its leaf [in 77 and then follows p, in the copy of T3 that sits -
below leaf I to a leaf ({,1') in T} ® T». Similarly, given paths p; € T; fori = 1,.. .k,
we can define apathp=p; ® --- @ pg € Path(T1 @ To ® - -- ® T},) by induction as
(P1®- - ®pr-1) D Pr-

Next we give two simple lemmas that tell us how to rank and unrank the set of
paths in such trees.

Lemma 1 Suppose that T, ..., Ty are rooted planar trees and T = T1 QT2 ®- - -QT;.
Then for any path p=p; ® - - ® px € Path(T),

rankr(p) = ZrankT Dj) H L(Th) (2)

I=5+1

Proof. We proceed by induction on k. Let us assume that Ti,...T) are rooted
planar trees. First suppose that £ = 2 and that p; is a path that goes from the root
of Th to a leaf l; and ps goes from the root of T, to a leaf l5. Thus p; ® ps goes

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 631

from the root of T} ® T5 to the leaf {1 in T; and then proceeds to the leaf (I3,l3) in
T, ® T5. Now for each leaf I’ to the left of I; in T}, there are L(T3) leaves of T} ® T
that lie to left of (I1,l2) coming from the leaves of the copy of T that is descendent
from I'. Thus there are a total of L(T3) - rankr, (p1) such leaves. The only other
leaves of T1 ® T3 that lie to left of p; ® p, are the leaves of the form (I1,1") where
1" is to left of p; in T». There are rankr,(p2) such leaves. Thus there are a total of
rank, (p2) + L(T3) - rankr, (p1) leaves to left of p; ® p, and hence

rankr, @T, (1 ® p2) = rankr, (p2) + L(T2) - rankr, (p1)

as desired.
Next assume that (2) holds for ¥ < n and that n > 3. Then

ranleg,...@Tﬂ (p1 Q- ®pn) = Tank(Tl®...®Tn_1)®Tn (p1 & - ®pn_1) ® pn)

n—1 n—1
= rankr, (pn) + L(Tn)(z rankr; (p;) H L(Ty))

ranij(p]-) H L(Tl)

n
=1 I=j+1

j
O
This given, it is easy to develop an algorithm for unranking in a product of trees.
The proof of this lemma can be found in [13].
Lemma 2 Suppose that Ty, ..., Ty, are rooted planar trees and T = Th @To®- - -QT.
Then given a p € Path(T) such that ranky(p) =ro, p=p1 @ -+ - ® px, € Path(T)
where rankr. (p;) = ¢; and

k
O = @ HL(T,) + 7 where 0 < r; < Hf:2 L(Ty),
=2
k
r = g |[L(T) +r2 where 0 < ry < [T_5 L(TV),
=3
Tk—a = qr—1L(Tk) + rx—1 where 0 < 15_1 < L(T}) and
Tk-1 = Gk-

Next we shall construct the appropriate rooted planar trees for the function
classes associated with filtered digraphs. Let G = ([n], E) be a filtered digraph
with respect to the composition F = (¢y, ..., ck), the set of summits indexed by Ig,
and the set of bases indexed by Ig. Assume that 1,...,m are base elements of G,
m € Ct, and Nt—l =c+---+c-1.

Essentially we have two basic cases. That is, if we are trying to rank and
unrank relative to the bijection ©; : F,,(G,F,m) — 7[16’:], when j ¢ C;, we will
define a rooted planar tree 7; such that the paths in P(7;) encode the functions
in Fn(G,F,m). Similarly, in the case where j < m and j € C;, then when we

632 O. Egecioglu, J. B. Remmel & S. G. Williamson

want to rank and unrank according the bijection 07 : F;(G,F,m) — 7{5';], we will
define a rooted planar tree 7;* such that the paths in P(7;) encode the functions
in F;(G,F,m).

The final tree 7 for ranking and unranking spanning forests in 7{% is then
constructed as follows. First we start with a tree S,, of height 1 with m leaves
labeled from left to right with 1,...,m. Then for each j we will attach the tree
T; below node j if j is not in C; and we will attach the tree 7;* below node j if
J € C;. Our idea is that if our path goes through the node labeled j at level 1 in
T and j ¢ Ct, then the remainder of the path through 7; encodes a function f in
Fn(G,F,m) so that, under the bijection ©;(f), n will be in the tree of the forest
with root j. Similarly, if our path goes through the node labeled j at level 1 in
7 and j € C¢, then the remainder of the path through 7;* encodes a function f in
Fn(G,F,m) so that, under the bijection ©}(f), n will be in the tree of the forest
with root j. For example, if 1,...u € Uf;} Ciandu+1,...,m € Cs, then T will be

as pictured in Figure 4. We denote thistreeas T =T1 ®--- @ T, @7, ®--- & 7.

Fig. 4. The tree T.

First we need to establish some notation. Let D; = C; — {1,...,m,n} where
Di={di;<...<dy,}fori=t,....,k. Foreachisuchthat m+1<i<n-1,
let A; = {j : (1,7) € E} be the set of vertices that are adjacent to 7 in G. Let
Ta; be the rooted planar tree of height 1 with |A;| leaves. Let g, denote the path
of rank s in T4,. We shall then think of g; as encoding that f(i) = ws; where
Ai={w;i<... < TU|A1»|—1,i}- That is, if we follow the path of rank s in T4, then
f maps i to the s + 1-th element of its adjacency set. _

Now suppose that j € [m] and j ¢ C;. Then 7; will be of the form Tét ® - @Th,
where for i = t,...,k, T%,- is a tree which encodes the values of f € F,,(G,F,m)
restricted to the set D;. We then have two cases for the definition of T %i.

Case 1. 1 ¢ IBOIS-

In this case, T7JJ; = TAd“ ® TAd2,~ R - ® TAd,. . Note that in this case each
path p in Path(Téi) is of the form p = ¢;, ® --- ® gs,, where g5, € Path(Ta,_.)
for some s1,...,s:,. Thus we can think of p as specifying the values of a function
f € Fo(G,F,m) restricted to D; by letting f(dy;) = ws, 4, ;-

Case 2. 1€ IgNIg.
In this case, each f € (G, F, m) has at most one fixed point in D;. Our idea is to
encode the possibility of a fixed point as the branching at level 0 of our tree Tijl»'

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 633

That is, the root of T%'_ will be of degree 1 + t; where ¢; is the number of elements
of D;. If we follow the left most branch out of level 0 to a node labeled (0), then f
will have no fixed point in D;. If we follow the ¢-th branch from the left where t > 2
to a node labeled (d;—;;), then we will regard this as encoding that d;—,; is the
unique fixed point of f in D;. We can then use the same idea as in Case 1 to encode
the rest of our choices for f on D; given our branching at the first level. That is,
if we take the left most branch out of level 0 so that there is no fixed point of f in
D;, then we need to attach a copy of T4 4 ® Ta 4y ; B ® Ta 4 descendent from
that vertex to code the function values of f on ’D, Just asin Case 1. If we take any
other branch out of level 0, then we are specifying that some d,; is the unique fixed
point of f on D;. In that case, the tree below that node should encode the function
values of f on D; — {d,;}. Thus we need only attach a copy of

Tay ®--Tay . ®Ta, .- T4, .
1,i r—=1,i rg1,i i

descendent from that vertex to code the function values of f on D; \ {d, ;} using
the same reasoning that we applied in Case 1.

Now suppose that j € [m] and j € C;. Then T;* will be of the form T%’t*@‘ . -®le)’:
where for i =,¢,...,k, sz,’: is a tree which encodes the values of f € F:(G,F,m)
restricted to the set D;. Note that F,(G,F,m) differs from F:(G,F,m) only if
t € Is N Ip. In that case, there can be no fixed points in f restricted to D;. Thus
we must define T{')’: according to Case 1 above, that is,

T’gt* = TAdl,t ® TAdz,c Q- ® TAdt,-,t "

If i ¢ C¢, then we define T%’I_* via Cases 1 and 2 in the exact same way that we
defined T: %i in the case when j ¢ C;.

As an example, consider the filtered digraph G pictured in Figure 5. In this case
C = {1,2}, C2 = {3,4} and C3 = {5,6}. We let Ig = {1,2} and Is = {2,3} and G
have the following directed edges: (1,3),(2,3),(2,4), (3,1),(3,2),(3,5), (4,1),(4,2),(4,5)
(5,1),(5,2),(5,3),(5,4),(6,1},(6,2),(6,3),(6,4).

Fig. 5. The filtered digraph G.

We let m = 2 so that Dy = 0, D, = {3,4} and D3 = {5}. Then 43 = {1,2,5},
Ay = {1,2,5} and A5 = {1,2,3,4}. For i = 1,2, the tree T, is constructed

634 O. Ejecioglu, J. B. Remmel & S. G. Williamson

according to Case 2 since 2 € Is N Ig. The trees Ty,,Ta,,Ta,,Tp, and Tp, are
pictured in Figure 6. We note that in Figure 6 we have left off the super scripts on
the tree since T}D’: = T%;* for both s = 2 and s = 3.

T = T = T= =TD
A A A y
36y 6y 069 4@ vy @y s 6 52 53 54

Fig. 6. The rooted planar trees for G.

This given, we have the following ranking lemma for trees of the form T.gi and

T%’t* which easily follows from Lemma 2 and our conventions for coding the function
values on D;.

Lemma 3 Fori=t,...,k, letD; =C; — {1,...,m,n} = {d1; < ... <d,}. For
eachm+1<r<n-1let A, ={j:(r,j) € E} ={wo, <... <wja;|-1,r}-
1. Let t <1 < m and suppose that Téi and/or T.é",* are defined via Case 1 so
that T = Ta,, . ®Ta,,, ®--®Ta, .. Thenif T is either T), or TL,

La L(T) = A |- - |Aae, <l

1.b Suppose f(d;i) = ws; 4, for r = 1,...,t;. Then f corresponds to the
pathp=p1 ® --- ® pi; € Path(T) where rankr,, (p;) = s, and hence

rankp, (f) := rankr(p) = Zs, H |[Ag, ;|-

l=r+1

2. Lett <1i < m and suppose that T%i and/or qu’: are defined via Case 2. Then
if T is either T} or TS,

t; lAdI,i"“'Adt;.il
+ Zr:l Adri 4

2.b Suppose f(dr;) = ws;.a,; for r = 1,...,t;. Then f corresponds to the
pathp = (0) ® p1 ® -+ ® pt, € Path(T) where rankr,, (pr) = s, and

hence

2.a L(T) = |Aqg, |-

lAdt,-,i

rankp,(f) := rankr(p) = ZST H |[Ag, ;|-

r=1 l=r+1

2.c Suppose f(du;) = du; and f(dri) = we,a,; forr € {1,...,t:} — {u}.
Then f corresponds to the path

P=(dui) ®P1 ® - ® Pu_1 @ Put1 - @ ps; € Path(T)

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 635

where rankr,, (pr) = s, and hence

*Agy | Ay, |

+Z g,
+ Z Sy H IAd,,,- .

re{l,...t;}—{u} le{r+1,.. . t;}—{u}

’I‘G/I‘Lk’Di (f) = rankT(p) = IAd1 i |Adt i

Similarly, it easy to see our decoding procedures for the trees T%"_ and T%’:‘ and
Lemma 2 that we have the following unranking lemma.
Lemma 4 Fori=t,... .k, letD; =C; — {1,... m,n} = {d1; < ... <dy, ;}. For
each v such that m+1<r <n-1,let A, ={j: (r,j) € E} = {wo, < ... <
wlAil—l,’r‘}'
1. Let t < i < m and suppose that T% and/or T%’: are defined via Case 1 so
that T =Ta,, , ®Ta,,, ® - ®Ta,, . SupposeT is either T,lj)l_ or Té’:‘ and
p € Path(T) such that mnkT() =710. Then p=p; Q- - ® py; € Path(T)
where rankr, (p;) = ¢; and

ti

ro = q1H|Ad' |+ 71 whereO<7'1<H|Adn7
Py =2
t;
ro= 42H|Ad“ + 72 whereO<T2<H|Adn|»
P 1=3
T—2 = qy—1|Ad,, ;| +7t,—1 where 0 <y < |Aqg, ;| and
Tt -1 = Q-

Moreover, p corresponds to a function f such that forr =1,...,t;, f(dr:) =

Wd,.;,q»

2. Let t < i < m and suppose that T%,- and/or T%’i* are defined via Case 2.
Suppose T is either T%i or T{)’: and p € Path(T) such that rankr(p) = ro.

Then

2.a If0<r <[I|Aa,l - |Aa, :|—1, thenp = (0)®p1®---®py; € Path(T)
where rankr, (p;) = ¢; and

t;
To = 1 H IAdl,il + 711 where 0 <71 < Hf':2 |Adl,\'|7
=2
t; .
T = ¢ H |Ag, ;| + 72 where 0 <7y < s |Aq,
=3
Ty,—2 = Qt,-—llAd,,.,.-l + Tt;—1 where 0 S Tt -1 < |Adt,-,i| and

T, -1 = G-

636 O. Egecioglu, J. B. Remmel & S. G. Williamson

Moreover, p corresponds to a function f such that for r = 1,...,¢;,
f(dr,i) =Wd, ;,q,
u—1 IAdl,i""IAd:,-,.'l

2.b If|Aay .l |Aay, o + 3005 — a1 <o and

|Ady ;|[Aq,.]
ro < 'Adl,il te IAd;,-,iI + E:-Lzl dl"A"'—d _Idt" , then let
L%}

u—l |A . A
— dy; I ds, i'
TO:TO_IAd iI'”,Ad‘i_,_ —_—
" e g IAdr,il
and
ey = { Ades Hi<u
' Ad, ;o ifi<u.
Then p = (du,;) ®p1 ® - - ®py;—1) € Path(T) where rankr,(p;) = q; and
t;—1
To = q H |[Ac, ;| +71 where 0 <7y < Hfz—zl [Aq, .1,
1=2
ti—1
o= ¢ H |Ae, ;| + 72 where 0 < ra < [T75" A4,],
1=3
Te,_3 = Qt.-—2|Adt,._1,,» +7¢,—2 where 0 <y, 1 < |Aqg, .| and
Tt; —2 = qt,‘—l-

Moreover, p corresponds to a function f such that (i) f(du:) = du,
(%) for r = 1,...,u1, f(dri) = wa,,q, and (it) forr = u+1,...,¢;,
f(drs) = Wd, . ;,qr—1
We are now in position to give the final ranking and unranking procedures for
7{%. Suppose the final tree 7 is of the form

where for each j < u, 7; = T{)t ®~--®T7g,c and for each u < j < k, 7] =
T’IJ;; ®--- ® TJ". By the Lemma 3, we can compute from G, the number of leaves
of T3, , L(T%i) for i =m,..., k. Hence, for j < u,

k

L(T) = [L@p) (4)

i=m

can be computed from G. Similarly, for each u < j < k, the number of leaves of
T}, L(T}]) can be computed from G for ¢ =m, ..., k. Thus foru < j <m,

k
L) =[] L) (5)

1=

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 637

can be computed from G. It follows that

LM =S L)+ Y. L) (6)

j=1 j=u+1

We can compute all the information in (3)-(6) from G. This given, we then have
the following ranking and unranking procedures for ﬁg]

Ranking Forests F in 7?15’:]
Step 1. Find j such that n is the tree of F' with root j.

Step 2.A. If j < u, then compute f = (©,)"!(F) and use Lemma 3 to compute
rankT{). (f) fori=1,...,t. Then

j—1 k k
rankrg (F) = SLT)+). rankz; (f) II z@). (7
i=1

s=m r=s+1

Step 2.B. If j > u, then compute f = (@;)‘I(F) and use Lemma 3 to compute
mnkquj,'*(f) fori=1,...,t. Then

j—-1 k k
rankre (F) = Z LT+). rankzs- (f) I @, (8)

s=m r=s+1

For example, suppose that G is the graph pictured in Figure 5 and m = 2. Then
it is easy to see from Figure 6 that

L(TY) = L&) =15 and L(TE) = L(TE) = 4.

Thus L(T;) = L(TH,) - L(Tp) = 60 for i = 1,2. Now consider the forest F' € 7§
picture in Figure 7.

6 3 5 2

F—T f=T

4 4
Fig. 7. The forest F.

It is easy to see that 6 is in the tree rooted at 2 so that j = 2 in the case.
Moreover, it easy to check that f = (0%)~!(F) is the graph pictured just below the
graph of F in Figure 7. Thus on D3, f(3) =5 and f(4) = 1. Thus f has no fixed
points on D;. By Lemma 3, it is easy to see that mnkT%,; (f) = 6. Similarly since

f(5) =3, rankT%,* (f) = 2. Thus
3

3 3
rankre (F) = L(T1) + > rankg;- (f) [l L@&) =60+ (6-4)+2 =86

s=2 r=s+1

638 0. Ejecioglu, J. B. Remmel & S. G. Williamson

The unrank procedure for 7[7?1] is as follows.
Finding the forest F € 7}% such that mnka,}c] (F) = a.

Step 1. Find j such that Y77 L(T;) < r < Y0, L(T;). Thus n will be in
the tree rooted at j in F. Set b,y = a — Zf;ll L(T;).

Step 2.a. Suppose j < wvandp = p, ®---Qpr € T%m ® --- ®T7§k where

rankT; (p) = bp—1. Compute by, ..., b; where
k . .
bno1 = qm || L(T},) +bm where 0 < by < [T5 i1 L(TD,),
l=m+1

k

bn = Gmtr || L(TD,) +bmts where 0 <713 < [If,,5 L(T3),
l=m+2

beoa = qe—1L(T))+ b1 where 0 < by_1 < L(T})and
bk—l = bk.

Then for s =m,...,k, raka?jJ (ps) = gs.

Step 2.b. Supposeu < j<mandp=p, Q@ - Qpi € Tg; ®---®T{,’: where
rankT; (p) = by—1. Compute by, ...,b; where

k
b1 = Gm || L(TL) + bm where 0 < b, < [T}y L(TH),
l=m+1
k _ .
bn = Gm41 H L(T'ZJ)’:) + bm41 where 0 < rp < Hf=m+2 L(T’JD’,*);
l=m+2
bz = qe-1L(TLY) +be—1 where 0 < b1 < L(T5") and

bk—l - bk.
Then for s =m,...,k, rankT;;*(ps) = q,.

Step 3.a. Suppose j < u. Then having found ¢,y,,...,q; from Step 2, we can
use Lemma 4 to find p; such that rankﬁg (pi) = gi for i =m,..., k. Moreover by

Lemma 4, each p; corresponding to a function f; : D; — [n] such that f = Uf:m fi
is an element of F,,(G,F,m). Let F = ©;(f). Then rankT[c](F) =a.

Step 3.b. Suppose j > u. Then having found ¢p,,...,qx from Step 2, we can
use Lemma 4 to find p; such that m”kng* (p;) = g; for i =m,..., k. Moreover by

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 639

Lemma 4, each p; corresponding to a function f; : D; — [n] such that f = Uf:m fi
is an element of 7 (G,F,m). Let F' = ©}(f). Then mnkT[c](F) =a.

For example, suppose that we want to find the forest F' such that rankT[g , (F) =
45 for the graph pictured in Figure 5. Since 45 < L(77) = 60, then 6 will be in the
tree rooted at 1in F. Now 7; = Tp;* ® Ty where L(Tp") = 15 and L(Tp") = 4.
Since 45 = 1+ 11 - 4, it follows that the path p such that rankr, (p) = 45 is of the
form p = p, ® p3 where rankT1 +(p2) =11 and rankT1 +(p3) = 1. Then it is easy to

see from Figure 6 that the path po corresponds to the functlon f2 on D3 such that
f2(3) = 3 and f»(4) = 5. Similarly, p; corresponds to the function f3 on D3 such
that f3(5) = 2. Thus the function f = fo U f3 such that ranks(f) = 45 is given by:
f(3) = 3; £(4) = 5; £(5) = 2. The graph of f is pictured in Figure 8. It then easy to
check that ©7(f) = F where F is also pictured in Figure 8.

Fig. 8. The forest F.

It is now easy to check that once we build the appropriate data structures
and trees T% and Tj’* from G = (V,E) that both the ranking and unranking
algorithms for T [m) Can be carried out in using only O(|V|) operations involving
sums, differences, products, quotients, and comparisons of numbers z <]’Tm |. Fi-
nally, we should note that to generate a forest F' € 7{% uniformly at random, one
has two choices. One can generate a number z in {0,..., |7Effl]| — 1} uniformly at
random and then use the unrank algorithm. As stated in the introduction, this
could require O(n?logn) bit operations. However, a more efficient way is first
pick j € [m] with probability T, /TS, to tell us in which tree of the forest
the vertex n will lie. Next we must pick a random path in each of the subtrees
Té‘, or T%",*. In the case where ¢ ¢ Ip N Ig, this is easy since one only has to
pick the value of f(d;) in Aqg,; at random for k = 1,...,¢;. In the case, where

i € Ip N Ig, then we pick an element of {0,...,¢;} so that 0 is picked with prob-
|Ady,i-|Aay, i

ability (ng;l |Ad,,i|) / (|Ad1, A, 4l + Z,«- _Md_ﬁ_) and each r > 0 is
picked with probability (E—I—lﬁl’—) / (]Adl,i oo |Ag,, il + > %) If
0 is picked, then we only has to pick the value of f(d;) in Ag,, at random for
k=1,...,t;. If1 <r <t is picked, then f(d,;) = d,; and then we only has
to pick the value of f(dx;) in Ag, ; at random for k € {1,...,t;} — {d,;}. In this
way, we can pick a function f € F,(G,F,m) or f € F}(G,F,m) at random, then
use the bijection ©; or ©F to create a tree from f. Since it only takes logn bits
to record each of the required choices, it is not difficult to show that it takes time

640 O. Egecioglu, J. B. Remmel & S. G. Williamson

nlogn to generate a random tree after one sets up the appropriate data structures
to make the required choices with the appropriate probabilities.

5. Examples

Example 5.1. Perhaps the simplest examples of filtered digraphs are the com-
plete graphs K,. Consider the complete digraph G = ([n], E) where E is the set of
all pairs (¢,5), ¢ # j. The graph G corresponds in the obvious manner to K, the
complete undirected graph on n. We take the composition F = (¢1,...,¢,) of n
where ¢; = 1 for all 4. The filtration {C; | i = 1,...,n} associated with this compo-
sition of n is the discrete partition. Note that G = ([n], E) is a filtered digraph with
respect to F, Ip = {1,2,...,n — 1}, and Is = {2,3,...,n}. Note that in this case,
Fn(G,F,m) = F:(G,F,m) so that identity (1) of Theorem 2.4 with all variables
set equal to 1 becomes

[T | = n 7™, 9)

The set of root-directed spanning forests T € ’Tig] with roots in [m] corresponds
in a natural way to the undirected spanning forests of K,, with component trees
rooted at the vertices [m]. In the special case when m = 1, (9) reduces to Cayley’s
formula for the number of trees on n vertices, |7fﬁ | =nn2

In this case, the problems of ranking and unranking spanning forests in 7{% is
very simple. That is, for each m < j <n —1, D; = {j} and since j € Is N Ip, the
trees Tf;j = Tf)’: are the same for all i = 1,...,m and are pictured in Figure 9. It
follows that if f(j) = k, then the corresponding path pi in Tp, has

k-1 ifk<j,
rankr, (pr)=<n~—-1 ifk=jand
k=2 ifk>j.

1 1o
Fig. 9. The trees T;:Jj = Tg; for K.

However, there is a key property of our bijections that allows us to rank and un-
rank much more than just the collection of root directed spanning forests of K, that
arerooted at 1,..., m. That is, the only edges that change under either the bijection
O, or ©F are descent edges, i.e. edges of the form (7,) where i > j. Now suppose
that we want to rank and unrank the set 7{2}}3 of root directed spanning forests of
K, that contain a prespecified set of ascent edges E = {(s1,t1),..-.,(sr,t,)} where
51,..-,8 € {m+1,...,n — 1}. In this case, we can realize this set as the set of

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 641

root directed spanning forests of a slightly modified graph Gg = ([n], Eg). That
is, suppose we take the composition F = (c1,...,c,) of n where ¢; = 1 for all .
Again the filtration {C; | i = 1,...,n} associated with this composition of n is the
discrete partition. Then the graph Gg differs from our graph G corresponding to
the complete graph only in that, for : = 1,...,r, the only directed edges of the form
(si, k) that are in Eg are the edges (s;,t;), instead of allowing all directed edges
(si, k) . Thus we let Ipy = {1,2,...,n— 1}, and Is, ={2,3,...,n} \ {s1,..., 8-}
In terms of our ranking and unranking algorithms, the only difference is that the
tree Tp,, becomes the tree pictured in Figure 10 (A).

Similarly suppose that we want to rank and unrank the set 7{%7‘, of root direct
spanning forests of K, where we insist that the set of edges out of the vertices
V = {si1,...,8,} where s1,...,8, € {m+1,...,n — 1} are ascent edges. In this
case, we can realize this set as the set of root directed spanning forests of a another
modified graph Gy = ([n], Bv). Again we take the composition F = (cy,...,cn)
of n where ¢; = 1 for all ¢ so that the filtration {C; | i = 1,...,n} associated with
this composition of n is the discrete partition. Then the graph Gv differs from our
graph G corresponding to the complete graph only in that, fori = 1,...,r, the only
directed edges of the form (s;, k) that are in Eg are the edges (s;, k) where k > s;
instead of allowing all directed edges (s;, k) . Thus we let Ip,, = {1,2,...,n — 1},
and Is, = {2,3,...,n}\ {51,...,8+}. In terms of our ranking and unranking
algorithms, the only difference is that the tree T'p,, becomes the tree pictured in
Figure 10 (B).

(A) (B)

t

1
s+l s;+2 n-1 n

Fig. 10. The trees T, = Ty for Gg and Gv.

For example, suppose that G is the graph that corresponds to the complete
graph on 10 vertices and we have m = 1 so that we are ranking all Cayley trees on
n vertices. There are 10® such trees. If we set E = {(4, 10), (6, 8)}, then ranking and
unranking with respect to Gg corresponds to ranking and unranking with respect to
all Cayley trees that contain the edges (4,10) and (6, 8). If we let V = {4, 10}, then
ranking and unranking with respect to Gy corresponds to ranking and unranking
with respect to all Cayley trees for which the directed edges out vertices 4 and
10 are ascent edges. Now consider the tree T pictured in Figure 11 (A) and its
corresponding f = ©7(T') which is pictured in Figure 11 (B).

642 0. Ejecioglu, J. B. Remmel & S. G. Williamson

n 3 s st QO
(A) "A"‘T * (B)Ts 8 2 °
‘ 9 6 7 4 9 6 7

Fig. 11. The tree T and its corresponding function.

¢ [f(é) 1o, (pi) fcontribution [rr, (p;) lcontribution frr, (pi) |contribution
for G for Gg for Gv

2 2 9 9 x 107 9 9 x 10° 9 0 x 24 x 10°
3 8 6 6 x 10° 6 6 x 10* 6 6 x 24 x 10*
410 B 8 x 10° 0 0 x 10% 5 5 x 4 x 107
o D 9 9 x 10* 9 9 x 103 9 0 x 4 x 10°
6R 6 6 x 103 0 0 x 103 1 1x 103

7 2 1 1 x 102 1 1 x 10? 1 1 x 10°

8 3 2 2 x 10 2 2 x 10 2 2 x 10

9 8 7 7 7 7 7 7

Table 1

Table 1 then gives the rank of the path p; in the tree Tp, corresponding to
the function value f(i) and its contribution to the final rank in the calculations of
rankf,-[i;] (1), rankT[lc]‘E(T), and rank»,—[ﬁ’v (T") respectively, according to our general
ranking procedure. It follows that

rre(T) = rankrg(T) = 96,896,127,
rf,—[g;]‘E(T) = rankTDc],E(T) = 969,127,
TT[?],V(T) = rankT[lc]'v(T) = 23,277,127.

On the other hand suppose that we want to find the trees of rank 550,054 with
respect to these three classes of spanning trees. That is, suppose that we want to
find the trees T;,7> and T3 such that

rre (T1) rankre (T1) = 550,054,
rre (T2) = rankre (Th) = 550,054,

rankf,—[lc]’v (T3) = 550, 054.

"7 (T8)

In each case, we must find the paths p/ = (p%,,p{,) for j = 1,2,3 through
the corresponding trees that have 550,054 leaves to its left. In Table 2, we have
exhibited to the corresponding decomposition of 550,054 according to our unranking
algorithm, the corresponding to ranks of the paths pJ in the trees Tp,, and value
of the correspond functions fr;. Then in Figure 12, we have pictured the trees 71,
T, and T3 that arise by applying the ©F bijection to fr,, fr,, and fr, respectively.

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 643

Fig. 12. The trees T, T», and T3.

i 550,054 TTp, (p}) le (Z) 5507054 I"'Tp; (pf) sz (2) 5501054 TTp, (pz3) fT3 (7')
for G [for G for Gg ffor Gg for Gv for Gv
2 Dx 107 0 1 5 x 10° 5 7 0 x24 x10° |0 1
3 10x10° 0 1 5x10* | 7 2 x 24 x 107 2 4
4 b x10° 5 7 0 x 10 p 10 1x4x10F 11 6
5 b x10%) 7 0x10° D 1 7x4x10° |7 9
6 0x10° 0 1 0x10° 0 8 2 x 103 2 9
7 0x10° 0 1 0x10° 0 1 0 x 102 0 1
B HBx10 H 6 5x10 B 6 5 x 10 5 6
94dx1 4 5] Ux1 U 5] 4 x 1 4 5
Table 2

Example 5.2. We next consider the case where G = K, ., is the n-vertex
multipartite graph with k parts of size nq,...,ng. Thus, n = n; +--- +ng. In
this case, Onodera [7] showed that the number of spanning trees of Ky, ., is
nk—2 Hk (n — k;)*i—1

=1 g .

We start with the case ¥ = 2. In the context of this paper, the composition is
F = (n1,n2). The filtration is {C; | i = 1,2} where C; = {1,2,...,n,} and C; =
{n1+1,n14+2,...,n}. C; is a base and Cs is a summit. We assume that 1 < m < ny
so that when we set all the variables equal to 1 in equation (1) we get that
Tyl = mngs g,

The set of root-directed spanning forests T' € 7{%, with roots [m], corresponds in
a natural way to the undirected spanning forests of Ky, n,, with component trees
rooted at the vertices [m].

Next we consider the more difficult case of k > 2. In this case we will need the full
power of Theorem 2.4 in that we will need to consider functions whose associated
digraphs have loops. In particular, K,,, . n, is the n-vertex multipartite graph
with k& > 2 parts of size ny,...,ng. Thus, n = n; + --- + ng and the composition
is F = (ny,...ng). Again, we denote the partial sum n; + --- +n; by N; and let
Ny = 0. The filtration in this case is {C; | i = 1,...k} where C; = {1,2,..., N1},
Cy = {N1+1,N1+2,...,N2},..., Cr = {Nk_1+1,Nk_1 +2,...,Nk}. Cl,...,Ck_l
are bases and Ca, . . .,Cx are summits. Take 1 < m < Ni_; and assume that m € C;.

644 O. Ejecioflu, J. B. Remmel & 8. G. Williamson

When we set all the variables equal to 1 identity (1) of Theorem 2.4 becomes

k k
N;_1B; H AJ':| + li(m_Nt—l)Dt H Aj:|

j=t+1 j=t+1

Tl =

where Aj=n(n—n;)m 1 fort <j<k, Ay = (n—ng)™1,
By = (n —ny)Ve=""1(n 4+ N;_; — m) and D; = (n — ng)V:~™. Thus

| Tig} = n* 471 (Nt—l("—"t)N‘_m_l(n+Nt—1—m)+(m—Nt—1)(n—nz)N'_m) M5y (n—nj)™i 7t

Note that if £ = 1, N;; = Np = 0 and thus we obtain

k
1761 = =2 (o = ngm =) [0 =)™=
j=2

If m =1 this identity becomes the formula of Onodera [7}:

k
n* =2 [[(n =)™t = |TE).

i=1

Next we shall explicitly translate our unrank procedure for |7ng| in the case
where m < ny so that all the roots of any forest are in Cy. In this case it is easy to
check that Dy = {t+1,...,n1}, Dh = {Nh-1+1,...,Np_1+np}forh=2,... k-1
and Dy = {Ng_1 +1,...,Nx_1 + ng — 1}. Moreover it is easy to check from our
definitions of T%;: that for j =1,...,¢,

Ly = LTEH)=m-n)m
Ln = LTL)=nn—ny)* forh=2,... k-1
Ly = L(TE) = (n =)™

One can easily see from Figure 4 that the number of leaves of 7 is given by
L(T)=m-Ly--- L.

Unranking Procedure for 7{% where G = K,, . n, and m <n;.
Goal: Find the forest F € ﬁg] such that rankﬂc](F) = ap.

Step 1. Find r < m such that (r —1)L; --- Ly < ag < rLj -+ Lg. This means that
F will be of the form ©}(f) for some function f € F}(G,F, m) where

rankt.(f) =bo =ao — (r — 1)Ly --- Ly.

Step 2. Goal: Find p1®---®px € Ty, ®---®Tp. such that rankr, (01 ®- - @pk) =
bo.

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 645

Find ¢, ..., ¢ such that

bo = c1-Ly---Lp+b; where 0< b, < Ly---Ly,

by = cp-Lz---Lg+by where 0 < by < L3--- Ly,
br—a = cg—1-Ly + br—1 where 0 < by < Ly and
bk—l = Ck.

Then rankr,, (p;) = c;-

Step 3.Goal: Find f; equals f restricted to D; such that rankrr~(f;) = rankqr- (f;) =
¢jforj=1,....k ’ ’

Step 3: Case 1.
Set do,1 = ¢; and compute €51 for s =1,...n; — m where

dO,l = e11- (n— nl)m—m—l + dy,1 where 0 < dii < (n — nl)nl—m—l,

dii = e21-(m—n1)""™ 2 4+dy; where 0 <dy; < (n—mnq)M ™2,
dnl—m—2,1 = én;—m-—-1,1" (n - nl) + dnl—m—l,l where 0 < dnl—m—l,l < (’I’l - 71,1),
dnl—m—l,l = €n;—m,1-

Thenfor s=1,...,n1 —m, f(m+s) =N +1+e,;.
Step 3: Case 2. For j =2,...,k — 1, do the following.
Subcase 2.1. 0 < ¢; < (n —nj)™.

In this case, f will have no fixed points on C;. Set dy ; = ¢; and compute e, ; for
s=1,...n; where

dQJ' = €1, (n — n]-)""_l + d1,j where 0 < dl,j <(n-— nj)"f-l.
dl‘j = €2;" (n - nj)"f_z + d2,j where 0 S dz’j < (n - n]-)""_z.
dnj—2,j = €n;-1,j° (n - nj) + dnj—l,j where 0 < dnj—l,j < (n - nj)’
dnj-1,j = en;;j-
Then for s = 1,...,n;,
f(N 1+S)= 1+65’j ifes,j<Nj_1
I Nj+1+651j ifes,j ZNj—-l-

Subcase 2.2. (n—n;)™ +(p—1)(n—n;)™ ! <¢; < (n—n;)™ +p(n—n;)H L
In this case, N;_; + p will be the only fixed point of f on C;. Set

o = ¢ = [(n =)™ +(p = D(n = ;)" "]

646 O. Ejecioglu, J. B. Remmel & S. G. Williamson

and compute e, ; for s =1,...n; — 1 where

doj = ej-(n—n;)™ ?+d;; where0<d;; < (n—n;)" 2,
dij = e2j-(n—n;)" 3 +dy; where 0 < dg; < (n—n;)% 3,
dn;-3; = en;—2j-(n—nj)+dn,_2; where 0 <dp,_2; < (n—n;),
2 2
dnj-2j = en;j-1,-

In this case, f(Nj—1+p) =Nj_1 +p. Fors=1,...,p—1,

1+es; if es,j < Nj_l

N;_1+3s) =
u it) {N,-+1+es,j ifes,jZNj_l.

and for s=1,...,n; —p,

1+epts—i; if epys—1,j <Nj1
Nj+1l+eprs-1; if eprs—1, > Nj1-

f(Nj-1 +.’0+3)={

Step 3: Case 3.
Set do,x = ¢, and compute e, for s = 1,...n; — 1 where

dO,k = ek (n - nk)nk—Z + dl,k. where 0 < dl,k < (n - nk)"k_z,

dig = e (m—ng)™* 2+ dyy where 0 < dsy < (n — ng)™ 3,
dnk—:i,k = €en,—2,k" (n - nk) + dnk—Z,k where 0 < dnk—2,k < (n - nk),
dn1—2,k = enk—l,k-

Then for s =1,...,n — 1,
F(Ng—1+s)=1+ €s,k-

Step 4. Having constructed f € F,;:(G,F, m) in Step 3, then F = ©%(f).

The ranking procedure for F € 7{% is to find 1 < r < m such that vertex
n is in the tree with root j. Then find the function f € F:(G,F,m) such that
(©2)71(F) = f. We can then find the rank of F by essentially reversing the steps
of our unranking procedure.

Example 5.3. In this example, we consider a directed graph G = Cy, ... », which
is not the digraph corresponding to an undirected graph as were examples (5.1) and
(5.2). This graph is a multipartite cyclic digraph defined by taking the composition
of n to be F = (nq,...,nt). Thus, the filtration is the partition C; = {N;—1 +
1,...,N;}, with No =0and N; =nj +---+mn;,%2=1,...,k There is one base, C,
and one summit, Cx. All directed edges that connect a vertex in C; to a vertex in
Cit1 are present for i = 1,...,k— 1. As required by our framework of Theorem 2.4,

Efficient Ranking and Unranking Algorithms for Spanning Trees and Forests 647

all directed edges that connect a summit vertex in Cj, to a base vertex in C; are also
present. Thus in this case, the ¢ as in the statement of Theorem 2.4 is just 1. Thus
all roots {1,...,m} of forests in 7{% will belong to C; since all such roots belong
to a base and C; is the only base.

If we set ¢; = t; = p; = s; = 1 for all 7 identity (1) of Theorem 2.4, then we
obtain

k—1
[Tl = m - (n2)™ =™ - (n)™ = T (myan)™.
j=2
It is easy to give explicit formulas for the ranking and unranking of forests

in ﬁg] in this case since there are no complications due to fixed points. As an
example, we give the unranking procedure. In this case it is easy to check that
Dy ={t+1,...,m1},Dp = {Np_1+1,...,Np_1 +np} for h=2,...,k — 1 and
Dy = {Nk-1+1,..., Ny_1+nr—1}. Moreover it is easy to check from our definitions
of T§ that for j = 1,...,1,

L, L(TEY) = (ng)™ ™t
Ly = L(TH)=(npp)™ forh=2,... k-1
Ly = L(T) = (n)™!

One can see from Figure 4 that the number of leaves of T is given by L(T) =
m-Ly - -- L. This allows us to easily translate the ranking and unranking procedures
of section 4 in this cases. We leave the details to the reader.

We should note that Examples 5.1, 5.2 and 5.3 are three of the easiest examples
of filtered digraphs. For example, Example 5.3 is the simplest case of a more
general construction. That is, suppose that we start with any acylic directed graph
G = ([k], E) such that vertex 1 is the only source in G, vertex k is the only sink in
G, and all vertices lie on a path from the source to the sink. Then we can create
a filtered digraph as follows. Start with a composition F = (¢y,¢2,...,ck) of n and
let Cy,...,Cy be its corresponding set partition. Next we replace each vertex i by an
empty graph on the vertex set C;. Then whenever there is an edge from (i, j) € E,
we create a directed edge from each vertex in C; to each vertex in C;. We let C; be
the only base and let C; be the only summit. Finally, we must add a directed edge
from each summit vertex to each base vertex. Clearly, the graphs Cy, .. n, arise
from this construction by starting with a simple graph

122—=--2k-1—=k

We refer the reader to [12] for even more examples of ways to construct filtered
digraphs.

References

1. C.W. Borchardt, Ueber eine der Interpolation entsprechende Darstellung der
Eliminations-Resultante, J. reine angew. Math. 57 (1860), pp. 111-121.

2. C.J. Colborn, R.P.J. Day, and J.D. Nel, Unranking and Ranking Spanning Trees of
a Graph, J. of Algorithms, 10, (1989), pp. 271-286.

648 O. Ejecioglu, J. B. Remmel & S. G. Williamson

3.

10.

11.

12.

13.

Omer Egecioglu and Jeffrey B. Remmel, Bijections for Cayley Trees, Spanning Trees,
and their q-Analogues, Journal of Combinatorial Theory, Series A, Vol. 42. No. 1
(1986), pp- 15-30.

. Omer Egecioglu and Jeffrey B. Remmel, A bijection for spanning trees of complete

multipartite graphs, Congress Numerautum 100 (1994), pp. 225-243.

Omer Egecioglu and Jeffrey B. Remmel, Ranking and Unranking Spanning Trees of
Complete Multipartite Graphs, Preprint.

O. Egecioglu and L.P. Shen, A Bijective Proof for the Number of Labeled q-trees,
Ars Combinatoria 25B (1988), pp. 3-30.

R. Onodera, Number of trees in the complete N -partite graph, RAAG Res. Notes 3,
No. 192 (1973), pp. i +6.

J. Propp and D. Wilson, How to get a perfectly random sample from a generic

Markov Chain and Generate a random spanning tree of a directed graph, J. of
Algorithms, 27 (1998), pp 170-217.

. H. Prufer, Never Bewies eines Satzes tiber Permutationen, Arch. Math. Phys. Sci.

27 (1918), pp. 742-744.

A. Nijenhaus adn H.S. Wilf, Combinatorial Algorithms, 2nd. ed., Academic Press,
New York, (1978).

E.M. Reingold, J. Neivergelt, and N. Deo, Combinatorial Algorithms: Theory and
Practice, Prentice Hall, Englewood Cliffs, N.J., (1977)

J.B. Remmel and S.G. Williamson, Spanning Trees and Function Classes, Electronic
Journal of Combinatorics, (2002), R34.

S.G. Williamson, Combinatorics for Computer Science, Dover Publications, Inc.,
Meneola, New York (2002).

