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Abstract

In the directed acyclic graph (dag) model of algorithms,
consider the following problem for precedence-constrained
multiprocessor schedules for array computations: Given a
sequence of dags and linear schedules parameterized byn,
compute a lower bound on the number of processors re-
quired by the schedule as a function ofn. This problem is
formulated so that the number of tasks that are scheduled
for execution during any fixed time step is the number of
non-negative integer solutionsdn to a set of parametric lin-
ear Diophantine equations. Generating function methods
are then used for constructing a formula for the numbersdn. We implemented this algorithm as a Mathematica pro-
gram. This paper is an overview of the techniques involved
and their applications to well-known schedules for Matrix-
Vector Product, Triangular Matrix Product, and Gaussian
Elimination dags. Some example runs and automatically
produced symbolic formulas for processor lower bounds by
the algorithm are given.

1 Introduction

Parallel execution of array computations (uniform recur-
rence equations) [17] has been studied extensively [18, 14,
15, 19, 20, 16]). In such computations, the computational
tasks are viewed as the nodes of a dag; arcs represent data
dependencies. Given a dagG = (N;A), a multiprocessor
schedule assigns nodev for processing during step�(v) on
processor�(v). A valid multiprocessor schedule is subject
to the constraints:

Causality: A node is computed only after its children have
been computed:(u; v) 2 A) �(u) < �(v):

Non-conflict: A processor cannot compute 2 different
nodes during the same time step:�(v) = �(u) )�(v) 6= �(u):

In what follows, we refer to valid schedules simply as
schedules. A schedule is good, if it uses time efficiently;
an implementation of a schedule is good, if it uses few
processors. This view prompted several researchers to in-
vestigate processor-time-minimal schedules for familiesof
dags. These are time-minimal schedules that in addition
use as few processors as possible. Processor-time-minimal
schedules for various fundamental problems have been pro-
posed in the literature: Scheiman and Cappello [3, 11, 9]
examine the dag family for matrix product; Louka and
Tchuente [8] examine the dag family for Gauss-Jordan
elimination; Scheiman and Cappello [10] examine the dag
family for transitive closure; Benaini and Robert [2, 1] ex-
amine the dag families for the algebraic path problem and
Gaussian elimination. Clauss, Mongenet, and Perrin [4] de-
veloped a set of mathematical tools to help find a processor-
time-minimal multiprocessor array for a given dag. Another
approach to a general solution has been reported by Wong
and Delosme [13], and Shang and Fortes [12]. They present
methods for obtaining optimal linear schedules. That is,
their processor arrays may be suboptimal, but they get
the best linear schedule possible. Darte, Khachiyan, and
Robert [16] show that such schedules are close to optimal,
even when the constraint of linearity is relaxed.

In [9], a lower bound on the number of processors
needed to satisfy a schedule for a particular time step was
formulated as the number of solutions to a linear Diophan-
tine equation, subject to the linear inequalities of the con-
vex polyhedron that defines the dag’s computational do-
main. Such a geometric/combinatorial formulation for the
study of a dag’s task domain has been used in various
other contexts in parallel algorithm design as well (e.g.,
[17, 18, 19, 7, 6, 20, 4, 12, 13]; see Fortes, Fu, and Wah
[5] for a survey of systolic/array algorithm formulations.)
The maximum such bound for a given linear schedule, taken
over all time steps, is a lower bound for the number of pro-
cessors needed to satisfy the schedule for the dag family.
[23, 22] present a more general and uniform technique for
deriving such lower bounds: Given a parameterized dag



family and a correspondingly parameterized linear sched-
ule, aformula for a lower bound on the number of proces-
sors required by the schedule is computed. This is much
more general than the analysis of an optimal schedule for
a givenspecificdag. The lower bounds obtained are good;
we know of no dag treatable by this method for which the
lower bounds are not also upper bounds.

The nodes of the dag typically can be viewed as lattice
points in a convex polyhedron. Adding to these constraints
the linear constraint imposed by the schedule itself results
in a linear Diophantine system of the formAz = nb+ 
 ;
where the matrixA and the vectorsb and
 are integral,
but not necessarily non-negative. The numberdn of solu-
tions in non-negative integersz = [z1; z2; : : : ; zs℄t to this
linear system is a lower bound for the number of processors
required when the dag corresponds to parametern. Our
algorithm produces (symbolically) the generating function
for the sequencedn, and from the generating function, a
formula for the numbersdn. We do not make use of any
special properties of the system that reflects the fact that
it comes from a dag. Thus in the linear system above,A
can be taken to be an arbitraryr � s integral matrix, andb
and
 arbitraryr-dimensional integral vectors. As such, we
solve a more general combinatorial problem of constructing
the generating function

Pn�0 dntn , and a formula fordn
given a matrixA and vectorsb and
, for which the lower
bound computation is a special case.

2 Examples from Array Computations

2.1 n� n Matrix-Vector Product

An algorithm forn � n matrix-vector product is given
in the following procedure. M is the input matrix,x
is the input vector, andy = M � x is the output vec-
tor. We index the entries of ann-dimensional vectorv byv[0℄; v[1℄; : : : ; v[n� 1℄.
for i = 0 to n� 1 do:y[i℄ 0;

for j = 0 to n� 1 do:y[i℄ y[i℄ +M [i; j℄ � x[j℄;
endfor;

endfor;

Computation is “located” at certain index pairs defined by
thefor loop limits, namely all pairs(i; j) satisfying:0 � i � n� 1 (1)0 � j � n� 1
These pairs(i; j) are the lattice points inside the 2-
dimensional convex polyhedron whose four faces are de-
fined by the four inequalities above. The faces of the poly-
hedron are, in turn, constructed from thefor loop limits.

We henceforth are concerned with onlynon-negativeinte-
gral solutions to Diophantine equations. In this way, the
inequalities0 � i, and0 � j are implied, and need not be
specified. In order to transform the set of inequalities in (1)
to a set ofequations(which turn out to be easier to work
with), we introduce integral slack variabless1; s2 � 0:i + s1 = n� 1j + s2 = n� 1
The standard array computation forn � n matrix-vector

product is given byGn = (N;A), where� N = f(i; j) j 0 � i; j � n� 1g.� A = f[(i; j); (i0; j0)℄ j (i; j) 2 N; (i0; j0) 2 N andi0 = i+ 1, andj0 = j; or j0 = j + 1, andi0 = i g.
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Figure 1. The matrix-vector product dag forn = 2.

The standard, time-minimal linear multiprocessor sched-
ule for Gn is to execute nodeN(i; j) at time i + j + 1.
For then � n case, the computation begins in time step
1 with the computation ofN(0; 0), and ends in time step2n � 1 with the computation ofN(n � 1; n � 1). At
time step� , all nodesN(i; j), wherei + j + 1 = � are
scheduled for parallel execution (see Figure 1). At time
step � = n, there aren nodes scheduled for execution:N(0; n � 1); N(1; n � 2); : : : ; N(n � 1; 0). If we include
the linear schedulei+ j + 1 = � in the set of Diophantine
equations describing the loop index ranges, then number of
non-negative solutions to the augmented system of linear
Diophantine equations is the number of tasks scheduled for
execution during time step� . Thus foranyparticular� with1 � � � 2n � 1, the number of solutions to the resulting
linear Diophantine system is a lower bound on the number
of processors necessary for the schedule. As an example,
for � = n, the augmented system obtained from (1) isi + j = n� 1i + s1 = n� 1j + s2 = n� 1 (2)



The number of non-negative integral solutions to (2) is a
processor lower bound for then�n Matrix-Vector Product
problem.

2.2 n� n Triangular Matrix Product

An algorithm for the computation of the matrix productC = A �B, whereA andB are givenn�n upper triangular
matrices is given below.

for i = 0 to n� 1 do:
for j = i to n� 1 do:

for k = i to j do:C[i; j℄ C[i; j℄ +A[i; k℄ � B[k; j℄;
endfor;

endfor;
endfor;

The computational nodes are defined by non-negative inte-
gral triplets(i; j; k) satisfyingi � n� 1i � j � n� 1i � k � j :
In fact, the whole polyhedron is defined by the inequalitiesi � k � j � n�1: Note that as before we assume from the
outset that the variables are non-negative. Introducing inte-
gral slack variabless1; s2; s3 � 0, we obtain the equivalent
linear Diophantine systemj + s1 = n� 1� j + k + s2 = 0i � k + s3 = 0
A linear schedule for the corresponding dag is given by�(i; j; k) = i + j + k + 1. Since� ranges from1 to3n�2, we can augment the system by adding the constrainti+j+k+1 = �(3n�2) for any rational number� between
0 and 1. In particular the halfway point in this schedule is
time step� � 32n � 1. For simplicity, assumen is an even
number, sayn = 2N , then we can take� to be3N � 1.
Adding the schedule constraint to the system we already
have, we obtain the augmented Diophantine systemi + j + k = 3N � 2j + s1 = 2N � 1� j + k + s2 = 0i � k + s3 = 0 (3)

Therefore, forn = 2N a lower bound for the number of
processors needed for then�n Triangular Matrix Product
problem is the number of solutions of (3).

2.3 Gaussian Elimination without Pivoting

An algorithm for performing Gaussian elimination on ann� n matrixM is given below.

for i = 0 to n� 1 do:
for j = i+ 1 to n� 1 do:wj  M [i; j℄;
endfor;
for j = i+ 1 to n� 1 do:�  M [j; i℄=M [i; i℄;

for k = i+ 1 to n� 1 do:M [j; k℄ M [j; k℄� � � wj ;
endfor;

endfor;
endfor;

We are interested in the triply-nestedfor loop, the heart of
the computation. The computational nodes are defined by
non-negative integral(i; j; k) satisfying the constraintsi � n� 1i+ 1 � j � n� 1i+ 1 � k � n� 1
Note that as before we assume that the variables are non-
negative. Since the first inequality is superfluous, introduc-
ing integral slack variabless1; s2; s3; s4 � 0, we obtain the
equivalent linear Diophantine systemi � j + s1 = �1j + s2 = n �1i � k + s3 = �1k + s4 = n �1
A linear schedule for the corresponding dag is given by�(i; j; k) = i+ j + k+1. Since� ranges from1 to 3n� 2,

we can augment the system by adding the constraint at the
halfway point:� � 32n�1. Again, we only present the case
of evenn because of space considerations. Forn = 2N , we
can take� to be3N � 1. Adding the schedule constraint
to system we already have, we obtain the augmented Dio-
phantine systemi + j + k = 3N �2i � j + s1 = �1j + s2 = 2N �1i � k + s3 = �1k + s4 = 2N �1
Hereb = [3; 0; 2; 0; 2℄t and
 = [�2;�1;�1;�1;�1℄t.

Therefore, a lower bound for the number of processors
needed to implement the schedule of the algorithm for
Gaussian elimination without pivoting of ann � n matrix
with n = 2N is the number of solutions of the above sys-
tem.

In the examples above, the final problem to be solved
is the determination of the number of non-negative integral



solutionsdn to a linear parametric (parametrized byn) Dio-
phantine system of the formAz = nb+
 whereA is somer � s integral matrix,b and
 are r-dimensional integral
vectors.

3 The General Formulation

Next, we describe how to use a Mathematica program to
to automatically construct a formula for the number of lat-
tice points inside a linearly parameterized family of convex
polyhedra. The algorithm for doing this and its implemen-
tation have been reported in detail in [our paper].

First of all, the general setting exemplified by the prob-
lems in the preceding section is as follows: Supposea (also
denoted byA) is anr � s integral matrix, andb and
 arer-dimensional integral vectors. Suppose further that, for ev-
ery n � 0, the linear Diophantine systemaz = nb + 
,
i.e. in the non-negative integral variablesz1; z2; : : : ; zs has
a finite number of solutions. Letdn denote the number of
solutions forn. The generating function of the sequencedn is f(t) = Pn�0 dntn. For a linear Diophantine system
of the above formf(t) is always a rational function, and
can be computed symbolically [23, 22]. The Mathematica
programDiophantineGF.m we have written for this
computation1 implementing the algorithm also constructs a
formula for the numbersdn from this generating function.

Given a nestedfor loop, the procedure to follow is infor-
mally as follows:

1. Write down the node space as a system of linear in-
equalities. The loop bounds must be affine functions
of the loop indices. The domain of computation is rep-
resented by the set of lattice points inside the convex
polyhedron, described by this system of linear inequal-
ities.

2. Eliminate unnecessary constraints by translating the
loop indices (so that0 � i � n � 1 as opposed to1 � i � n, for example). The reason for this is that the
inequality0 � i is implicit in our formulation, whereas1 � i introduces an additional constraint.

3. Transform the system of inequalities to a system of
equalities by introducing non-negative slack variables,
one for each inequality.

4. Augment the system with a linear schedule for the
associated dag, “frozen” in some intermediate time
value:� = �(n);

5. Run the programDiophantineGF.m on the re-
sulting data. The program calculates the rational gen-
erating functionf(t) =P dntn, wheredn is the num-

1http://www.cs.ucsb.edu/˜omer/personal/abstracts/DiophantineGF.m

ber of solutions to the resulting linear system of Dio-
phantine equations, and also produces a formula for
the numbersdn.

4 Mathematica Runs

The programDiophantineGF.m requires three ar-
gumentsa;b; 
 of the Diophantine systemaz = nb+ 
 (4)

as input. The main computation is performed by the call
DiophantineGF[a;b; 
]. The output is the (rational)
generating functionf(t) = Pn�0 dntn, wheredn is the
number of solutionsz � 0 to (4). After the computation
of f(t) by the program, the user can execute the command
formula, which produces formulas fordn in terms of bi-
nomial coefficients (with certain added divisibility restric-
tions), and in terms of the ordinary power basis inn when
such a formula exists. The commandformulaN[c] eval-
uatesdn for n = 
. If needed, the generating functionf(t)
computed by the program subsequently can be manipulated
by various Mathematica commands, such asSeries[].

Below, we provide sample runs ofDiophan-
tineGF.m on the the array computation problems for-
mulated in Section 2.

4.1 n� n Matrix-Vector Multiplication

For the linear schedule of theMatrix-vector Productex-
ample, the augmented Diophantine system in (2) can be
written in the form (4) wherea = 24 1 1 0 01 0 1 00 1 0 1 35 ; b = 24 111 35 ; 
 = 24 �1�1�1 35 :
In[1]:= << DiophantineGF.m
In[2]:= a = {{1, 1, 0, 0},

{1, 0, 1, 0},
{0, 1, 0, 1}};

In[3]:= b = {1, 1, 1}; c = {-1, -1, -1};
In[4]:= DiophantineGF[a, b, c]

t
Out[4]= ---------

2
(-1 + t)

In[5]:= formula;
Binomial Formula : C[n, 1]
Power Formula : n

In the output,C[x; k℄ denotes the binomial coefficient�xk� = x!k!(x�k)! whenx is a non-negative integer, and zero
otherwise.



4.2 n� n Triangular Matrix Product ( n = 2N)

For then � n Triangular Matrix Productproblem the
Diophantine system isaz = Nb+ 
 wherea = 2664 1 1 1 0 0 00 1 0 1 0 00 �1 1 0 1 01 0 �1 0 0 1 3775 ; b = 2664 3200 3775
and
 = [�2;�1; 0; 0 ℄T for n = 2N . In this case,

In[1]:= << DiophantineGF.m
In[2]:= a = {{1, 1, 1, 0, 0, 0},

{0, 1, 0, 1, 0, 0},
{0,-1, 1, 0, 1, 0},
{1, 0,-1, 0, 0, 1}};

In[3]:= b = {3, 2, 0, 0}; c = {-2,-1, 0, 0};
In[4]:= DiophantineGF[a, b, c]

t
Out[4]= --------

3
(1 - t)

In[5]:= formula
Binomial Formula : C[1 + n, 2]

n (1 + n)
Power Formula : ---------

2

Since then in this formula is ourN , substitutingn=2, we
find that a lower bound for the number of processors needed
to satisfy the linear schedule�(i; j; k) = i+ j + k + 1 for
then � n Triangular Matrix Productis n(n + 2)=8 wheren = 2N . Considering the casen = 2N+1 as well, we find
that a lower bound for the number of processors needed to
satisfy a the linear schedule�(i; j; k) = i + j + k + 1 for
then� n Triangular Matrix Productisbn4 
 (2 bn4 
+ 1) :
4.3 Gaussian Elimination

For Gaussian Eliminationwithout pivoting of ann � n
matrix the Diophantine system isaz = Nb+ 
 wherea = 266664 1 1 1 0 0 0 01 �1 0 1 0 0 00 1 0 0 1 0 01 0 �1 0 0 1 00 0 1 0 0 0 1 377775 :
Hereb = [3; 0; 2; 0; 2℄t and
 = [�2;�1;�1;�1;�1℄t, forn = 2N . The generating function computed ist2(3 + t)(1� t)3(1 + t) :

From this, the program produces the the lower bound forn = 2N asb 2N2�N2 
 for n = 2N . This also happens to
be the formula produced forn = 2N + 1. Combining the
results, forn�n Gaussian elimination without pivoting for
arbitraryn, we obtain the processor lower boundbbn2 
(2bn2 
 � 1)2 

5 Complexity

The algorithm for the computation off(t) generates a
ternary tree and accumulates the symbolic information ob-
tained at the leaves [our paper]. The number of leaves
is exponential inn = Pfaig jaij, wherefaig is the set
of coefficients describing the set of Diophantine equations.
However, the set of coefficients describing the Diophantine
system coming from an array computation is not unique.
Translating the polyhedron, and omitting superfluous con-
straints (i.e., not in their transitive reduction) reducesthe al-
gorithm’s work. Additional preprocessing may be possible
(e.g., via some unitary transform).

The fact that the algorithm has worst case exponential
running time is not surprising however; the simpler compu-
tation: “Are anyprocessors scheduled for a particular time
step?”, which is equivalent to “Is a particular coefficient of
the series expansion off(t) non-zero?” is already known to
be an NP-complete problem [21]. This computational com-
plexity is further ameliorated by the observation that, since
a formula can be automatically produced from the generat-
ing function, it needs to be constructed only once for a given
algorithm. In practice, array algorithms typically have a de-
scription that is sufficiently succinct to make this automated
formula production feasible.

To summarize: given a nested loop program whose un-
derlying computation dag has nodes representable as lattice
points in a convex polyhedron, and a multiprocessor sched-
ule for these nodes that is linear in the loop indices, we can
produce a formula for the number of lattice points in the
convex polyhedron that are scheduled for a particular time
step (which is a lower bound on the number of processors
needed to satisfy the schedule). This is done by constructing
a system of parametric linear Diophantine equations whose
solutions represent the lattice points of interest.

Examples illustrated the relationship between nested
loop programs and Diophantine equations, and were anno-
tated with the output of a Mathematica program that im-
plements the algorithm. The algorithm’s exponential com-
putational complexity should be seen in light of two facts:
(1) Deciding if a time step hasanynodes associated with it
is NP-complete; we construct aformula for the number of
such nodes; (2) This formula is a processor lower bound,
not just for one instance of a scheduled computation but for
a parameterized family of such computations.



In bounding the number of processors needed to satisfy
a linear multiprocessor schedule for a nested loop program,
we actually derived a solution to a more general linear Dio-
phantine problem. This leaves open some interesting com-
binatorial questions of rationality and associated algorithm
design: e.g. how to compute the associated generating func-
tion of the number of solutions when the right hand side of
the main system consists of higher degree polynomials inn,
and not just linear.

For details of this presentation, please refer to [23, 22].
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