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Abstract. The Pfaffian of the symbols a;j withi < j has a combinatorial interpretation
as the signed weight generating function of perfect matchings in the complete graph.
By properly specializing the variables, this generating function reduces to the signed
weight generating function for the perfect matchings in an arbitrary simple graph.

We construct a weight and sign preserving bijection between two appropriately con-
structed spaces of permutations: permutations with even cycles and pairs of involutions
without fixed points. This bijection gives a purely combinatorial proof that the deter-
minant of a zero axial skew-symmetric matrix is equal to the square of the Pfaffian.

1 1.0 Introduction

I LetG=(V,E) beasimple graph with vertex set V and edge set E. A subset M
I of edges in G such that no two edges in M is incident upon the same vertex in V
is a matching in G. If every vertex in V is incident to some edge in M, then the
matching is perfect.

A perfect matching M in G can be viewed as an involution o), without fixed
points by interpreting the endpoints of edges in M as forming the 2-cycles of o
We associate a sign to o, by taking the parity of the fundamental transform of
§ o as defined by Foata [2]. To obtain the fundamental transform of oy, we write
§ down the cycle decomposition of oy, o that in each cycle the smallest element
comes first, and then the cycles themselves are ordered by increasing smallest
| element. Erasing the parentheses from this representation of o), one obtains the
fundamental transform of o, in one line notation.

Next we construct the space P 5., whose elements are ordercd pairs (o, ) of
involutions without fixed points with weight

2m 2m
W(a,B) =[] oie [ [ aits
i=1 i=1
The sign of the pair («, 8) is the product of the parities of the fundamental trans-
forms of « and .
Let E,,, denote the collection of permutations on 2 m symbols whose cycle de-
composition contains only cycles of even lengths. E,,, is turned into a weighted,
signed space by setting for each o € E>,,

2m
w(o) = Ha""-” sign(o) = (_1)i(0)+f(cf)

i=1
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where i(o) and f(o) are the number of inversions and the number of falls of o, |

respectively.
In this paper we construct a weight and sign preserving bijection between P,

and F,,,. This bijection provides a purely combinatorial proof that the square of ‘; :

the Pfaffian of the symbols a;; is the determinant of the corresponding zero axial
skew-symmetric matrix in the a;;’s.

Algebraic proofs of the above result about the Pfaffian were given by Pfaff |
F expression (1.2) for D, ,,.

[71, Jacobi (4], Cayley [1] and Horner[3]. A detailed account of their individual
contributions can be found in the comprechensive treatise by Muir [5].

Tutte [8] gave a graph theoretic interpretation of zero axial skew-symmetric

matrices by relating the determinant to perfect matchings. The skew-symmetric
matrix constructed from the incidence matrix of a simple graph G is thus some-
times referred to as the Twite matrix of G.

Recently, there has been renewed interest in Tutte’s interpretation both for the-
oretical and computational rcasons. This is a consecquence of the fact that the

determinant can be evaluated fast in parallel time. For this and related current  §

results on matchings, sec [6].

1.1 Preliminaries
Let D, denote the determinant of the n x nzero axial skew-symmetric matrix in
the indeterminates a;;, 1 < 7. Thus we have for instance,

0 anp a3 a4
—a 0 a a
Ds = det 12 3 24
—a13  —an 0 Q34
—ajs —ax —az O

S, denotes the set of permutations in n symbols.
Expanding the determinant from the first principles and noting that any subdi-
agonal term picked by a permutation carries a negative sign, we find that

D= Y (-1 (=1)/ ] oy, (1)
1

GESa i=

where f(o) denotes the number of falls of o: i.c. the number of indices i for

which ¢ > o;. In (1.1) we adopt the convention that a,, = ag,; and ag; = 0.
Note that any permutation with a fixed point contributes zero to the sum in(1.1).

Furthermore, if ¢ € S, has an odd cycle of length > 1, then we can invertthe |

unique odd cycle of o which contains the smallest index in {1,2,- -+, n} while
keeping the other cycles unaltered. The resulting permutation has the same weight
as o but opposite sign. Since this correspondence is bijective, the terms arising

from such permutations cancel out in pairs in (1.1). In particular D,, vanishes for §

odd n.
We summarize this observation as a lemma:
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Lemma 1.1.

Dlm = Z(__l)i(lJ)"'f(U) Haiai = ZSign(o)w(U) (12)
=1

3 where the summation is over all permutations in 8>, with cycles of even lengths.

Our point of departure for the combinatorial arguments that follow will be the

1.2 Perfect matchings and the Pfaffian
Cayley (1] proved that D,,, = P2, is a perfect square. Py, is the Pfaffian of the

| indeterminates a;;. For example

2 _ p2
D4 = (a12a3s —a1za24 + a4a23)“ = Py

There is a simple combinatorial rule due to Pfaff (7] to produce the monomials
together with their signs that appear in P, ,,. This can be stated as follows:
Let o be an involution in S,,, without fixed points. We write o as a disjoint

; product of its cycles so that in each 2-cycle the smaller element comes first, and

the cycles themselves are ordered by increasing smallest element. This is called

- the canonical form of o. For example

o = (17)(28)(34)(56) 1.3)

i in canonical form.

Dropping the parentheses from the canonical form of o gives a permutation in
Sz whose structure in one line notation is 17283456. This is the fundamental
transform of . Since sorting of the cycles of ¢ is involved in the construction of
the fundamental transform, we denote the resulting permutation by sort( o).

Note that ¢ can be interpreted as a ceding for the monomial

m(o) = 217028034056
The contribution of o to the Pfaffian P is the signed monomial
(=1t m(g) = —a17az8a34056-

Pfaff argued that all the monomials in P, ., in general are obtained in this man-
ner.

Thus the number of different monomials in P, is the number of involutions in
S2m without fixed points: i.e. 1-3 -5 ... (2m — 1). Furthermore, every such o
can be interpreted as a coding for a perfect matching in the complete graph Ko .
For instance the permutation o of (1.3) corresponds to the perfect matching in K
as shown in Figure 1.

Note that each perfect matching actually carries a sign in the monomial inter-
pretation.
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Figure 1

1.3 The bijection

Let B, denote the collection of permutations in S, ,, with even cycles. We tum
E> ., into a signed, weighted space by sctting

2m
sign(0) = (=)@, w(o) = [,
i=1

forevery o € Ey,. By Lemma 1.1, the weight generating function of B, is the
determinant D, .

Now let I, denote the set of involutions without fixed points in S, ,,, and put
Plhym = Ihm x Iy Wealso turn P, ,, into a signed, weighted space by setting
for each pair («, 8) € Plo s

sign(a, f) = (=1)ftert(@) ()it (g B) = m(a) -m(B).

Clearly,

Y, sign(a,f)W(a,p)

(a,f)€PIypy

= [ X (=Dt D ma)] [ ST (~)ert B g)] = P2,

a€lim BELm

Thus to give a combinatorial proof of the identity D, = P#,, it suffices (o
construct a bijection ¢ between the two spaces Ej,, and Pl,,, which is both
weight and sign preserving. This bijection & is constructed as follows:

Starting with anelement o € E»,,, we first draw the cycle diagram of o. Forin-
stance the cycle diagram of the permutation o = (1 12 9 7 2 4)(3 5)(6 10 118)
appears in Figure 2.

Now in each cycle of o we locate the smallest element. Note that precisely one
of the edges incident to the smallest element is a fall of o. We label this edge by
a in each cycle of o and then assign the labels 4 and « alternately to all the other
edges. This is always possible since the cycles of o are all of even lengths. For the
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permutation in Figure 2 this results in the assignments in Figure 3. and defines an
element of PI,,, by interpreting the labels of the edges marked « as the 2-cycles
of an involution without fixed points «, and the labels of the edges marked S as
the 2-cycles of an involution without fixed points 3. For the example o; this yields
the pair (e, B) where

a=(14)(27)(3 5)(6 8)(9 12)(10 11),
B=(112)(2 4)(3 5)(6 10)(7 9)(8 11).

1

ﬂ a
9 2 5
. 8 8 D a 10
12 4 3
B8 a

Figure 3

Conversely, given a pair (o, 8) € PI,,,, we draw an edge labeled o between
the vertices 4 and j of the null graph for every 2-cycle (1)) of o, and draw an edge
labeled 8 connecting the vertices r and s for every 2-cycle (rs) of A. It is not
difficult to see that the resulting graph decomposes into a union of (undirected)
cycles of even lengths with alternating labels. Since exactly one of the edges
incident to the smallest element in each such cycle is labeled o, we can direct this
edge toward the smallest element. This gives a direction to each cycle and defines
a permutation o in E3,, such that ® (o) = («, ). For instance if

o= (12)(36)(4 11)(510)(7 9)(8 12),
B=(110)(2 5)(3 12)(4 7)(6 8)(9 11),
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Figure 4

then & ~!(a, #) has the cycle diagram in Figure 4.

Theorem. The mapping® is a weight and sign preserving bijection between the | ‘

spaces By, and P15 .

Proof: Itis trivial to see that @ is a weight prescrving bijection.
Next we show that & also preseves sign. This turns out to be slightly more
difficult. We proceed in two steps and prove two auxilary lemmas.

Lemma 1.2. Suppose o € E,,, and that o' is obtained from o by interchanging ‘ i
two adjacent symbols in a cycle of o. Then sign(o) = sign(c') ifandonly if |

sign(P (o)) = sign(P(c')).

Proof: Suppose that the symbols interchanged in o are z and y. Clearly if z and
y form a 2-cycle of o then ¢’ = o and we are donc.

Hence we may assume that z and y are contained in a larger cycle of g. Then
without loss of generality, we have the following situation:

a Ji] a
LA 4

v
<
v

v
=
A 4
x

Figure 5

We will denote this portion of o without writing the arrows in Figure 5 by uz yv.
Note that the exchange has no effect on the involution Bsothatif ® (o) =(a, £),
then @ (o¢') = (d/, B).

Furthermore, the cycle structure of ¢’ is identical to that of o. Thus we are
only concerned here with the relation between the number of falls of o and the
number of falls of ¢’, and the corresponding effect this interchange produces in
the parities of sort (e) and sort (o). It is clear that the change in the number of
falls of o after the interchange depends locally on the relative magnitudes of the
four numbers u, z, y, v.

Let {u,z,y,v} = {a,b,c,d} wherea < b < ¢ < d. Note that uzyv canbe any
one of the 24 permutations of {a, b, c, d}.

If uzyv happens to be abcd for instance, this will be paired with achd after
the interchange. The difference between the number of falls of abed and those of
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acbd is an odd number, which means that sign(c') = —sign(o). We will write
in short
abcd «—— achd(-).

to summarize this fact. On the other hand, the above interchange in o corresponds
to removing the transpositions (ab), (¢d) from « and replacing them by the trans-
positions (ac), (bd).

With the above notation, the twelve possible pairings resulting from exchanging
z and y together with the corresponding changes in the 2-cycles of « are given
below:

1) acbd+——adch(-)
2) beda «——bdca ()
3) cabd«——chad ()
4) dabc——dbac(-)
5) abdc«——adbc (+)
6) bacd—— bcad (+)
7) cbda «——cdba (+)
8) dach——dcab (+)
9) abcd<——achd(—)
10) badc«—bdac(-)
11) cadb«——cdab(-) (ac), (bd) «—— (ab),(cd)
12) dbca «——dcba (=) (ac), (bd) +— (ab),(cd)

All of these twelve cases can be summarized by the following diagram:
(ab).(cd)

(ac), (bd) «— (ad), (bc)
(ad), (bc) «—— (ac), (bd)
(ac), (bd) = (ad), (bc)
(ad), (bc) &= (ac),(bd)
(ab), (ed) «—— (ad), (bc)
(ab), (cd) == (ad), (bc)
(ad),(bc) «—— (ab),(cd)
(ad), (bd) «—(ab),(cd)
(ab), (cd) «— (ac), (bd)
(ab), (cd) «— (ac),(bd)

) (+)

(ac),(bd) ) (ad). (bc)

Figure 6

We need to show that if the pairs of 2-cycles are exchanged as indicated in Fig-
ure 6, then the signs of the fundamental transforms of the resulting involutions are
related by the label on the corresponding edge. In the exchange (ac),(bd) «—
(ad), (bc) for example, the smallest element in each 2-cycle is preserved. Thus
when the sorting of the transpositions of « and o' are carried out, these pairs of
transpositions will be placed in exactly the same relative locations, since the sort-
ing is done according to the smallest elements in each cycle. Hence in these cases
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sort (o) is obtained from sort (@) by interchanging only the elements ¢ and d.
But this means sort (o') and sort («) have opposite parity as required.

If the exchanged pairs are (ab), (¢d) «—— (ac), (bd), we consider thecanon-
ical forms of @ and /. Since a < b < ¢ < d, these arce of the form

a=---(ab)(1112) - - (4ro11p) (Tya18742) - - (go18k) (cd) - -
o =---(ac)(112) -+ (frm18,) (BA) (Tratire2) - -+ (igo1dg) - -

witha <1 < -+- <o) < b < sy < --- < 41 < ¢, and where possibly r =
k. Butnow we see that in sort (), the symbols ¢ and b can be interchanged with
an odd number of adjacent transposition of symbols, and then after that the pairs
1g—11% through 4,411,+2 can be moved to the right of (bd) with an even number
of adjacent interchanges. Thus sort (') is obtained from sort () by an odd
number of adjacent interchanges. Since each such interchange changes the parity
of the underlying permutation, sort (a') and sort («) have opposite parity. The
proof of the remaining case is similar and will be omitted. J§

Note that Lemma 1.2 has the following consequence. If ¢ € F»,, and o' is
obtained from o by permuting the symbols in cach cycle of ¢ arbitrarily, then

sign(o) = sign(a’) ifand only if sign(P (o)) = sign(P(c’)). (1.4)

This is because each such permutation can be realized as a sequence of inter-
changes of adjacent symbols in the cycles of o and Lemma 1.2 is applicable at
each step.

Letus put o ~ o' if one is obtained from the other by a permutation that may
move only the symbols within individual cycles. Then ~ is an equivalencerelation

on E;, and as such, breaks E,,, up into equivalence classes 0,, 6, - - - ,04. By
1.4, the bijection @ restricted to each equivalence class ¢; is either sign preserving
on all of §; or signreversingonall of 0;,i= 1,2, --.  d.

To show that @ is sign preserving, it suffices then to show that sign(m) =
sign(®(m)) for a selected permutation 7 = #(0;) in cach class. We sclect Lhis
representative 7 o be the unique permutation in the given class with precisely
one fall in each cycle. This amounts to rearranging the symbols in each cycle
in increasing order, starting from the smallest element. The unique fall in each
cycle of m is caused by the edge connecting the largest element in the cycleto the
smallest.

For example, the representative 7 of the cquivalence class containing the per-
mutation o depicted in Figure 2 has the following cycle diagram given in Figure
7.

Lemma 1.3. For each representative permutation n = w(0;) of an equivalence
class 0; of Ea,, we have

sign(m) = sign(P(7)).
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Proof: Note thatany o € E,,, with a total number of k cycles has parity (—1)*
since each cycle of ¢ is an odd permutation. By construction, 7 has exactly one
fall in each cycle, and therefore we always have

sign(m) = (=)Mo (2™ 2 41
Thus we need to show that sign(P (7)) = +1.
Suppose @ () = («, ). From a cycle of = that contains the symbols a; <
az < --- < az,, the bijection @ contributes the 2-cycles
(araz,)(a2a3) - (a2,-202,-1)
to « and the 2-cycles

(a1a2)(asas) - -(az,-102r)

to 4.

Suppose the cycles of 7 contain the symbols
g1 <ay << ay, bh<bh< - <h, a<o< --<cy -
in some ordering of the cycles, say by increasing smallest element. Then

a=(ajaz,)(a2a3) - - (az,-202,-1)(brbay) (b2 b3)
o (brg—abrs-1) (crcar)(c263) -+ - (cat-2C2t-1) -+ (1.5)

and

B = (a1a2)(azas) --- (azr—102,) (b1b2) (b3bs)
o (bay_1bas)(crca) (csca) - (cagmrcar) -+ (1.6)

where a and g are not necessarily in canonical form.
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Let drop («) and drop () denote the two permutations in one line notation
obtained by dropping the parentheses from the expressions for « and A given in
(1.5) and (1.6) , respectively.

Note that the number of inversions in drop (a) among the symbols a; them-
selves is even, and the number of inversions in drop () among the symbols o
is also even (it is zero for drop(f)). Similarily, number of inversions among
the symbols b; is even in both drop («) and drop ( B); the number of inversions
among the symbols ¢; is even in both drop () and drop (8) etc.

Letnow 1, 3(drop («)) denote the number of inversions in drop () among the
various symbols a; and b;, and let i, 4( drop ( 8)) denote the number of inversions
in drop () among the various symbols a; and b;. We have

tap(drop(a)) = 1ap(drop(B)) = #{(a;, bj)|a; > b;}.

In particular 1, p(drop (a)) + ia(drop (B)) is an even number. Similarily, we

have that 1, j(drop (@) +ias(drop(B)), isc(drop(a))+isc(drop(B)),etc.
are all even numbers. This immediately implics that

(_1)1'(470?(0!)) . (___1)5'(41'012(19)) = +1.

To prove the lemma we observe that sort () is obtained from drop («) by
sliding various pairs of symbols in drop (a) past one another during the process
of sorting (i. e. an even number of transpositions is required) so that sort (@) and
drop (a) have the same parity. §

Combining lemmas 1.2 and 1.3, we have that the bijection ® we have con-
structed is also sign preserving, and this completes the proof of the theorem. [
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Construction methods for adjusted orthogonal row-column designs
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Abstract. Adjusted orthogonal row-column designs have certain desirable proper-
ties. In this paper we give a definition of adjusted orthogonal row-column designs,
summarise the known designs, give some construction methods and indicate some
open problems. We briefly consider the relationship between adjusted orthogonal row-
column designs and orthogonal main effects block designs.

1. Introduction

We begin with some definitions, based on notation given in Preece (1976). Con-
sidera(t, b, r, k, A\) BIBD. It has two constraints, namely the blocks and the treat-
ments, which occur at b and ¢ levels, respectively. A Latin square design has three
constraints — the rows, the columns and the treatments — and a pair of mutu-
ally orthogonal Latin squares have 4 constraints — the rows, the columns, and the
two sets of treatments. After ordering a design’s constraints, we can define the
incidence matrix of the z** constraint with respect to the y** by

Nzy = (nij);

where n; is the number of times that the i** level of the z** constraint occurs with
the j level of the y* constraint. N,, is a k, x k, matrix, where there are k; levels
of the i** constraint, and N, = N7

For example, if we regard the blocks, of a BIBD, as the first constraint and the
treatments as the second constraint, then Ny, is the usual incidence matrix and

NuNH = (r=X)I+)J.
A row-column design is a design with 3 constraints, namely rows, with k lev-

els, columns, with b levels, and treatments, with ¢ levels. Each cell in the k x b
array contains exactly one treatment. The matrices Ny3 and N3 are the incidence

!Since the submission of this paper, Dr. D.J. Street has moved to the Department of Statistics, The
University of New South Wales, Kensington, NSW 2033, Australia.
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