
Privacy-Preserving Certification of Sustainability Metrics
Cetin Sahin, Brandon Kuczenski, Omer Egecioglu, Amr El Abbadi

University of California, Santa Barbara

{cetin, omer, amr}@cs.ucsb.edu, bkuczenski@bren.ucsb.edu

ABSTRACT
Companies are often motivated to evaluate their environmental

sustainability, and to make public pronouncements about their per-

formance with respect to quantitative sustainability metrics. Public

trust in these declarations is enhanced if the claims are certified by a

recognized authority. Because accurate evaluations of environmen-

tal impacts require detailed information about industrial processes

throughout a supply chain, protecting the privacy of input data in

sustainability assessment is of paramount importance. We intro-

duce a new paradigm, called privacy-preserving certification, that
enables the computation of sustainability indicators in a privacy-

preserving manner, allowing firms to be classified based on their

individual performance without revealing sensitive information

to the certifier, other parties, or the public. In this work, we de-

scribe different variants of the certification problem, highlight the

necessary security requirements, and propose a provably-secure

novel framework that performs the certification operations under

the management of an authorized, yet untrusted, party without

compromising confidential information.

ACM Reference format:
Cetin Sahin, Brandon Kuczenski, Omer Egecioglu, Amr El Abbadi Univer-

sity of California, Santa Barbara {cetin, omer, amr}@cs.ucsb.edu, bkuczen-

ski@bren.ucsb.edu . 2018. Privacy-Preserving Certification of Sustainability

Metrics. In Proceedings of Eighth ACM Conference on Data and Application
Security and Privacy, Tempe, AZ, USA, March 19–21, 2018 (CODASPY ’18),
11 pages.

https://doi.org/10.1145/3176258.3176308

1 INTRODUCTION
Organizations are often motivated to make public disclosures about

their environmental performance. These motivations may be in-

spired by regulatory requirements, marketing initiatives, or as part

of a broader project of corporate sustainability. The landscape of

environmental and sustainability claims is largely standardized, as

exemplified by the ISO 14000 series of standards. Often environ-

mental disclosures take the form of certifications, which establish

that some agency has reviewed the claim and confirmed its validity.

A prominent example is the ISO 14001 certification, which sim-

ply establishes that a firm has an established policy to review and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5632-9/18/03. . . $15.00

https://doi.org/10.1145/3176258.3176308

correct its environmental performance. To make a quantitative eval-

uation about the ecological sustainability of a product or service,

approaches that consider the full life cycle of the product are often

used [38]. This form of analysis, known as life cycle assessment

(LCA), is codified in the ISO 14044 standard [23].

Sustainability certification has been shown to lead to poten-

tially significant operational improvements in environmental per-

formance [35]. Firms with more significant environmental impacts

are more likely to have high-quality environmental management

systems [16]. Life cycle approaches can improve the quality of envi-

ronmental disclosures [24] and also provide a framework for firms

to take broader responsibility for the impacts of the products they

make or sell [22].

The ISO 14020 series of standards governs environmental prod-

uct declarations (EPDs), which include public assertions about the

sustainability of products, based on ISO 14044-style life cycle evalu-

ation [15, 32]. EPDs can include both externally certified claims and

self-reported results. Certified results can include both “pass-fail”

binary assertions about a product or process with regard to a set

of criteria, known as “eco-labels,” as well as detailed quantitative

results [17].

The data sets that provide input to these computations express es-

sential information about the operation of a process or production

step [10]. A typical data point could be the quantity of electric-

ity required to output a reference unit of some product. These

data are often regarded as confidential and are typically concealed

through aggregation with other data sets [41, 44]. Engagement with

stakeholders and supply chain partners [36] is often required for

effective consideration of life cycle environmental sustainability,

which accentuates confidentiality concerns and may limit the scope

of information included in the assessment [24].

Despite the importance of data privacy, the LCA community

lacks a formal framework for managing private data, and very

limited number of techniques exist for computing sustainability

metrics that preserve the privacy of input data. In [29], Kerschbaum

et al. introduce a framework for sustainability benchmarking with

the help of an untrusted third-party, however, the proposed solution

has an assumption that the participants do not collude with the

third-party or each other which not might be realistic in the LCA

community. This can result in significant risk to the privacy of

individual data since small organizations might collude with each

other to gain private information against big competitors or vice

versa. We seek to apply recent developments in security and privacy

to the problem of certification of environmental claims even in

the presence of colluding parties. Specifically, we aim to confront

the following challenges: 1) mutually competitive firms want to

gain private knowledge about their environmental performance by

comparing their environmental impact against a statistical metric,

which is a function of the competitors’ performance, such as an

average or maximum; 2) an association of firms wants to enable its

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

53

https://doi.org/10.1145/3176258.3176308
https://doi.org/10.1145/3176258.3176308

members to make public, validated claims about their individual

environmental performance in comparison to a cohort or to the

full group, based on private data.

The first of these can be achieved using existing secure multi-

party computation (SMC) protocols (see Section 2). However, to

the best of our knowledge, SMC has never been applied to the case

of sustainability assessment in a completely secure manner. The

second use case is novel and has the distinct requirements that par-

ties be provided with certificates validating qualitative assertions

about their inputs without the inputs being known, unlike most

SMC solutions, these parties not communicate directly with one

another, instead by interacting through a certifying authority.

In this paper, we formally define the privacy preserving LCA cer-
tification paradigm along with its goals, security and computation

requirements. A certification is a quantitative evaluation of the re-

sult of such a computation, or an evaluation of a given contribution

with respect to the result. Unlike in the SMC context where the

individual parties involved need to know some if not all of the other

parties involved, in the LCA context, communication with other

parties might not be possible or is even desirable. Hence, we propose

a novel privacy-preserving certification framework that enables

an authorized party, referred to as certifier, to certify participants

based on industrially well agreed on set of criteria or a common

function without compromising any sensitive/confidential informa-

tion to any other parties even in the presence of colluding parties.

Although the certifier is authorized in the LCA context, it is not

assumed to be trusted, which explicitly requires hiding inputs from

the certifier as well. Moreover, the certifier might collude with some

of the parties. Unlike previous proposals like [29], our approach

is secure even if parties collude with the certifier. Our framework

does not require parties to communicate with each other and aims

to minimize the rounds of communication between the parties and

the certifier. We now highlight some of the distinctive features of

the LCA problem domain and our contributions.

Certification with no trusted entities
Even though the computation is performed by a certifying au-

thority, it cannot be assumed to act as a trusted, unbiased authority,

since the parties may not want to reveal their individual inputs to

any other entity, including the certifying authority. In general, the

certifying authority might need to perform complex computations

and comparisons. It might be possible to perform such computa-

tions with an untrusted authority using advanced cryptographic

tools like fully homomorphic encryption [18], but such techniques

are known to be quite inefficient [40]. An established, computa-

tionally efficient approach for performing the complex computa-

tions required for certification is to use secure co-processors [3]. A

secure co-processor is a tamper-proof hardware, which provides

a non-transparent and isolated computation environment. It cre-

ates a trusted computing environment in hostile environments

and prevents any unauthorized access. Because of these advan-

tages, secure co-processors have been adapted in different contexts

such as encrypted database querying [6, 7] and secure multiparty

computations [25]. However, such hardware is limited in terms

of computational resources and their straightforward deployment

does not solve all the problems. The design of a secure and efficient

framework is still a challenge.

Certification Operations
The certifier will perform secure mean and quantile computa-

tions (will be discussed later in detail) to make public or private

announcements about parties. These are quantitive computations

that allow the certifier to benchmark the performance of parties.

To perform such computations, the certifier needs to perform se-

cure comparison which requires a set of private cryptographic and

secure operations. Performing these computations without compro-

mising security and privacy constraints is a challenge in the LCA

context.

Veracity of LCA data
When multiple parties want to perform a joint computation, the

accuracy and usefulness of the computation rely on the correctness

of the inputs. Verifying the correctness of the inputs is an important

challenge in many contexts. The standard approach in the LCA

context is the assumption of the correctness of the provided inputs,

since the correctness of the inputs are verified via an audit after

the computation [8, 43]. Therefore, the verification of inputs and

the audition of data are beyond the scope of this paper. The main

motivation is to perform computations securely.

We propose efficient algorithms to perform certification opera-

tions for the certification problems-mean, quantile- using the pro-

posed framework. We show that the proposed algorithms are cor-

rect and secure with the assumption of honest-but-curious parties.

Furthermore, we discuss the efficiency of our algorithms both em-

pirically and analytically.

2 RELATEDWORK
Secure multiparty protocols (SMC) are known for computing func-

tions jointly over a set of inputs without revealing any information

about the inputs. In brief, a set of n parties with private inputs

x1,x2, . . . ,xn wish to compute a function f (x1,x2, . . . ,xn) jointly
without revealing any xi to any other party. After an execution

of this function, the parties learn the correct output but nothing

else, even if some parties try to obtain more information by col-

luding. There are two-party computation protocols that execute

generic functions [34, 46], but these constructions rely on heavy

cryptographic computations and may not be practical [12]. Privacy-

preserving statistics using SMC have been well-studied under the

scope of privacy-preserving data mining[11, 19, 26, 27, 33]. For ex-

ample, Rmind [11] is a tool that computes well-known statistics

privately such as average, mean, median, while [19] proposes a

secure dot product computation using SMC.

Although SMC has a wide spectrum of applications, most ap-

plications require interactive communication among the parties.

Certification on the other hand focuses on a performance evaluation

using some statistical analysis. Our protocols differ from existing

SMC approaches in that they do not require communication and

data exchange among the parties, and instead require the involve-

ment of an authorized (but untrusted) party in the computations to

regulate certification policies.

Involvement of an authorized party requires the establishment

of trust between the participants and the authority. Establishing

trust with an untrusted party is not a new problem in the literature

and several works in different contexts [4–7, 39] rely on trusted

hardware based solutions, e.g. Trusted PlatformModules (TPMs) [2]

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

54

or secure co-processors [1, 3], to establish a trusted computing

environment, which are shown to be quite efficient for specific

applications [4, 6].

Unlike fully homomorphic encryption, which is computation-

ally quite expensive, partial homomorphc encryption has been

shown to be relatively efficient. Examples of partial homomorphic

encryption are the additive homomorphic Paillier [37] and Qua-

dratic Residues [20] public key cryptosystems and these will be

explained in detail later in Section 4.2. The central component of

our protocols is private comparison, which has been well studied

previously [9, 13, 14, 28, 30, 42, 46]. Each technique is suitable to

different settings. For example, while [42] performs comparison

on encrypted data, [14] compares unencrypted values privately.

It is important to note that providing a new private comparison

technique is not in the scope of this paper, it is just one of the main

building tools to develop our protocols for the certification problem.

We adapted our private comparison protocol from Veugen’s pro-

tocol [42] as discussed in Section 4.3. Several recent works [7, 12]

also adopt Veugen’s protocol to solve different problems. Bost et

al. [12] construct machine learning classification protocols over

encrypted data. On the other hand, Baldimtsi et al. [7] propose a

framework, which also benefits from secure co-processors, that

builds on top of searchable encryption techniques to return ranked

results to queries. Our work follows in this tradition, and applies it

to an important new domain, namely environmental certification.

To the best of our knowledge, the closest work to ours is [29].

In this work, Kerschbaum et al. propose a private benchmarking

platform for environmental sustainability with the help of an un-

trusted third party. Although the overall setting seems similar to our

setting, there are fundamental differences in the two approaches

regarding the security of the systems. The assumption in [29] is

that the parties do not collude with each other and the untrusted

party. However, this is not a realistic assumption given the current

competition in the market. The parties might collude with each

other or with the untrusted party to gain private knowledge against

the competitors. The proposed key management scheme in [29]

either allows parties to share the same private key or distribute

the private key among k parties which will later require at least

t of them to be present to decrypt the output. In the case of key

sharing, any party colluding with the untrusted party can reveal

the private inputs of the other parties. Similarly, in the presence

of t colluding parties, it is possible to infer the private inputs of

others if the key distribution approach is applied. Our approach

is secure against colluding parties. Additionally, the certification

process heavily relies on private comparison of inputs. The pro-

posed comparison protocol in [29] relies on [30] which ensures a

weaker notion of security due to the usage of multiplicative hiding.

Our protocols rely on semantically and cryptographically secure

comparison protocols in the certification process.

3 PROBLEM DESCRIPTION
3.1 Privacy-Preserving Aggregation in LCA
Life Cycle Assessment (LCA) is critical for quantitative evaluations

of the ecological sustainability of a product or service. The com-

putation of results in LCA can be described as a series of matrix

operations in which possible results are activity or output levels

of industrial unit processes, quantities of emissions into the en-

vironment resulting from those processes, or measurements of

environmental impact scores [21]. The calculation of any one of

these values can be described as the inner product of a vector of

input data with a weighting vector of environmental characteristics

[31]. We formulate the private LCA aggregation problem as an

inner product of two vectors:s = w · x (1)

where s is an LCA metric, each element xi of the input vector x
is one party’s private contribution, and the weighting vector w is

determined separately and may be either public or private. In this

paper, for simplicity, w will be taken to be 1, so that s is the sum of

the parties’ inputs.

Consider an international trade group in steel manufacturing

that wants to issue a report that documents the industry’s environ-

mental performance, such as the World Steel Organization’s LCA

study [45]. In the World Steel Organization, the certifier is managed

by a committee, with representatives of the different manufactur-

ers. All the manufacturers want to have a certifier, but since it has

reps for different manufacturers, any given manufacturer cannot

trust the certifier with its info. Conventionally, a report can only

be prepared if the member firms share their confidential informa-

tion with the trade group, allowing it to perform the aggregation

and report the results. If instead the report were determined using

privacy-preserving aggregation, the inputs would remain private,

and firms could use the results privately for benchmarking their

own performance, or publish the results, individually or together.

However, the veracity of the results would be difficult to establish

to the public.

We define a new problem, called private certification, in which an

authorized party, referred to as certifier, can certify the participants’

inputs based on a set of criteria or a common function without

compromising any sensitive or confidential information. The output

of this private computation may be announced by the certifier

publicly or held private; however, the certifier should not learn

any sensitive information during its execution. The certifier would

need to be “trusted” by the public to compute and report results

accurately, but may not be trusted by the parties with respect to

the private data. In the private certification framework, unlike in

traditional SMC, parties are not required to communicate with each
other, but only with the certifier. The parties is not realistic nor

desirable in the certification model, since the parties might not

know each other, and may not want to communicate with each

other.

We introduce two new privacy preserving certification problems,

namely mean and quantile based, which allow firms to make public

or private announcements about their inputs to a secure aggrega-

tion. Here we describe the constraints and requirements of the two

certification methods. The correctness of the certification relies on

the correctness of the inputs. As we mentioned earlier, the parties

are honest-but-curious, i.e. they are honest about executing the

protocol correctly, but curious to learn other inputs. Hence, we can

assume that the provided inputs are correct, which is a standard

assumption in the LCA context, since the correctness of inputs are

verified via an audit after the computation (e.g. [8, 43]). Please note

that in describing the functionality, we use inputs in the clear and

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

55

P1

P2

P3

Pn

Secure
co-processor

Certifier

Private
Computation

Figure 1: Overview of Framework Model
ignore cryptographic details. Later in Section 5, we will explain

how to perform these certifications securely.

3.2 Mean Based Certification
In mean based certification, the certifier uses private aggregation to

compute the average of a set of private inputs. Afterwards, the cer-

tifier compares each private input xi with the average and performs

the necessary certification operation, i.e. if a party generates less

than the average, it can seek being labeled as more "eco-friendly"

than its peers; otherwise it can forgo such labeling.

In mean based certification, the certifier computes the average

of n inputs x1,x2,x3, ...,xn , and then certifies the parties either

as below or above by comparing the individual values with the

computed average value.

3.3 k-Quantile Based Certification
Grouping items into distinct groups based on predefined criteria is

a well studied concept in statistics and can be utilized in different

contexts. In the context of environmental impact assessment, this

grouping technique provides performance information about a spe-

cific firm among the set of manufacturers. Being in the top quantile

may be regarded as a prestigious certification that manufacturers

can use to advertise their products with a greater confidence. By

the nature of quantile based computation, the order information

among the groups is revealed but it is hard to conclude which party

is better inside the same group if the complete ranking information

is hidden. It also allows parties increased flexibility to publish top

performers’ results while keeping others private.

In k − quantile based certification, the certifier partitions the

parties into k groups after ranking them based on the provided

inputs. A party with the minimum input will be in the first group

while a party with the maximum input will be in the kth group.

4 SYSTEM MODEL AND BUILDING BLOCKS
We now describe the system model and basic building blocks used

in the paper.

4.1 System Model
The proposed framework contains three main entities: parties, a
certifier, and a computation helper as illustrated in Figure 1.

Parties. Parties are end-users which are the main data (input)

providers to the system. In reality, parties are the competitors in

manufacturing the same product or providing the same service. To

demonstrate the superiority of their product or service, they would

like to be certified by an authorized party. Parties are not aware of

the other participant parties and do not communicate directly with

each other.

Certifier. In this context, the authorized party is called the cer-
tifier. It is the main computation unit of the framework and it com-

municates with all registered parties during the computation. Each

party has to register through the certifier to be able to join the cer-

tification process. The certifier is trusted in performing operations

but at the same time it might be curious to learn some information

about the parties’ data. Therefore, the framework aims to preserve

the confidentiality of inputs throughout the computation against

the certifier and all other external adversaries. To achieve this goal,

the computation is split between two non-colluding computation

units: the certifier itself and a computation helper.
ComputationHelper.The framework needs an additional com-

putation unit other than the certifier to satisfy privacy constraints.

It is called computation helper.
The computation helper aids the certifier compute the certifica-

tion function. The helper and the certifier must not collude, other-

wise, they can reveal the secret data. The helper can be a server from

a different service provider or a secure, tamper-proof hardware that

can be deployed on the certifier site. As depicted in Figure 1, the

framework deploys a specialized secure co-processor like IBM 4764

PCI-X Cryptographic co-processor [3]. These processors have rela-

tively low resources in terms of memory and computation power,

and are invoked to compute relatively small computations. Secure

co-processors provide a non-transparent and isolated computation

environment which fits directly into our model. We assume that the

supplier of the co-processor is different than the certifier and their

marketing interests do not intersect. Several privacy preserving

solutions using a secure co-processor have already been proposed

in different contexts such as encrypted database querying[6, 7]

and secure multiparty computations [25]. Our framework requires

only one round of communication between the parties and the

certifier. Once a party submits a private input to the certifier, all

the remaining communication happens between the certifier and

the secure co-processor (the computation helper). The availability

of fast network communication between the certifier and the se-

cure co-processor is another advantage of our design. When the

secure co-processor is deployed at the certifier’s site, it is realistic

to assume negligible network latency, since communication usually

happens in the order of 1 millisecond.

4.2 Cryptosystems
The certifier needs two additively homomorphic cryptosystems:

Paillier [37] and Quadratic Residues(QR) [20]. The cryptosystem

is called partially homomorphic if it supports either addition (addi-

tive homomorphic) or multiplication (multiplicative homomorphic).

Both Paillier and QR are additively homomorphic which means

given two encrypted ciphertexts, Enc(m1) and Enc(m2), the appli-

cation of the additive homomorphic operation will result in the

decryption of Enc(m1 +m2).

The Paillier cryptosystem is based on the Decisional Composite

Residuosity assumption [37]. We use JmK to denote the encryption

of messagem with the Paillier cryptosystem using a public-secret

key pair KP = (PKP , SKP). The plaintext space of Paillier is ZN
whereN is the public modulus of Paillier and its homomorphic prop-

erty is Jm1K.Jm2K = Jm1+m2K. In addition, the Paillier cryptosystem

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

56

also supports multiplying ciphertext with a constant, which is ac-

tually the homomorphic summation of input with itself by n times.

On the other hand, the plaintext space of Quadratic Residues (QR)

is bits and [m] denotes the encrypted bit m under QR. The key

pair of QR is denoted by KQR = (PKQR , SKQR). The homomorphic

property of QR is [m1].[m2]= [m1 ⊕m2].

Basically, Paillier implements the following three functions:

• KP (PKP , SKP) ← KEYGENPL(λ) generates a key pair. Note
that λ is a security parameter.

• JmK← encPL(m, PKP) encrypts plaintextm using public key

PKP and outputs encrypted ciphertext JmK.
• m ← decPL(JmK, SKP) decrypts given ciphertext JmK using
secret key SKP and outputsm in the clear.

Similarly, QR implements the following functions:

• KQR (PKQR , SKQR) ← KEYGENQR (λ) generates a key pair.

• [m] ← encQR(m, PKQR) encrypts clear bitm using public

key PKQR and outputs encrypted ciphertext [m].
• m ← decQR([m], SKQR) decrypts given ciphertext [m] using
secret key SKQR and outputsm in the clear.

For the simplicity, we will omit including keys and security

parameters in the function parameters in the rest of the paper. The

reason for using two homomorphic cryptosystems is efficiency but

only one cryptosystem can be used as long as it is homomorphic

and semantically secure.

4.3 Comparison of Encrypted Data
A primitive module used by many of the problems addressed in this

paper is “comparison”. Take mean certification as an example. The

certifier can compute the average using the homomorphic encryp-

tion scheme. However, the next step is challenging: the certifier has

to compare secret values against the average without learning any

information about neither the average nor the secret values. There

is no efficient and secure way for a certifier to perform the compar-

ison herself. Therefore, we need a collaboration of two parties such
that both will not know the values, but together they will be able to

do the comparison. The proposed framework fits this requirement

and the certifier is able to perform the comparison protocol with

the help of a computation helper.

The certifier has two encrypted numbers JaK←encPL(a) and
JbK←encPL(b) of ℓ bits and the computation helper has private

keys SKP and SKQR . Both JaK and JbK are sent by parties. The goal

of the comparison protocol is to decide whether a ≤ b without

revealing the actual values of a and b to neither the certifier or

the computation helper. Our comparison protocol is adapted from

Veugen’s [42] protocol. The main idea is to compute 2
ℓ + b − a

and check the most significant bit (ℓ + 1). If the most significant bit

equals 1, then a ≤ b, otherwise a > b. As a result of the protocol,
the certifier gets the result of the comparison encrypted and the

computation helper never learns the actual results of the inputs.

Veugen’s protocol has also been adapted and slightly modified by

two recent works [7, 12].

To perform certification either with public or private outputs in

our certification framework, we introduce two private comparison

protocols, namely PRIVATECOMPARE and ENCRYPTEDPCOM-

PARE. They both takes encrypted inputs but PRIVATECOMPARE

Protocol 1 Two party private comparison with Public Output

Input A: JaK, JbK, PKP , PKQR , and SKQR
Input B: SKP
Output: bit t where t = a ≤ b
1: procedure PrivateCompare(JaK, JbK)
2: A: JxK← JbK.J2ℓK.JaK−1 mod N ▷ x ← b + 2ℓ − a

3: A chooses a random number r ← {0, 1}ℓ+σ

4: A: JzK← JxK.JrKmod N
5: A sends JzK to B

6: B: z ← decPL(JzK)
7: A: c ← r mod 2

ℓ

8: B: d ← z mod 2
ℓ

9: A and B privately compute the encrypted bit [t ′] such that

t ′ = (d < c)
10: A: [rℓ+1] ← encQR(rℓ+1) and sends [rℓ+1] to B

11: B: [zℓ+1] ← encQR(zℓ+1)
12: B: [t] ← [zℓ+1].[rℓ+1].[t

′] ▷ t ← zℓ+1 ⊕ rℓ+1 ⊕ t
′

13: B sends [t] to A

14: A: t ← decryptQR(t)
15: return t

announces the output of the comparison publicly, while ENCRYPT-

EDPCOMPARE keeps the result of the comparison secret. Both

protocols require joint computations between the two parties, and

both of them are secure under the honest-but-curious security

model.

PRIVATECOMPARE compares two encrypted inputs and an-

nounces the result of the comparison publicly. The details of the

protocol is summarized in Protocol 1. It is a joint computation of

two parties, the certifier and the computation helper. The certi-

fier has two encrypted numbers JaK and JbK and owns public keys

PKP , PKQR and secret key SKQR . On the other hand, the compu-

tation helper owns the secret key for Paillier, SKP . The certifier

initially computes JxK←JbK.J2Kℓ .JaK−1 mod N and then hides it

with a randomly chosen number, r . r should contain σ more bits

than x . Next, the certifier sends JzK to the computation helper. Note

that unless x was hidden by r , the computation helper could easily

learn the comparison result. After receiving JzK, the computation

helper decrypts it and computes d ← z mod 2
ℓ
. In the meantime,

the certifier computes c ← r mod 2
ℓ
. Then, the certifier and the

computation helper cooperate to compare c and d (t ′ ≡ d < c)
using a private input comparison protocol. Although Veugen also

proposes a private integer comparison protocol in [42], Bost et

al. [12] suggest using the DGK protocol[14] for better practicality.

This private integer comparison procedure is a sub-procedure in

the protocol and either of the proposed protocols can be used in this

protocol. After the execution of the private input comparison, the

computation helper receives the encrypted bit [t ′] as a result. Later,

the certifier encrypts and sends the (ℓ + 1)th bit of r , [rℓ+1] to the

computation helper. Finally, the computation helper computes the

most significant bit of z by computing [t] ← [zℓ+1].[rℓ+1].[t
′] and

sends [t] to the certifier. By using private key SKQR , the certifier

decrypts [t] and announces t publicly.
Unlike PRIVATECOMPARE, ENCRYPTEDPCOMPARE aims to

return both the comparison result and its negation privately. EN-

CRYPTEDPCOMPARE is summarized in Protocol 2. As in PRIVATE-

COMPARE, ENCRYPTEDPCOMPARE also requires the cooperation

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

57

Protocol 2 Two party private comparison with Private Output

Input A: JaK, JbK, PKP , and PKQR
Input B: SKP and SKQR
Output A: Encrypted Integer JtK where (t = 1) ≡ a ≤ b
9: procedure EncryptedPCompare(JaK, JbK)

Run the steps 2-9 of Protocol 1

10: A: [rℓ+1] ← encQR(rℓ+1)
11: B: [zℓ+1] ← encQR(zℓ+1) and sends [zℓ+1] to A

12: A: [t] ← [zℓ+1].[rℓ+1].[t
′] ▷ t ← zℓ+1 ⊕ rℓ+1 ⊕ t

′

Run re-encryption procedure

13: JtK, JtK← ReEncForPL([t]) from Protocol 3

of both the certification and the computation helper. Although the

protocols appear quite similar, they feature crucial differences in

terms of the initial setup and the computation. The certifier owns

two encrypted numbers-JaK, JbK- and public keys for both Pail-

lier and QR cryptosystem, PKP and PKQR . On the other hand, the

computation helper owns private keys for both Paillier and QR,

SKP and SKQR . Until the private integer comparison, both the cer-

tifier and the computation helper follow the same procedures as

they execute in Protocol 1 (line 2 to 9). Once line 9 is executed,

i.e. the certifier and the computation helper have privately com-

puted the encrypted bit [t ′] such that (t ′ = 1) ≡ (d < c), the
certifier receives the result of the comparison encrypted [t ′], and
computes [rℓ+1]. In the meantime, the computation helper encrypts

[zℓ+1] and sends it to the certifier. Finally, the certifier computes

[t] ← [zℓ+1].[rℓ+1].[t
′] and has the result encrypted. The result is

encrypted with the QR cryptosystem. Thus, the certifier and the

computation helper jointly run the re-encryption protocol that re-

turns both the resulting bit and its negate to the certifier encrypted

under Paillier, i.e. (t = 1 ≡ a ≤ b) ⇐⇒ JtK=J1K and JtK=J0K.

4.4 Re-encryption From QR to Paillier
PRIVATECOMPARE generates the result of the comparison en-

crypted under the QR cryptosystem (line 12 of Protocol 1). The

plaintext space of QR is a bit, i.e. the result is either the encryption

of 0 or 1. Although it is enough for learning the result of the compar-

ison, to rank the inputs privately, our quantile based certification

protocol needs to keep counters for comparison results without

actually knowing the result. Therefore, we need to re-encrypt the

resulting comparison bit to a corresponding integer value which

is encrypted with Paillier. Re-encryption from the QR scheme to

Paillier is performed such that the value of an encrypted bit is not

revealed to any of the parties. Our implementation is adapted from

[7] and slightly modified to meet the additional requirements. As

presented in Protocol 3, to re-encrypt encrypted bit [m], the certifier
selects a random secret bit r , and then computes [sr]=[m].[0] and
[s1−r]=[m].[1]. The certifier sends [sr] and [s1−r] to the computa-

tion helper, thus, independently of the value ofm, the computation

helper receives the encryption of 0 and 1 every time. Then, the

computation helper decrypts sr and s1−r under Paillier encryption,

and sends Jsr K and Js1−r K back together with their negates Jsr K,
Js1−r K to the certifier in the same order as it received them. Since

the certifier knows r , it uses Jsr K and Jsr K. Js1−r K and Js1−r K are
disregarded.

Note that our comparison and re-encryption protocols are correct

and secure. Due to space constraints, we omit further details, but

Protocol 3 Re-encrypt from QR to Paillier

Input A: [m], PKP , and PKQR
Input B: SKP and SKQR
Output: JmK where JmK = J1K ifm ≡ 1. Else, JmK = J0K.
1: procedure ReEncForPL([m])
2: A chooses a random bit r ← {0, 1}
3: A: [sr] ← [m].[0] ▷ sr ←m ⊕ 0

4: A: [s1−r] ← [m].[1] ▷ s1−r ←m ⊕ 1

5: A sends [s0] and [s1] to B

6: B: s0 ← decrQR([s0])
7: B: Js0K← encPL(s0), Js0K← encPL(s0 ⊕ 1)

8: B: s1 ← decQR([s1])
9: B: Js1K← encPL(s1), Js1K← encPL(s1 ⊕ 1)

10: B sends Js0K, Js1K, and their negates to A in the same order

as received, i.e (Js0K, Js1K, Js0K, Js1K)
11: A: JmK← Jsr K and JmK← Jsr K

the intuitions for the correctness and the security can be found in

[7, 42].

5 CERTIFICATION PROTOCOLS
This section outlines how to deploy and perform the certification

operations described in Section 3 in a privacy-preserving manner

on top of the proposed framework model. Basically, n parties want

to be certified through a certifier. To satisfy security guarantees,

the computation helper, an on-site secure co-processor, helps the

certifier execute protocols securely. Note that each certification

problem has its own computation and security requirements, and

these are highlighted explicitly. For simplicity, we assume all n
parties join the computation.

5.1 Private Mean Based Certification
To performmean based certification, the certifier needs to overcome

two main challenges: (1) computing the average of n encrypted

ciphertexts, (2) comparing each private input with the computed

average privately.

Initialization. The secure co-processor executes the KP ←

KEYGENP function to generate a key pair for the Paillier cryp-

tosystem and shares public key PKP with the certifier. Then, the

certifier executes the key generation algorithm for QR, KQR ←

KEYGENQR . After key generation, the certifier sends PKP to all

parties and sends PKQR to the secure co-processor.

Security Requirements. The individual inputs xi will be kept
confidential throughout the certification. In addition to this, the

average value of the provided inputs must also be hidden from both

the certifier and the secure co-processor. The final result of the

computation will be made public. The system should also be secure

against the existence of colluding parties.

Protocol. The parties encrypt their inputs with the Paillier cryp-

tosystem using public key PKP , Jxi K←encPL(xi), and send the

encrypted ciptertexts to the certifier. After receiving n inputs Jx1K,
Jx2K, ..., JxnK, the certifier executes the MEAN-CERTIFY algorithm

which is presented in Protocol 4. The protocol starts by comput-

ing the summation of the private inputs. Using the homomorphic

property of Paillier, the certifier computes JsK← JsK.X [i]mod N .

This operation yields s ← s + xi and after this is executed on all

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

58

Protocol 4 Mean Certification

Input Partyi : xi and PKP
Input Certifier: SKQR , and PKP
Input Secure Coprocessor: SKP and PKQR
Output: ci (certification result for each party)

1: procedure SendToCertifier(xi)
2: Jxi K← encPL(xi)
3: Send Jxi K to the certifier

4: Each party executes SendToCertifier(xi)

After receiving all inputs, X [1..n] = {Jx1K, Jx2K,...,JxnK}, the
certifier executes the following procedure.

5: procedure Mean-Certify(X [1..n])
Compute the sum of inputs

6: JsK← X [1]
7: for i ← 2 to n do
8: JsK← JsK.X [i]mod N ▷ s ← s + xi

Note that s =
∑n
i=1 xi

9: for i ← 1 to n do
10: Jx̃i K← X [i]n mod N ▷ x̃i ← n × xi
11: ti ← PrivateCompare(JsK, Jx̃i K)
12: if ti == 1 then
13: ci ← Above

14: else
15: ci ← Below

16: Sends ci to Pi

inputs, the resulting computation will be the summation of all in-

puts encrypted with Paillier, JsK. The Paillier cryptosystem does

not support a division operation. Rather than computing the av-

erage, i.e. dividing the summation by n, the certifier normalizes

the inputs by multiplying them by the number of participants, i.e.

Jx̃i K←Jxi Kn mod N . Recall that our main goal is to compare xi with
the average, ie, xi ≤ sum/n. The basic idea for this comparison is

xi ≤
sum
n ≡ xi ∗ n ≤ sum where

sum
n is the average. Recall that

the Paillier cryptosystem supports multiplying ciphertext with a

constant. After normalizing the input, the certifier and the secure

co-processor jointly execute the PrivateCompare function, intro-

duced in Section 4.3, to compare JsK with the normalized input Jx̃i K.
The result of this comparison is known by the certifier in the clear

and the certification is completed by labeling the party with input

xi as above or below.
Correctness. The certifier computes the summation of n private

inputs using the additive homomorphic operation of Paillier which

executes the summation operation over ciphertexts. Because of the

homomorphic property of Paillier, lines 3 through 5 of Protocol 4

compute the encrypted summation of n inputs. Each encrypted

input Jxi K is normalized by taking the power of n under modular

arithmetic, which is equivalent to Jx̃i K←Jxi ×nK due to the Paillier
properties. The comparison of each private input with the average

of n private input is equal to the comparison of normalized input

with the summation of n inputs, i.e.
sum
n ≤ xi ≡ sum ≤ xi × n

where sum ←
∑n
i=1 xi . After executing the private comparison, a

party is certified as above if sum ≤ xi ∗ n. Otherwise, the label is
below.

Intuition of Security Proof. The certifier receives the inputs
encrypted with Paillier from the parties. Since, it does not own

the secret key SKP , it cannot decrypt and learn the actual inputs.

The homomorphic addition is semantically secure due to the Pail-

lier cryptosystem, and the certifier computes the summation en-

crypted under Paillier. The comparison protocol is already proved

secure [42] and does not reveal any information. Recall that the

only restriction on collusion is between the certifier and the helper.

Hence, we need to prove that collusion between the certifier and

any number of parties will not reveal any private parties. Assume

n−1 parties collude with the certifier except party P1. In such a case,
the certifier has x2,x3, ...,xn in the clear and x1 encrypted, i.e. Jx1K.
Throughout the computation, the certifier computes sum encrypted

which is denoted as JsK in Protocol 4. The certifier can compute

Csum =
∑n
i=2 xi in the clear. If sum was in clear, knowing Csum

would help computing s−Csum ≡ x1. However, since s is encrypted,
the subtraction results in JsK.JCsumK−1 ≡Js − CsumK≡Jx1K. As it
can be easily inferred from the result, the colluding parties do not

provide any useful information to the certifier to reveal x1. Hence,
our private mean based certification protocol is secure even under

the existence of colluding parties, since neither the certifier nor the

secure co-processor learn any intermediary results throughout the

computation.

5.2 Private k-Quantile Certification
To split parties into distinct groups privately, the quantile based

certification is performed. Although the quantile computation is

directly related to the ranking of a set of inputs, the certifier com-

putes the k-quantiles privately without learning the ordering of the
private inputs.

Initialization. The secure co-processor generates key pairs, KP
and KQR , for both Paillier and QR. It owns both private keys SKP
and SKQR , and sends the public keys, PKP and PKQR , to the certi-

fier. Then, the certifier shares the public key for Paillier, PKP , with

the parties. We assume that the certifier knows the parameter k .
Security Requirements. Throughout the certification process,

the individual inputs should be kept secret as in prior certifications.

By the nature of quantile computations, the order information

among different groups, i.e. the order of the parties in different

groups, will be revealed. However, the ordering information of

parties inside the same quantile group should not be revealed. We

assume that the parties do not collude in this certification method
1
.

Protocol. Parties encrypt their inputs with Paillier, Jxi K, and
send them to the certifier. After receiving n inputs, the certifier

executes the QUANTILE-CERTIFY algorithm which is presented in

Protocol 5. At a high-level, the protocol privately compares each

possible pair securely. The aim is to construct a private comparison

matrix, where the pairwise comparison is hidden from the certifier

using Paillier. Later, by computing the sum of each column in the

comparison matrix, the certifier figures out the rank of the corre-

sponding parties, which will be used later to split parties into k
groups.

The public pairwise comparisons of all pairs reveal the order of

the inputs, which obviously violates the security constraint. There-

fore, the protocol initially performs private pairwise comparison

1
This is a natural problem of quantile based private grouping. If the parties from

neighbor groups collude with each other, due to the ordering, it might be possible to

reveal the input of non-colluding party in one of these groups.

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

59

Protocol 5 k-Quantile Certification

Input Partyi : xi and PKP
Input Certifier: k , PKP , and PKQR
Input Secure Coprocessor: SKQR , SKP and PKQR
Output: ci (certification result for each party)

1: Each party executes SendToCertifier(xi) from Protocol 4

After receiving all inputs,X [1..n] = {Jx1K,...,JxnK}, the certifier
executes the following.

2: procedure Quantile-Certify(X [1..n], k)
Private pairwise comparisons of inputs

3: C[1..n][1..n] ←empty

4: for i ← 1 to n do
5: for j ← i + 1 to n do
6: [ti j] ← EncryptedPCompare(X [i], X [j]) ▷ ti j ←

xi ≤ x j
7: Jti j K, Jti j K← ReEncForPL([ti j])

8: C[i][j] ← Jti j K and C[j][i] ← Jti j K
9: c[1..n] ← empty

10: for j ← 1 to n do
11: JsumK← J0K
12: for i ← 1 to n do
13: if i , j then
14: JsumK← JsumK.C[i][j]mod N

15: c[j] ← JsumK
16: Choose a random permutation π over {1, ..,n}
17: for i ← 1 to n do
18: cπ [i] ← c[π (i)]

19: R[1..n] ←ComputeBin(cπ [], n, k)
20: for i ← 1 to n do
21: j ← π−1(i)
22: c j ← R[i]
23: Send c j to party Pj

24: procedure ComputeBin(V [1..n], n, k)
25: R[1..n] ← empty

26: for i ← 1 to n do
27: v ← decPL(V [i])
28: R[i] ← ⌈n−vn/k ⌉

29: return R

for all pairs using EncryptedPCompare introduced earlier in Sec-

tion 4.3 which returns the resulting bit [ti j] of comparison xi ≤ x j
encrypted. Using the re-encryption function, the resulting bit is

transformed to a Paillier scheme. Additionally, the negation of the

result is also provided to the certifier. This will allow the certifier

to construct a private comparison matrix Ci j where i, j ∈ {1, ..,n}
as shown is Figure 2. Briefly, if xi ≤ x j , then the comparison will

return Jti j K= 1 and Jti j K= 0. These results are stored in the indexes

of Ci j and Cji . Consider an example in Figure 2 where x1 = 3 and

x3 = 5. The comparison of x1 and x3 is x1 ≤ x3 ≡ 3 ≤ 5 ≡ 1. Hence,

C13 = 1 and C31 = 0. After comparing all pairs, the certifier com-

putes the columnwise summation of all entries in the comparison

matrix using homomorphic addition. The columnwise summation

will give the number of ones, i.e. the input is greater than or equal

to how many other inputs. Therefore, the summed values in the

resulting vector show the ranking among n parties, i.e. if the entry

x1 =3, x2 =1, x3 =5

C12 = x1 ≤ x2 = 0 & C21 = 1
C13 = x1 ≤ x3 = 1 & C31 = 0
C23 = x2 ≤ x3 = 1 & C32 = 0

xi ≤ xj 1 2 3

1 - 0 1

2 1 - 1

3 0 0 -

1 0 2

x2 ≤ x1 ≤ x3

Sum

Figure 2: Private Comparison for Ordering
in index i of the resulting vector is 0, that means the input xi is the
minimum input. If it is n − 1, that means xi is greater than all other

inputs and it is the maximum. Consider the example in Figure 2.

After the columnwise summation, the resulting vector is < 1, 0, 2 >,

which means xi is greater than one input, x2 is not greater than
or equal to any of the other inputs, and x3 is greater than equal to

two parties. Hence, the resulting vector shows the ranking of the

corresponding inputs. Recall the certifier does not own SKP ; thus,

it cannot learn the ordering information. To prevent the secure

co-processor from learning the order of the values in the resulting

vector c[1..n], the certifier applies a random permutation π . The ith

element of c is stored at index π (i), cπ [i] ← c[π (i)]. Then, the per-
muted result vector is sent to the secure co-processor. The secure

co-processor decrypts the entries in the permuted resulting vector,

and computes the group of the inputs. After computing groups for

all inputs, the secure co-processor returns the group vector, R, to
the certifier. The certifier can compute j ← π−1(i) which repre-

sents the jth index in the unpermuted order. After unpermuting

the orders, the certifier returns the corresponding results to the

parties, c j ← R[j], where c j is the quantile rank of the jth party.

Correctness. Th certifier first compares all pairs and constructs

a comparisonmatrix such that ∀i, jxi ≤ x j ⇔ Ci j ← 1 andCji ← 0

where i , j. The comparison can be one of the followings: (1) xi <
x j , (2) xi = x j , and (3) xi > x j . For cases 1 and 3, the numbers are

distinct, and the output of comparisons are Ci j ← 1 and Ci j ← 0,

respectively. In case 2, the numbers are equal and it returnsCi j ← 1.

In this case,Cji ← 0. This means xi is not greater than x j . Although
xi = x j , the comparison selects x j greater and ranks it higher.

The columnwise summation of the comparison matrix will form

a resulting vector which shows the ranking of the inputs among

all n parties. The smallest input will have an entry of 0 and the

maximum input will have an entry of n − 1 which says this input

is greater than or equal to n − 1 other entries. Thus, the resulting
vector will have entries from 0 to n − 1 which are the ranks of the

inputs. The correctness of the rest of the protocol is straightforward.

The resulting vector has entries 0, 1, ...,n − 1 in some order. The

secure co-processor decrypts the entries and split inputs into k
groups (quantiles) based on their order among the n parties. For

example, the inputs with entries 0, 1, ...,k − 1 will be in the first

group.

Intuition of Security Proof. The certifier receives the inputs
encrypted with Paillier. The certifier initially compares all pairs us-

ing the function ENCRYPTEDPCOMPARE which is followed by the

execution of the re-encryption function. The private comparison

and re-encryption functions are already proved secure in [7] and

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

60

they do not reveal any information. The results of the pairwise com-

parisons are encrypted with Paillier and the certifier cannot decrypt

the results due to its lack of knowledge of the private key, SKP .

To rank the inputs, the certifier computes the columnwise sum-

mation of the comparison matrix using the additive homomorphic

properties of Paillier. Therefore, it does not learn any information

about the inputs and the pairwise comparisons. On the other hand,

the secure co-processor receives the resulting vector permuted. Al-

though it decrypts entries in the permuted vector, it cannot infer

any information about the relationship between the results and the

parties, since it does not know the permutation. At the end of the

certification, groups(quantiles) of parties are public, but neither the

certifier nor the secure co-processor learn any information about

the ordering of parties inside the same group. Thus, the quantile

based certification is secure.

5.3 Private Certification with Private Outputs
So far, the certification results aremade public. As was discussed ear-

lier, mutually competitive firms might want to gain private knowl-

edge about their performances without revealing the result of the

certification to the certifier, the computation helper and other par-

ties. We now describe necessary modifications to perform such

certifications with private outputs.

5.3.1 Mean Based Certifications with Private Outputs. The frame-

work initializes the same setup as in the corresponding certification

with public outputs except that a key pair KQR is generated by

the secure co-processor. SKQR is only owned by the secure co-

processor and PKQR is shared with the certifier. To compare the

private input with the encrypted threshold value, the certifier in-

vokes the EncryptedPCompare function from Protocol 2 until line

12 instead of the PRIVATECOMPARE function inside the MEAN-

Certify function. Line 12 from the EncryptedPCompare function

returns the result of the comparison encrypted with QR, [t], to the

certifier. Since, the certifier does not own SKQR , it cannot decrypt

and learn the result of the comparison. The certifier sends the re-

sulting bits to the parties encrypted. The parties do not own the

secret key SKQR , thus, they need help from the secure co-processor

to learn the actual results. To prevent the certifier and the secure

co-processor from learning the actual results, the parties randomize

their inputs by applying the same logic as in Protocol 3. In brief,

each party chooses a random bit, r , and then computes sr ←[t].[0]
and s1−r ←[t].[1]. Both sr and s1−r are independent from the value

of the resulting bit t . Each party sends their sr and s1−r to the

certifier and the certifier sends them to the secure co-processor.

The secure co-processor decrypts both of them and returns the

unencrypted results to the certifier in the order received. The cer-

tifier also does the same and sends the unencrypted sr and s1−r
to the corresponding party. Since the party knows r , it selects the
correct result. If the result is 1, the party knows the label is above;
otherwise, it is below.

5.3.2 Quantile based Certification with Private Outputs. The
framework uses the same setup introduced in Section 5.2. The

certifier executes the QUANTILE-CERTIFY functions as it is until

line 21 in Protocol 5, where the secure co-processor computes the

groups (quantiles) of inputs based on their order. After the secure

co-processor computes the groups, it encrypts the entries of R
using the COMPUTEBIN function, which are the group numbers

(quantiles) of the inputs, with Paillier. Then, the secure co-processor

returns R to the certifier. Since the certifier does not own SKP , it

cannot decrypt and learn which party is placed in which group. The

certifier executes the rest of the protocol as is and sends the results

to the parties encrypted. The parties do not have the secret key SKP .

Therefore, they need help from the secure co-processor. To hide

the real results (c in this case), each party selects a large enough

random number r , and executes JsK←JcK.JrK which is equivalent

to JsK←Jc + rK. Then, each party sends their inputs to the certifier

and the certifier also sends these inputs to the secure co-processor.

After decrypting JsK, the secure co-processor sends s to the certifier
in the clear. Note that since the random number r is hidden from

both the certifier and the secure co-processor, they cannot learn the

actual group number of the party. The certifier sends s back to the

corresponding party. Upon receiving s , a party executes c ← s − r
and learns the group of the party.

6 PERFORMANCE
To show the performance analysis of our framework and algorithms,

in this section, we present both empirical and complexity analysis

for both the mean and k-quantile certifications.

6.1 Complexity Analysis
Mean and quantile based certifications rely on comparing encrypted

data. This paper proposes two comparisons protocols, PRIVATE-

COMPARE and ENCRYPTEDPCOMPARE, which are adapted from

Veugen’s [42] protocol. Veugen discusses the complexity analysis

of the encrypted comparison protocol and shows that encrypted

comparison has a very low computation complexity. The main

computation complexity occurs while two private integers are be-

ing compared. In the same paper, Veugen proposes a Lightweight

Secure Integer Comparison (LSIC) which requires l rounds of com-

munications plus half a round at the beginning. Our prototype also

implements the LSIC algorithm to compare two integers privately.

Both PRIVATECOMPARE and ENCRYPTEDPCOMPARE have one

more round for transferring z and [t]. Therefore, our comparison

protocols require l + 1.5 rounds of communications between the

certifier and the computation helper (e.g. assuming a 32-bit integer

domain: 33.5). In addition, the re-encryption procedure requires

one round of communications.

6.2 Empirical Analysis
We implemented a prototype of the proposed framework in Java.

The certifier is run on aWindows machine with i5-2320 3 GHZ CPU

and 8 GBmemory. On the other hand, the computation helper is run

on a machine running Linux with Intel Xeon(R) E31235 3.20 GHZ

CPU and 32 GB memory. Both machines are on the same network

and the average latency between them is 0.1 ms. The parties are

run on the same machine with the certifier. The data domain is

32-bit integers. The conducted experiments measure the execution

time to evaluate system performance by varying the number of

participating parties. The size of the keys for both the Paillier and

the QR cryptosystems are set to 2048 bits.

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

61

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

Ti
m

e
(m

s)

of parties

(a) Homomorphic sum

0

5

10

15

20

25

30

0 20 40 60 80 100

Ti
m

e
(s

ec
)

of parties

(b) Time spent in comparisons

0

5

10

15

20

25

30

0 20 40 60 80 100

Ti
m

e
(s

ec
)

of parties

(c) Total execution time
Figure 3: Results of Private Mean Certification

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

Ti
m

e
(s

ec
)

of parties

Compute Bin

Sum

(a) Homomorphic Sum and
Bin Computation

0

10

20

30

40

50

60

0 20 40 60 80 100

Ti
m

e
(m

in
)

of parties

Total Time

Comparison

(b) Time spent in comparisons

Figure 4: Results of Private Quantile Certification
6.2.1 Mean Certification. The mean certification initially com-

putes the average of inputs, and then compares each input with

the average. Figure 3(a) and 3(c) present the execution times for

homomorphic summation and total certification times, respectively.

Homomorphic summation is performed with modular multipli-

cation. It is cheaper compared to encryption and decryption and

this is also validated in our experiments. For very small number of

parties, the average computation is performed in 0 or 1 ms. In the

worst case, the homomorphic summation takes 7 ms (number of

parties = 100). These results are very promising for other privacy-

preserving database applications which need to perform aggregate

operations as part of query executions.

The execution time of the mean based certification is dominated

by the comparisons with the average (Figure 3(b)). The mean certifi-

cation requires n comparisons against the computed average. In our

implementation, the comparisons are sequential, therefore, both

total execution time and time spent in comparisons have linear

behavior. As the number of participating parties increases, the total

execution time also increases. It is possible to perform comparisons

in parallel which will decrease the total execution time, though this

paper does not discuss and implement parallelism. Even without

such an optimization, the total certification times take seconds, with

a maximum of 27.6 seconds when 100 parties participate. This is still

well below a minute, and hence for many applications, especially

environmental certification, is very reasonable.

6.2.2 4-Quantile Certification. The quantile certification requires
pair-wise comparison of each input data, which requires (n2 −n)/2
comparisons. This quadratic behavior causes longer certification

times as the number of participants increases as depicted in Fig-

ure 4(b). The other important sub-procedures inside the quantile

certification protocol are the homomorphic summation of compar-

ison values and the grouping computations. We set k to 4, that

means the parties are split into 4 groups. The computation helper

maps parties into groups in linear time. On the other hand, to get

the final scores encrypted, the certifier performs n2 − n homomor-

phic summations before computing the bins. The certification of 20

participants is performed within 2 minutes though it takes slightly

more than 50 minutes when there are 100 participants. Since this is

an off-line operation, such execution times are reasonable. However,

it is expected to have 20-30 participants most of the time and the

quantile based certification can be done within a few minutes in

such settings, which is pretty efficient.

Discussion. Our algorithms and framework enable achieving

significant functionality with reasonable computation performance

without sacrificing any performance. Our evaluations show the

advantage of the usage of secure co-processors as a computation

helper on site. Recall that the average network latency between the

certifier and the computation helper is 0.1 ms in our experiments,

which makes the cost of rounds of interactions among two parties

negligible compared to the computation cost. An on site secure

co-processor also makes the network transmission time negligible.

Recall that the encrypted comparison operations require l + 1.5

rounds of communication and the mean certification requires n
comparisons while the k-quantile comparison requires (n2 − n)/2
comparisons, which makes n(l + 1.5) and (n2 −n)(l + 1.5)/2 rounds
of communications, respectively. A setting where there is a non-

negligible latency between the certifier and the computation helper

will result in drastic performance degradation. Therefore, a secure

co-processor perfectly fits the proposed model.

7 CONCLUSION
In this paper, we formally define the privacy preserving certifica-
tion paradigm to evaluate the environmental impacts of indus-

trial processes privately and propose solutions for two certification

problems-mean, quantile. To perform privacy preserving certifica-

tions without compromising any sensitive information, we propose

a framework, which enables a certifier to certify parties based on

a well agreed upon set of criteria under realistic network setting.

The paper also presents efficient and provably secure algorithms

for the certification. Our prototype demonstrates that the proposed

approach is not only secure but also efficient and practical.

Although the certification process is typically performed off-line,

and hence might not require strict time constraints to complete

the certification process, other applications might require instant

feedback or certification based on the input, e.g., privacy preserving

online auction system. Our framework is shown to be efficient for

such application scenarios as well.

ACKNOWLEDGMENT
This work is partly funded by NSF grants CNS-1528178 and CCF-

1442966.

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

62

REFERENCES
[1] Sean W. Smith and Steve Weingart (Eds.). 1999. Building a High-performance,

Programmable Secure Coprocessor. Comput. Netw. 31, 9 (April 1999), 831–860.
http://dl.acm.org/citation.cfm?id=324119.324128

[2] 2011. TPMMain Specification. (March 2011). http://www.trustedcomputinggroup.

org/tpm-main-specification/.

[3] 2012. IBM 4764 product and PCIXCC feature overview. (March 2012). https:

//www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml.

[4] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,

Ravi Ramamurthy, and Ramaratnam Venkatesan. 2013. Orthogonal security with

cipherbase. In Proc. of the 6th CIDR, Asilomar, CA.
[5] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. 2012. ObliviAd:

Provably Secure and Practical Online Behavioral Advertising. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy (SP ’12). IEEE Computer Society,

Washington, DC, USA, 257–271. DOI:https://doi.org/10.1109/SP.2012.25
[6] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based data-

base with privacy and data confidentiality. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011. 205–216. DOI:https://doi.org/10.1145/1989323.1989346

[7] Foteini Baldimtsi and Olga Ohrimenko. 2015. Sorting and Searching Behind

the Curtain. In Financial Cryptography and Data Security - 19th International
Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected
Papers. 127–146. DOI:https://doi.org/10.1007/978-3-662-47854-7_8

[8] Carsten Baum, Ivan DamgÃěrd, and Claudio Orlandi. 2014. Publicly Auditable

Secure Multi-Party Computation. Security and Cryptography for Networks (2014),
175–196. DOI:https://doi.org/10.1007/978-3-319-10879-7_11

[9] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient garbling from a fixed-key blockcipher. In Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 478–492.

[10] Beth R. Beloff, Jeanette M. Schwarz, and Earl Beaver. 2002. Use Sustainability

Metrics to Guide Decision-Making. Chemical Engineering Progress 98, 7 (July

2002), 58–63.

[11] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. 2014. Rmind: a tool for
cryptographically secure statistical analysis. Technical Report. Cryptology ePrint

Archive, Report 2014/512.

[12] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015.

Machine Learning Classification over Encrypted Data. In 22nd Annual Net-
work and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2014. http://www.internetsociety.org/doc/

machine-learning-classification-over-encrypted-data

[13] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. 2007. Efficient and secure

comparison for on-line auctions. In Information security and privacy. Springer,
416–430.

[14] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. 2009. A correction to

’efficient and secure comparison for on-line auctions’. IJACT 1, 4 (2009), 323–324.

DOI:https://doi.org/10.1504/IJACT.2009.028031
[15] Adriana Del Borghi. 2012. LCA and communication: Environmental Product

Declaration. The International Journal of Life Cycle Assessment 18, 2 (Oct 2012),
293–295. DOI:https://doi.org/10.1007/s11367-012-0513-9

[16] Magali Delmas and Vered Doctori Blass. 2010. Measuring corporate environmen-

tal performance: the trade-offs of sustainability ratings. Bus. Strat. Env. 19, 4 (Apr
2010), 245–260. DOI:https://doi.org/10.1002/bse.676

[17] Annik Magerholm Fet and Christofer Skaar. 2006. Eco-labeling, Product Category

Rules and Certification Procedures Based on ISO 14025 Requirements (6 pp).

The International Journal of Life Cycle Assessment 11, 1 (Jan 2006), 49–54. DOI:
https://doi.org/10.1065/lca2006.01.237

[18] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In STOC
’09: Proceedings of the 41st annual ACM symposium on Theory of computing. 169–
178.

[19] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. 2005. On private

scalar product computation for privacy-preserving data mining. In Information
Security and Cryptology–ICISC 2004. Springer, 104–120.

[20] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of
computer and system sciences 28, 2 (1984), 270–299.

[21] Reinout Heijungs and Sangwon Suh. 2002. The computational structure of life
cycle assessment. Vol. 11. Springer Science & Business Media.

[22] Eva Heiskanen. 2002. The institutional logic of life cycle thinking. Journal
of Cleaner Production 10, 5 (Oct 2002), 427–437. DOI:https://doi.org/10.1016/
s0959-6526(02)00014-8

[23] ISO 14044. 2006. Environmental management — Life cycle assessment — Require-
ments and guidelines. ISO, Geneva, Switzerland.

[24] Josef Kaenzig, Damien Friot, Myriam SaadÃľ, Manuele Margni, and Olivier Jolliet.

2010. Using life cycle approaches to enhance the value of corporate environmental

disclosures. Bus. Strat. Env. 20, 1 (Dec 2010), 38–54. DOI:https://doi.org/10.1002/
bse.667

[25] Jonathan Katz. 2007. Universally composable multi-party computation using

tamper-proof hardware. In Advances in Cryptology-EUROCRYPT 2007. Springer,

115–128.

[26] Florian Kerschbaum. 2008. Practical Privacy-Preserving Benchmarking. In Pro-
ceedings of The IFIP TC-11 23rd International Information Security Conference, IFIP
20th World Computer Congress, IFIP SEC 2008, September 7-10, 2008, Milano, Italy.
17–31. DOI:https://doi.org/10.1007/978-0-387-09699-5_2

[27] Florian Kerschbaum. 2011. Secure and Sustainable Benchmarking in Clouds -

A Multi-Party Cloud Application with an Untrusted Service Provider. Business
& Information Systems Engineering 3, 3 (2011), 135–143. DOI:https://doi.org/10.
1007/s12599-011-0153-9

[28] Florian Kerschbaum, Debmalya Biswas, and Sebastiaan de Hoogh. 2009. Per-

formance Comparison of Secure Comparison Protocols. In Database and Expert
Systems Applications, DEXA, International Workshops, Linz, Austria, August 31-
September 4, 2009, Proceedings. 133–136. DOI:https://doi.org/10.1109/DEXA.2009.
37

[29] Florian Kerschbaum, Jens Strüker, and Thomas G. Koslowski. 2011. Confiden-

tial Information-Sharing for Automated Sustainability Benchmarks. In Proceed-
ings of the International Conference on Information Systems, ICIS 2011, Shang-
hai, China, December 4-7, 2011. http://aisel.aisnet.org/icis2011/proceedings/

breakthroughideas/4

[30] Florian Kerschbaum and Orestis Terzidis. 2006. Filtering for Private Collabo-

rative Benchmarking. In Emerging Trends in Information and Communication
Security, International Conference, ETRICS 2006, Freiburg, Germany, June 6-9, 2006,
Proceedings. 409–422. DOI:https://doi.org/10.1007/11766155_29

[31] Brandon Kuczenski. 2015. Partial ordering of life cycle inventory databases. The
International Journal of Life Cycle Assessment 20, 12 (Oct 2015), 1673–1683. DOI:
https://doi.org/10.1007/s11367-015-0972-x

[32] K.M. Lee and H.D. Stensel. 1999. ISO standards on environmental labels and

declarations and its implications on the market. Proceedings First International
Symposium on Environmentally Conscious Design and Inverse Manufacturing
(1999). DOI:https://doi.org/10.1109/ecodim.1999.747664

[33] Yehuda Lindell and Benny Pinkas. 2008. Secure Multiparty Computation for

Privacy-Preserving Data Mining. IACR Cryptology ePrint Archive 2008 (2008),
197. http://eprint.iacr.org/2008/197

[34] Dahlia Malkhi, NoamNisan, Benny Pinkas, Yaron Sella, and others. 2004. Fairplay-

Secure Two-Party Computation System.. In USENIX Security Symposium, Vol. 4.

San Diego, CA, USA.

[35] David Morrow and Dennis Rondinelli. 2002. Adopting Corporate Environmental

Management Systems:. European Management Journal 20, 2 (Apr 2002), 159–171.
DOI:https://doi.org/10.1016/s0263-2373(02)00026-9

[36] Katsuyuki Nakano andMasahikoHirao. 2011. Collaborative activitywith business

partners for improvement of product environmental performance using LCA.

Journal of Cleaner Production 19, 11 (Jul 2011), 1189–1197. DOI:https://doi.org/
10.1016/j.jclepro.2011.03.007

[37] Pascal Paillier. 1999. Public-key Cryptosystems Based on Composite Degree

Residuosity Classes. In Proceedings of the 17th International Conference on Theory
and Application of Cryptographic Techniques (EUROCRYPT’99). Springer-Verlag,
Berlin, Heidelberg, 223–238. http://dl.acm.org/citation.cfm?id=1756123.1756146

[38] G. Rebitzer, T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W. -P.

Schmidt, S. Suh, B. P.Weidema, and D.W. Pennington. 2004. Life cycle assessment:

Part 1: Framework, goal and scope definition, inventory analysis, and applications.

Environ. Int. 30, 5 (July 2004), 701–720. DOI:https://doi.org/10.1016/j.envint.2003.
11.005

[39] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. 2012.

Policy-Sealed Data: A New Abstraction for Building Trusted Cloud Services.

In Presented as part of the 21st USENIX Security Symposium (USENIX Secu-
rity 12). USENIX, Bellevue, WA, 175–188. https://www.usenix.org/conference/

usenixsecurity12/technical-sessions/presentation/santos

[40] Bruce Schneier. 2009. Homomorphic Encryption Breakthrough. (2009). http:

//www.schneier.com/blog/archives/2009/07/homomorphic_enc.html, 2009.

[41] UNEP/SETAC. 2011. Global Guidance Principles for Life Cycle Assessment
Databases. Technical Report. United Nations Environment Programme.

[42] Thijs Veugen. 2011. Comparing encrypted data. Multimedia Signal Processing
Group, Delft University of Technology, The Netherlands and TNO Information and
Communication Technology, Delft, Tech. Rep (2011).

[43] Cong Wang, Sherman S.M. Chow, Qian Wang, Kui Ren, and Wenjing Lou. 2013.

Privacy-Preserving Public Auditing for Secure Cloud Storage. IEEE Trans. Comput.
62, 2 (Feb 2013), 362–375. DOI:https://doi.org/10.1109/tc.2011.245

[44] Gregor Wernet, Stavros Papadokonstantakis, Stefanie Hellweg, and Konrad

HungerbÃĳhler. 2009. Bridging data gaps in environmental assessments: Model-

ing impacts of fine and basic chemical production. Green Chem. 11, 11 (2009),
18–26. DOI:https://doi.org/10.1039/b905558d

[45] World Steel Association. 2011. Life cycle inventory study for steel products. Tech-
nical Report. World Steel Association.

[46] Andrew Chi-Chih Yao. 1982. Protocols for secure computations. In FOCS, Vol. 82.
160–164.

Privacy CODASPY'18, March 19–21, 2018, Tempe, AZ, USA

63

http://dl.acm.org/citation.cfm?id=324119.324128
http://www.trustedcomputinggroup.org/tpm-main-specification/
http://www.trustedcomputinggroup.org/tpm-main-specification/
https://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
https://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
https://doi.org/10.1109/SP.2012.25
https://doi.org/10.1145/1989323.1989346
https://doi.org/10.1007/978-3-662-47854-7_8
https://doi.org/10.1007/978-3-319-10879-7_11
http://www.internetsociety.org/doc/machine-learning-classification-over-encrypted-data
http://www.internetsociety.org/doc/machine-learning-classification-over-encrypted-data
https://doi.org/10.1504/IJACT.2009.028031
https://doi.org/10.1007/s11367-012-0513-9
https://doi.org/10.1002/bse.676
https://doi.org/10.1065/lca2006.01.237
https://doi.org/10.1016/s0959-6526(02)00014-8
https://doi.org/10.1016/s0959-6526(02)00014-8
https://doi.org/10.1002/bse.667
https://doi.org/10.1002/bse.667
https://doi.org/10.1007/978-0-387-09699-5_2
https://doi.org/10.1007/s12599-011-0153-9
https://doi.org/10.1007/s12599-011-0153-9
https://doi.org/10.1109/DEXA.2009.37
https://doi.org/10.1109/DEXA.2009.37
http://aisel.aisnet.org/icis2011/proceedings/breakthroughideas/4
http://aisel.aisnet.org/icis2011/proceedings/breakthroughideas/4
https://doi.org/10.1007/11766155_29
https://doi.org/10.1007/s11367-015-0972-x
https://doi.org/10.1109/ecodim.1999.747664
http://eprint.iacr.org/2008/197
https://doi.org/10.1016/s0263-2373(02)00026-9
https://doi.org/10.1016/j.jclepro.2011.03.007
https://doi.org/10.1016/j.jclepro.2011.03.007
http://dl.acm.org/citation.cfm?id=1756123.1756146
https://doi.org/10.1016/j.envint.2003.11.005
https://doi.org/10.1016/j.envint.2003.11.005
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/santos
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/santos
http://www.schneier.com/blog/archives/2009/07/homomorphic_enc.html
http://www.schneier.com/blog/archives/2009/07/homomorphic_enc.html
https://doi.org/10.1109/tc.2011.245
https://doi.org/10.1039/b905558d

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Description
	3.1 Privacy-Preserving Aggregation in LCA
	3.2 Mean Based Certification
	3.3 k-Quantile Based Certification

	4 System Model and Building Blocks
	4.1 System Model
	4.2 Cryptosystems
	4.3 Comparison of Encrypted Data
	4.4 Re-encryption From QR to Paillier

	5 Certification Protocols
	5.1 Private Mean Based Certification
	5.2 Private k-Quantile Certification
	5.3 Private Certification with Private Outputs

	6 Performance
	6.1 Complexity Analysis
	6.2 Empirical Analysis

	7 Conclusion
	References

